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Summary

The moss Physcomitrella patensis a model for the study of plant cell biology and, by virtue of its basal position
in land plant phylogeny, for comparative analysis of the evolution of plant gene function and development. It is
ideally suited for ‘reverse genetic’ analysis by virtue of its outstanding ability to undertake targeted transgene
integration by homologous recombination. However, gene identification through mutagenesis and map-based
cloning has hitherto not been possible, due to the lack of a genetic linkage map. Using molecular markers
[amplified fragment length polymorphisms (AFLP) and simple sequence repeats (SSR)] we have generated
genetic linkage maps for Physcomitrella. One hundred and seventy-nine gene-specific SSR markers were
mapped in 46 linkage groups, and 1574 polymorphic AFLP markers were identified. Integrating the SSR- and
AFLP-based maps generated 31 linkage groups comprising 1420 markers. Anchorage of the integrated linkage
map with gene-specific SSR markers coupled with computational prediction of AFLP loci has enabled its
correspondence with the newly sequenced Physcomitrella genome. The generation of a linkage map densely
populated with molecular markers and anchored to the genome sequence now provides a resource for forward
genetic interrogation of the organism and for the development of a pipeline for the map-based cloning of
Physcomitrella genes. This will radically enhance the potential of Physcomitrella for determining how gene
function has evolved for the acquisition of complex developmental strategies within the plant kingdom.
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Introduction

The moss Physcomitrella patens is the first non-flowering
land plant for which an annotated genome sequence has
been determined (Rensing et al., 2008, http://genome.jgi-
psf.org/Phypa1_1/Phypal_1.home.html). A member of the
bryophytes, the first group of plants to diverge from the
modern land plant lineage, Physcomitrella retains many
features typical of ancestral land plants (Kenrick and Crane,
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1997; Rensing et al., 2008). As such, it represents a fruitful
source for the comparative analysis of gene function within
the plant kingdom. An anatomically simple plant, Physc-
omitrella is used as a model organism for the study of plant
cell biology, particularly differentiation at the cellular level
and growth responses to environmental stimuli by single
cells (Cove, 2005; Reski, 1998). A remarkable feature of
Physcomitrella is its ability to incorporate transforming
DNA at targeted sites within the genome by homologous
recombination (Hofmann et al., 1999; Schaefer and Zryd,
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1997; Strepp et al.,, 1998). Targeting vectors containing
sequences as short as a few hundred base pairs are prefer-
entially integrated at the cognate loci with frequencies sim-
ilar to those observed in yeast (Kamisugi et al., 2005, 2006).
This has enabled the rapid construction and analysis of
mutant strains containing precisely engineered allele
replacements and gene knockouts for the functional analysis
of candidate genes identified in the genome sequence by
‘reverse genetics'.

Reverse genetics permits the analysis of genes whose
function may be postulated by virtue of their homology with
genes previously identified in other organisms. However, the
majority (63%) of predicted P. patens genes currently lack
evidence of their function and homology (Rensing et al.,
2008). Therefore, the full potential of Physcomitrellawill only
be realised once a ‘forward genetic’ analysis of the organism
is possible. Forward genetic approaches — the mutagenic
interrogation of an organism to uncover genes responsible
for specific phenotypes - enables novel genetic functions to
be identified without a priori assumptions. It is an approach
that is both powerful and philosophically satisfying, and in
Physcomitrella mutagenesis is facilitated by the haploid
nature of the dominant (gametophyte) stage of the life cycle.

Numerous Physcomitrellamutants have been isolated and
described, with phenotypes associated with metabolism,
cellular differentiation and hormone responses, and cellular-
level growth responses such as gravi- and phototropisms
(Abel et al., 1989; Ashton and Cove, 1977; Ashton et al.,
1979a,b; Engel, 1968; Jenkins and Cove, 1983; Jenkins et al.,
1986; Knight et al, 1991; Wang et al., 1981). However,
successful identification of the genes identified through a
random mutagenic approach requires that a means exists
whereby a researcher may move rapidly from an identified
mutant phenotype to the underlying mutated DNA sequence.
In most widely adopted model organisms, this requirement
is satisfied by the existence of acompleted genome sequence
underpinned by a well-marked genetic linkage map popu-
lated by sequence-anchored genetic markers. This enables
the rapid map-based cloning of genes responsible for mutant
phenotypes (Jander et al., 2002; Lukowitz et al., 2000).

Remarkably, although genetic analysis of Physcomitrella
mutants was established 40 years ago (Engel, 1968), no
genetic linkage map for this species has previously been
established. Moreover, cytogenetic studies have historically
shown disagreement as to the number of chromosomes
(which are small and difficult to visualise), but the current
consensus is that for the internationally used laboratory
strain ‘Gransden2004’ n = 1x = 27 (Bryan, 1957; Reski et al.,
1994). In order to enable the integration of forward genetic
approaches with the unrivalled capacity for reverse genetics
that characterises Physcomitrella, we have constructed a
high-density linkage map populated with molecular markers
that can be directly integrated with the underlying sequence
of the genome.

Results

Establishment of mapping populations

Our laboratories embarked on the identification of two
classes of molecular genetic marker: amplified fragment
length polymorphisms (AFLPs) (Vos etal., 1995) and
expressed sequence tag (EST)-derived simple sequence
repeats (SSRs) (Tautz and Renz, 1984). The former provide a
means of simultaneously determining the allelic status of
hundreds of independent genetic loci without any prior
knowledge of their DNA sequence, and are thus well suited
to the rapid acquisition of mapped loci (Van Os et al., 2006).
The latter generate a framework of gene sequence-linked
markers that provides a means by which the AFLP-based
linkage map can be anchored to the genome sequence.

A number of independently isolated and geographically
diverse Physcomitrella accessions were first screened for
their relative genetic diversity, using gene-linked SSR mark-
ers identified following a computational analysis of the large
Physcomitrella EST database, as well as by analysis of
ribosomal DNA internal transcribed spacer sequences (von
Stackelberg et al., 2006). The genetic diversity of a collection
of 21 worldwide Physcomitrella accessions and two related
species in the Funariaceae was evaluated by testing 64
informative SSR markers, as well as by comparing ribosomal
DNA internal transcribed spacer sequences (von Stackelberg
et al., 2006, and manuscript in preparation; http://www.cos-
moss.org/ecomap.content). This analysis identified strains
that could contribute the genetically distinct parental geno-
types necessary for the generation of a mapping population.
Because the object of the programme was to provide linkage
between the genetic and physical maps, we chose the
sequenced genotype (Gransden2004).

The French accession Villersexel K3 exhibited the greatest
genetic distance from Gransden among all tested European
lines. The ability to hybridise and produce viable progeny
with a nicB5/ylo6 male-sterile Gransden mutant (Ashton and
Cove, 1977) was evaluated for the Villersexel strain and also
for two genetically divergent Japanese and Australian
accessions. However, crossing experiments with the acces-
sions from Japan (P. patens ssp. californica) and Australia
(P. patens ssp. readeri) failed to produce reasonable num-
bers of viable progeny. Consequently the Villersexel K3
strain was selected as the most suitable choice for the
second parent.

Mapping populations were established in both Leeds and
Freiburg. In Leeds, we used a Gransden2004 parent that had
been transgenically marked by the targeted incorporation of
a single copy of an nptll selection cassette to the PpLea-1
(AY870926) locus (Kamisugi and Cuming, 2005). When
crossed with the Villersexel accession, hybrid sporophytes
were identified through the 1:1 segregation of the G418
resistance phenotype in their resulting spores. In Freiburg,
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the Villersexel parent was crossed as father with the nicB5/
ylo6 male-sterile Gransden mutant as mother. Successful
crosses were identified by the appearance of segregating
parental SSR alleles in F4 individuals.

Like all bryophytes, the dominant vegetative form of
Physcomitrella is the haploid gametophyte. Gametes are
produced by mitosis, and their fusion (the outcome of
fertilization of a single egg cell within an archegonium by a
spermatozoid) results in the formation of a diploid sporo-
phyte that remains dependent on the gametophyte for its
nourishment and development. Within the sporophyte,
meiotic spore mother cells generate the haploid spores
(typically 2000-5000 per spore capsule) (Reski, 1998).
Recombination during these meiotic divisions therefore
generates a population of segregating, recombinant haploid
F1 progeny. The mapping lines used corresponded to the
individual F; spore-derived plants that were subsequently
propagated vegetatively. Being haploid and self-fertile,
these lines represent a population of plants in which the
original recombination junctions are fixed in a single
generation: equivalent to recombinant inbred lines in a
diploid species.

SSR analysis

The SSR identification (Freiburg) was carried out as previ-
ously described (von Stackelberg et al., 2006). In total, 3723
microsatellites were identified in a non-redundant Physc-
omitrella EST database and their utility as molecular mark-
ers was tested. F; progeny selected from six independent
spore capsules resulting from Villersexel K3 x Gransden
crosses were chosen as the mapping population. Initially,
1238 microsatellite loci were examined for polymorphisms
by PCR. Subsequently, the allelic status of 256 SSR markers
was scored in a mapping population of 94 F; recombinant
haploid lines. Computational linkage analysis and map
construction was performed with MapMaker (Lander et al.,
1987). We identified 46 linkage groups (S1-S46) containing
two or more SSR markers at a logarithm of the odds (LOD)
threshold of 6 (Figure 1). The largest number of markers per
linkage group was 10, with a map length of 46.4 cM, while
there were 20 linkage groups containing only two SSR
markers with an average length of 8.2 ¢cM. In total 179
markers were mapped to a total map length (McDaniel et al.,
2007) of 1168-1401 cM and an average map length of 25—
30 cM per linkage group. Details of these SSRs are listed in
(Appendix S1). The average marker density of the maps is
one every 4.3 cM. However, these values must be treated
cautiously, due to the relatively small number of markers
mapped, the calculated map length representing a 50%
underestimate relative to the theoretical expectation of
2700 cM (based on an assumption of 27 chromosomes
(Bryan, 1957; Reski et al, 1994) with one crossover per
chromosome arm).
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AFLP analysis

We determined the utility of AFLP markers (Leeds) to dis-
criminate between the Gransden and Villersexel genotypes.
We used genomic DNA digested with EcoRl and Msel and
EcoRl and Tagql, respectively, for adapter ligation and ampli-
fication with primers containing two selective nucleotides
each. In total, we tested 224 primer combinations, before
selecting a subset of 39 primer pairs for genotyping a
mapping population. High-resolution electrophoresis of
amplicons on a capillary sequencer enabled the identifi-
cation of approximately 10 000 amplified loci (about 250
amplicons per primer pair), of which 1574 were polymorphic
(Table 1).

The allelic status of each polymorphic locus was scored in
a mapping population of 188 F; recombinant haploid lines
and entered into JoinMap3.0 (Van Ooijen and Voorrips,
2001) for map construction. We initially obtained 26 linkage
groups containing 20 or more markers at a LOD threshold of
10, comprising a total of 1220 mapped loci in a total map
length of 4401 cM (not shown). This map was then inte-
grated with the SSR-based map to enable anchorage with
the genome sequence.

Map integration

The AFLP loci are anonymous. However, because each SSR
is derived from an expressed gene, each SSR marker can be
identified within the genomic sequence scaffolds. The
mapped SSR loci were found on 94 sequence scaffolds.
These provided a starting point for integration between the
two linkage maps and anchorage to the annotated genome
sequence. For map integration we used primers corre-
sponding to a single ‘signature’ SSR within each SSR link-
age group to genotype the respective loci within the Leeds
mapping lines, thereby placing these SSR loci within the
AFLP linkage map. This resulted in an integrated map com-
prising 31 linkage groups (LG1-LG31), with an overall map
length of 4410-4418 cM. Three pairs of linkage groups that
were separate at LOD = 10 coalesced at lower LOD thresh-
olds. (LG5 and LG16 coalesced at LOD = 7, but with insuffi-
cient linkage between the loci on the two groups to calculate
a combined map. LG7 and LG30 and LG20 and LG23 coa-
lesced at LOD = 8. The combined maps for these LGs are
appended at the end of Figure S1. This would generate 28
linkage groups more closely approaching n = 27. The inte-
grated map includes three linkage groups that contain fewer
than 20 loci, but that include at least one signature SSR locus
(Figure 2). We placed 1420 markers in this map, including 42
SSR markers. The largest linkage group comprised 143
markers with an aggregate linkage score of 367 cM. The
estimated genome coverage is high, with 99.8% of
the genome predicted to be within 10 cM of a mapped
marker.
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Figure 1. The simple sequence repeat (SSR)-based Physcomitrella linkage map. Forty-eight linkage groups were identified following genotyping of a population of
94 F, recombinants. Linkage groups were determined by MapMaker using a LOD threshold of 6, a recombination threshold of 0.3 and Kosambi’s mapping function.
Linkage groups S27 and S29 are not shown, as the markers on these groups showed non-Mendelian segregation. Each linkage group is identified by a number (S1-
S48), above each diagram. Linkage distance from the topmost marker is given in cM to the left of each linkage group, and the name of each marker to the right.

Anchorage with the genome sequence

Integration of the maps provided the opportunity to convert
AFLP markers into sequence characterised amplified length
polymorphisms (SCALPs). The AFLPs comprise sequence-
uncharacterised bands on gels. To be useful, it is essential to
identify the underlying polymorphic DNA sequence. Typi-
cally, this is achieved by physical excision of a band from a
gel, reamplification and sequence analysis (Dussle et al.,
2002). However, this is not easily achieved when bands are
resolved by capillary sequencers. Alternatively, the
sequences may be predicted by computational analysis of
the sequenced genome. As polymorphic fragments, AFLPs
occur (by definition) once in the genome sequence. They

have ends defined by restriction sites plus the selective
nucleotides, and are of a defined length. It is theoretically
possible to identify such fragments within a well-character-
ised genome sequence, with a high level of confidence
(Peters et al., 2001). However, the first-draft Physcomitrella
sequence assembly is still incomplete. Currently comprising
2106 scaffolds, additional ambiguity is introduced by
stretches of undetermined sequences, of indeterminate
length, within some contigs, represented as lengths of
‘NNNNNNNNNNN’" comprising about 5% of the genome
sequence assembly. This does not permit unambiguous
identification of AFLP marker sequences within the whole
genome sequence assembly. Nevertheless, definitive asso-
ciation of an AFLP with a sequence scaffold provides a much
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Table 1 Primers used to identify AFLP loci

Primers Primers Primers

(E-FAM) Loci (E-HEX) Loci (E-NED) Loci
EGA_MGA 48 ECA_MCG 40 ECG_MCG 12
EGA_MGC 38 ECA_MCC 39 ECG_MCC 16
EAC_MCC 47 ECA_MGG 56 ECG_MTA 38
EAC_MGA 55 EAG_MTA 36 ECG_MGA 20
EAC_MTC 89 ECA_MCT 59 ECG_MTT 32
EAC_MCG 38 EAG_MGG 40 ECG_MGC 26
EAC_MGG 67 EAG_MCT 47 ECG_MGT 21
EAC_MGC 66 EAG_MCA 46 ECG_MCA 21
EAC_MGT 43 EAG_MTT 46 ECG_MGG 26
EAC_TCC 40 EAG_TTA 22 ECG_TGT 46
EAC_TAG 61 EAG_TCA 39 ECG_TAC 25
EAC_TGA 39 EAG_TGC 32 ECG_TCA 19
EAC_TTC 60 EAG_TAA 32 ECG_TGA 47

Primer combinations are indicated by restriction enzyme site
(E = EcoRI, M = Msel, T = Taql) and selective dinucleotide. The Eco-
primers were labelled with FAM, HEX and NED as indicated. The
number of polymorphic loci identified with each primer combination
is indicated.

improved likelihood of correct assignation. Integration of the
AFLP-based map with a sequence-anchored SSR-based map
enables such associations to be made.

We developed a Perl program, ‘SCALPHuNTER’, to
propose candidate sequences within the Physcomitrella
genome assembly based on these criteria. Because accurate
determination of AFLP fragment lengths carries with it
uncertainties (variable accuracy of fragment length deter-
mination in different sequencing eletropherograms, addi-
tion of terminal bases to some PCR products by Taq
polymerase), SCALPHuNnTER identifies all possible length
variants within the range +4 bp. The sequence scaffolds
containing mapped SSRs were therefore interrogated by
SCALPHunter to identify candidate AFLP sequences corre-
sponding to the Gransden-specific markers with which the
mapped SSRs co-segregated. In many cases, this identified
several candidate genomic loci corresponding to a cluster of
AFLP markers, linked to the SSR locus, enabling an initial
integration between genetic linkage and underlying DNA
sequence. The candidate AFLP sequences identified are
listed in Appendix S2, and their map locations are illustrated
in Figure S1.

Verification of a SCALPHUNTER prediction

The confidence with which SCALPs may be identified
requires experimental verification. The predicted anchorage
between the sequence and AFLP markers was therefore
tested. As a proof of concept, we undertook the mapping of a
Physcomitrella gene. The G418-resistant phenotype in the
Gransden parent used to construct the Leeds mapping lines
results from the targeted integration of a selection cassette

© 2008 The Authors
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into the PpLEA-1 locus. This locus is present in sequence
scaffold 12 of the v1.1 genome assembly. Segregation of the
G418-resistant phenotype indicated that the gene was
located at 106 cM on linkage group 11 of the integrated map
(Figure 2). Coincidentally, SSR_253 defines a GT-dinucleo-
tide repeat polymorphism within the 5-untranslated region
(UTR) of this gene, mapped in SSR-linkage group S34 (Fig-
ure 1). Linkage group 11 contains two additional signature
SSR markers, SSR_765 and SSR_925, in S39 and S25,
respectively, and 50 mapped AFLP markers. Of these, 29
derive from the Gransden genotype and are thus potentially
identifiable by SCALPHuUNTER. The three SSR-linkage groups
contain 11 SSR markers, which correspond to sequences
located on ten genome sequence scaffolds (scaffolds 12, 71,
92, 100, 121, 162, 225, 251, 266 and 275, respectively).
Interrogation of these sequence scaffolds by SCALPHUNTER
proposed candidate sequences for 21 of the 29 the Grans-
den-specific AFLP loci within the integrated LG11 (Figure 3).

The predicted sequences of candidate AFLP loci can be
used to design primers with an extended selective sequence
to amplify fragments from the parental genotypes. These
fragments can be resolved electrophoretically to ascertain
their genotype-specific nature, and sequenced to confirm
their identity. We selected the locus EACTGAL08G/EA-
CTGA510V, at 115 cM on linkage group 11 (Figure 3), since
this was represented by an allelic pair of fragments that
differ by two base pairs and we anticipated that both the
Gransden and Villersexel alleles would be amplifiable using
AFLP-specific primers.

SCALPHunter identifies this locus as commencing at an
EcoRl site that is the same as that identified for the
closely linked locus EACMGT136G (118 cM). We designed
+6 primers (Eco-ACAATT/Tag-GAGGAG) to amplify the
allelic pair. Amplification generated a fragment of about
500 bp from each parental genotype (Figure 4a). Digestion
with Msel revealed an additional Msel site in the fragment
amplified from the Gransden genotype, the existence
of which generates the Gransden-specific AFLP, EA-
CMGT136G (Figure 4a,b). Sequence analysis of the geno-
type-specific amplified fragments revealed the causes of
these polymorphisms (Figure 4¢c). A mutation A113G/
G113V abolishes the Msel site in the Villersexel genotype,
whilst a 2-bp indel in the stretch of T-residues commenc-
ing at position 124 accounts for the 2-bp difference in
fragment length between the Villersexel and Gransden
alleles. Three additional SNPs were also observed in
this fragment: G160G/A162V, A377G/G379V and T470G/
C472V.

Discussion

Genetic linkage maps are inevitably ‘works in progress’, their
accuracy dependent on the resolution with which alleles
may be scored and by the sizes of mapping populations.
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Their reliability increases as more loci are added, and only a
comprehensive integration with a completely determined
genome sequence will provide a true relationship between
genetic and physical distance. We have initiated such an
integration for P. patens. The incorporation of further se-
quence-anchored loci will refine this.

The overall integrated map length of 4410-4418 cM is
almost certainly an overestimate. The molecular characteri-
sation of two loci on LG11 (Figure 4) supports this view: the
AFLP loci, EACTGA508G and EACMGT136G, share a com-
mon EcoRl site but are separated by 3 ¢cM in the derived
map. Because AFLPs are dominant markers, the allelic status
of a locus being characterised by either the presence or
absence of a band, map inflation is an inherent problem due
to the difficulties of unambiguously scoring each locus (van
Os et al., 2005). ‘Allele drop-out’ - the failure to amplify a
single fragment — in a small mapping population can

LG 11

ECGTGT113G
EAGTTA173V

EAGTCA411G
ECAMGG 160G
ECGMGG281G
EACMGT203
EACMGT596G:
SSR_765

EGAMGA190V

SSR_775:569644] Sc162
SSR_789:37986[37080
SR_159:239243|

S25

SSR_775
EACMGC319V
EACTAG321V

EACMGC421G
ECAMCG361G
EACMGA287V
EACMGA288G
ECAMGG287V

828128

SSR_159 SSR_

SSR_789

ISSR_983
SSR_925,

ECAMGG319G
ECAMCC467G
ECAMCC207G
EACMCC276G
EACMTC350G
EACTCC43G
EACTCC47V
EAGTAA166V
ECGMCC152V

SSR_1123:114033:

S 34

" SSR_1123

ECGTGT170GECG
SSR_925

\ EACMCC167G

0 SSR_253

EACMGT127G
ECGMTT274V

[} ECGTGT107VECGTGT109V
/) ECGMGG420GECGMGG421V

EACMGC326GEACMGC322V

EAGMTA208V EAGMTA208G
ECAMGG311V EACMCC490V

introduce significant error: increasing the number of
co-dominant markers in future iterations of the map should
resolve this.

In many cases, the order in which candidate AFLP
sequences occur in the genome sequence scaffolds is
consistent with the order of these markers in the linkage
map, but there are also several instances where marker
position appears to be inverted, or intercalated markers are
observed. This might arise either through incorrect assem-
bly of the sequence scaffolds, through the identification of
an incorrect sequence by SCALPHUNTER or through incorrect
scoring of segregation. This last cause most likely results in
ambiguities in marker order over short linkage and sequence
distances [for example, the intercalation of EAGTGC349G
between EACTGA508G and EACMGT136G in LG11 (Fig-
ure 4)1. Where a marker appears to be inverted relative to
others by a long interval (e.g. EAGMCAB596G in LG11 relative

Sc92

5{6363 :564732

__Sc225

TSSR_513:644040 S 39

o SSR_568

4 SSR_513

612289

SSR_693:188186 SSR_693
100039

22 SSR_765

SSR_765:774079

ECAMCG180GEGAMGA57G
\| EAGTCA158VEAGTCA176G

TGT169G

ECGTGT368VEAGMCA596G

Figure 3. Anchoring the linkage map to the genome sequence: linkage group (LG) 11.

Three simple sequence repeat (SSR) loci were mapped in LG11: SSR_925, SSR_253 (in

the 5"-untranslated region of the PpLEA-1gene) and SSR_765. These loci lie in

SSR linkage groups S25, S34 and S39, respectively. The ten genome sequence scaffolds containing the SSR markers comprising these linkage groups were searched
for candidate amplified fragment length polymorphism loci using SCALPHUNTER, and the positions of these candidate sequences were identified in each scaffold by
BLasTN search. The sequence coordinates of the EcoRl site defining each candidate on the plus-strand of each sequence scaffold are shown. Note that only

Gransden-specific alleles are identifiable.
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(a) 510V
Mse1

510V

510 — > B

12 bp adapter + 251k 2

13 bp adapter + 156
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508G
Mse1 M

+ 12 bp adapter = 124

(b) E M M M T
| 112 | 137 59 [|19] 156 |
(c)
508G AATTCACAATTCGTGGATGCACAGCTTCAATGTGGAGGTCTGGTTGCAATGCACACCGAGCAATAATAAAATTGTAAAA'
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
510v 'CACAATTCGTGGATGCA! TCAATGTGGAGGTCTGGTTGCAATGCACA AATAAAATTGTAAAAT
508G 81 ATTGAAAGTGCCTTCCTCTCCAGTGTCCACTTAATTGAAGCACTTTT--TTATTGATGATCAAAATTACTCTATCAATGG
FLLLETTLE L P Lt FLne el |||||||||||||||||||||||||||||||
510V 81 ATTGAAAGTGCCTTCCTCTCCAGTGTCCACTTGATTGAAGCACTTTTTTTTATTGAT GATCAAAATTACTCTATCAATGH
508G 159 TGTAAATAAGC CAACCACCCGTTATTTTGTCTATCTAAGGTTCTCCACTTGCTTCATAGAAGGCTATCTTTGATGTC
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
510V 161 TATAAATAA CAACCACCCGTTATTTTGTCTATCTAAGGTTCTCCACTTGCTTCATAGAAGGCTATCTTTGATGTC
508G 9 AAATGTGTG' CCTACGTA! TTAATTGT
s10v 241 AAM&&&MAAM&é&%&&é&&mééﬁé&ééMJ;&L&&M&&&Méé&i&ém&kéic&&m&&&&m

508G 319 AATACATTAAACTCACAAGTGCACAAAG

CAATCTCTTGTGTGAGGAATGTAAAAACACCGCTCATAGGCCAATCAT

TGAA!
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIII
GCACAAAGT

510V 321 AATACATTAAACT!
508G 399 TGGCCTTGCTGCTCAACTAA!

TTCTAAATGAGCCTCTA'

GAACAATCTCTTGTGTGAGGAATGTAAAGACACCGCTCATAGGCCAA!

GTGCAGATGGCTATACCATTTCCTCCTC

AATCAAAGA
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII LILLLLL ]

510V 401 TGGCCTTGCTGCTCAACTAAGTTCTAAATGAGCCTCTATAATCAAAGA!

508G 479 TGC
510V 481 TGC

GTGCAGATGGCTATACCATCTCCTCCTC

Figure 4. Verification of an amplified fragment length polymorphism (AFLP) locus identified using SCALPHUNTER.
Selective primers Eco-ACAATT and Tag-GAGGAG were used to amplify the allelic fragments EACTAG508G/EACTAG510V from adapter-ligated Gransden and

Villersexel K3 genomic DNA.

(a) Analysis of fragments by restriction enzyme digestion: Tracks from left show the ~500-bp fragment amplified from the Villersexel genotype (510V); this fragment
digested with Msel (Msel 510V); the corresponding Gransden fragment, digested with Msel (Msel 508G) and a ladder of size markers (M). The fragment amplified
from the Gransden genotype contains an additional Msel site, generating the genotype-specific AFLP marker 'EACMGT136G’.

(b) A restriction map of the amplified fragment. E = EcoRl, M = Msel and T = Tagql. The Gransden-specific Msel site is indicated as ‘M"".

(c) Sequence alignment of the fragments amplified from the Gransden genotype (‘5608G’) and the Villersexel genotype (‘5610V’). The sequences corresponding to the

primer tails, the Msel polymorphism and the 508/510 indel are underlined.

to other candidate loci identified in sequence scaffold 12, or
EACMGC421G in the same linkage group, relative to the
other candidate loci in sequence scaffold 251 (Figure 4)],
then the cause is most likely a misidentification by
SCALPHuNTER. Such misidentifications will be inevitable,
due to the length variation (+4 bp) built in to SCALPHUNTER
predictions.

© 2008 The Authors

The addition of further sequence-anchored markers will
also be necessary to refine the accuracy of prediction of
AFLP loci by SCALPHuNTER. Currently, only 94 of the 2106
sequence scaffolds comprising the Physcomitrella version
1.1 sequence assembly are represented by mapped markers.
These comprise about 143 Mbp, approximately 30% of the
estimated complete genome sequence (Rensing et al.,
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2008). Future development of the map will be based on
additional SSR loci and single nucleotide polymorphisms
(SNPs) located on unanchored sequence scaffolds. The ESTs
generated in support of the first-draft genome sequence
assembly include a catalogue of about 120 000 ESTs derived
from the Villersexel parental genotype to provide a resource
for the rapid identification of suitable SNP loci for future
genotyping.

At present, the ease with which determination of gene
function can be undertaken through homologous-recombi-
nation-mediated gene targeting recommends Physcomi-
trella as a powerful tool for ‘reverse genetic’ analysis of
plant gene function. However, in order to identify novel
genes essential for the normal development of Physcomi-
trella, which may be characteristic of the earliest land plants,
and which may be expected to inform our understanding of
land plant evolution, it is essential to be able to undertake
‘forward’ genetic analysis: the identification of genes from
their mutant phenotypes. The availability of a well-marked
genetic linkage map directly related to the underlying
genome sequence will provide a platform from which the
map-based cloning of genes identified through mutagenesis
can be undertaken.

Experimental procedures

Plant material

Physcomitrella patens (Hedw.) B.S.G. plants were vegetatively
propagated on agar medium as previously described [Knight et al.,
2002; Bierfreund et al., 2003]. The ‘Gransden’ isolate was derived
from a single spore collected by H. L. K. Whitehouse near Gransden
Wood, Cambridgeshire, UK in 1962. The ‘Villersexel K3’ strain was
collected from Villersexel, Villers la Ville, Haute Sadne, France.
Crosses between the two genotypes used the Villersexel strain as the
male parent and defined mutant strains of the Gransden strain as the
female parent. In Leeds, a transgenic strain of the Gransden isolate
was constructed by transformation with an nptll cassette targeted to
the PpLEA-1 locus (Kamisugi and Cuming, 2005), conferring resis-
tance to G418. This strain was confirmed as containing a single copy
of the selectable marker at this locus by Southern blot analysis
(Kamisugi et al., 2005). In Freiburg, the Gransden parent was a self-
sterile nicotinic acid-requiring auxotrophic mutant nicB5/ylo6
(Ashton and Cove, 1977). Four to five plantlets of each parent were
inoculated in a mixed stand adjacent to one another on solid medium
and grown under inductive conditions for sporophyte development
(Ashton and Cove, 1977). Mature spore capsules from the Gransden
parent were surface-sterilised and the spores were liberated by
gently crushing in sterile water. Spores were germinated and the
progeny screened for G-418 resistance (Leeds) or SSR segregation
(Freiburg). A 1:1 segregation indicated thatthe progeny derived from
a hybrid sporophyte. Individual plants (188 Leeds; 94 Freiburg) were
maintained as mapping populations by vegetative propagation.

DNA isolation and analysis

Genomic DNA was isolated as described previously for AFLP and
SSR analysis (AFLP, Knight et al, 2002; SSR, von Stackelberg

et al, 2006). The SSR analysis was performed as previously
described (von Stackelberg et al., 2006). The primers used and
the designation of the individual SSRs are listed in Table S1. For
AFLP analysis, we followed the protocols established by Myburg
et al. (2001). DNA (100 ng) was digested with EcoRl and Msel, or
with EcoRl and Taql, prior to ligation with adapter oligonucleo-
tides (Myburg et al., 2001). DNA was pre-amplified using primers
containing an additional selective nucleotide (+1 primers: EcoRlI,
GACTGCGTACCAATTCN; Msel, GATGAGTCCTGAGTAAN; Taql,
GATGAGTCCTGAGCGAN). The PCR comprised 28 cycles of
15 sec at 94°C, 30 sec at 60°C, 1 min + 1 sec per cycle at 72°C
followed by 1 cycle of 2 min at 72°C. Pre-amplified DNA (diluted
50-fold) was selectively amplified using the same primer
sequences but containing two selective nucleotides (+2 primers).
The EcoRl primer was labelled with one of three fluorescent
dyes: FAM, HEX (Operon Biotechnologies, https://www.operon.
com/) and NED (Applied Biosystems, http://www.
appliedbiosystems.com/). The PCR was performed with 13 cycles
of 10 sec at 94°C, 30 sec at 65 -0.7°C per cycle, 1 min at 72°C
followed by 25 cycles of 10sec at 94°C, 30sec at 56°C,
1 min + 1sec per cycle at 72°C. Following amplification, DNA
was recovered by ethanol precipitation and redissolved in water.
For electrophoretic analysis, three differently labelled sets of
amplification products were multiplexed by mixing in the ratio
FAM:HEX:NED = 1:2:2 supplemented with 0.5 pl of ROX-labelled
size markers (MapMarker500, Cambio, http://www.cambio.co.uk/)
and applied to an ABI 3130 Genetic Analyzer (Applied Biosys-
tems). Chromatograms were analysed using the Applied Biosys-
tems ‘GENEMAPPER’ software, with the individual polymorphic
peaks being scored manually and recorded in an Excel spread-
sheet.

Linkage analysis

The allelic status of 256 SSR markers was scored in a mapping
population of 94 F; recombinant haploid lines (1 x 96-well plates,
including DNA from the parental genotypes in two wells). Com-
putational linkage analysis and map construction was performed
with MapMaker (Lander et al.,1987) using Kosambi’s mapping
function for distance estimation, a LOD threshold of 6 and a
maximal distance of 30 cM. The AFLPs were scored in a mapping
population of 188 F; recombinant haploid lines (2 x 96-well
plates, each including DNA from the parental genotypes in two
wells). Linkage analysis for the ALFPs was performed using the
mapping software JoinMap 3.0 (Van Ooijen and Voorrips, 2001)
with a LOD threshold of 8-10, a recombination threshold of 0.3, a
ripple value of 1, a jump threshold of 5 and Kosambi’'s mapping
function. Markers exhibiting segregation significantly different
from a 1:1 ratio were excluded following 72 testing. The same
mapping parameters were used following scoring of signature
SSR loci within the AFLP linkage mapping population, to
generate an integrated map.

Map length calculation

We followed the approach of McDaniel et al. (2007) in calculating
map lengths using two methods: that of Fishman et al. (2001) in
which total map length L = X[(linkage group length) + 2(linkage
group length/no. markers)] and Chakravarti et al. (1991), in which
L = Z[(linkage group length) x (no. markers + 1)/(no. markers — 1)].
Similarly, genome coverage (c) was calculated as ¢ = 1 — exp(2dn/L)
where dis distance in cM, nis the number of markers and L is map
length.

© 2008 The Authors
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SCALPHUNTER

SCALPHunTER is a Perl script that, given a list of AFLPs, identifies the
possible candidate sequences within a given set of scaffolds. It can
run 800 AFLP sequences across the whole Physcomitrella genome
in about 30 min (AMD dual core 4400+ 2 GB RAM). The basic
process is as follows:

(i) SCALPHuUNTER reads in a list of codes describing AFLPs (length
after subtraction of primers and end sequence), which provides
the information for pattern matching against the scaffolds. The
forward- and reverse-complement regular expressions are pre-
compiled and placed upon a hash (using precompiled regular
expressions greatly speeds up the process of searching for the
existence of a list of AFLPs amongst a set of scaffolds). In
addition, the regular expressions include a user-defined length
variation (e.g. +4 bp) to allow for the variable accuracy of
fragment length determination.

(ii) Each scaffold is searched in turn using all of the precompiled
AFLP regular expressions and all matches are stored.

(iii) The complete set of matches is sorted by size (allowing for
variation of +4 bp) and output in three different forms.
Firstly, a set of matches-per-scaffold, showing all of the
AFLPs found to match a scaffold given the pattern/length-
variation criteria. In addition, a set of matches-per-AFLP,
showing all of the scaffolds that an AFLP is found to match,
and the corresponding sequences within those scaffolds.
Finally, a list of the matches-per-length-variation, showing all
of the AFLPs that matched scaffolds for a given sequence-
length variation.

To identify candidate AFLPs within a scaffold identified as
carrying an SSR, the matches-per-scaffold file was interrogated
with each AFLP within the corresponding linkage group. The
sequence of each candidate was obtained from the matches-per-
AFLP file and its position was located within the scaffold by BLasT
search of the Physcomitrella genome.

Acknowledgements

ACC and YK are grateful to the Gatsby Charitable Foundation and
the University of Leeds Strategic Research Fund for their initial
support of this work, and to the UK Biotechnology and Biological
Sciences Research Council (BBSRC) for their ongoing support.
MC is the recipient of a BBSRC studentship. SAR, MvS, DL and
RR thank the DFG, the BMBF (FRISYS) and the Wissenschaftliche
Gesellschaft for funding. MvS would like to thank E. Esch for
helpful comments. We are grateful to Professor David Cove for
providing the nicB5/ylo6 mutant strain, and to Dr Stuart McDaniel
for useful suggestions.

Supporting Information

Additional Supporting Information may be found in the online
version of this article:

Figure S1. The anchored Physcomitrella patens linkage map.
Appendix S1. Candidate amplified fragment length polymorphism
sequences.

Appendix S2. Segregation data.

Table S1. Simple sequence repeat marker information.

Please note: Wiley-Blackwell are not responsible for the content or
functionality of any supporting materials supplied by the authors.
Any queries (other than missing material) should be directed to the
corresponding author for the article.

© 2008 The Authors

The Physcomitrella linkage map 865

References

Abel, W.0., Knebel, W., Koop, H.U., Marienfeld, J.R., Quader, H.,
Reski, R., Schnepf, E. and Sporlin, B. (1989) A cytokinin-sensitive
mutant of the moss, Physcomitrella patens, defective in chloro-
plast division. Protoplasma, 152, 1-13.

Ashton, N.W. and Cove, D.J. (1977) The isolation and preliminary
characterisation of auxotrophic and analogue resistant mutants
of the moss, Physcomitrella patens. Mol. Gen. Genet. 154, 87—
95.

Ashton, N.W., Cove, D.J. and Featherstone, D.R. (1979a) The isola-
tion and physiological analysis of mutants of the moss, Physc-
omitrella patens, which over-produce gametophores. Planta, 144,
437-442.

Ashton, N.W., Grimsley, N.H. and Cove, D.J. (1979b) Analysis of
gametophytic development in the moss, Physcomitrella patens,
using auxin and cytokinin resistant mutants. Planta, 144, 427-
435,

Bierfreund, N., Reski, R. and Decker, E.L. (2003) Use of an inducible
reporter gene system for the analysis of auxin distribution in the
moss Physcomitrella patens. Plant Cell Rep. 21, 1143-1152.

Bryan, V.S. (1957) Cytotaxonomic studies in the Ephemeraceae and
Funariaceae. Bryologist, 60, 103-126.

Chakravarti, A., Lasher, L.K. and Reefer, J.E. (1991) A maximum-
likelihood method for estimating genome length using genetic
linkage data. Genetics, 128, 175-182.

Cove, D.J. (2005) The moss Physcomitrella patens. Annu. Rev.
Genet. 39, 339-358

Dussle, C.M., Quint, M., Xu, M., Melchinger, A. and Liibberstedt, T.
(2002) Conversion of AFLP fragments tightly linked to SCMV
genes Scmv1 and Scmv2 into simple PCR-based markers. Theor.
App. Genet. 105, 1190-1195.

Engel, P.P. (1968) The induction of biochemical and morphological
mutants in the moss Physcomitrella patens. Am. J. Bot. 55, 438-
446.

Fishman, L., Kelly, A.J., Morgan, E. and Willis, J.H. (2001) A genetic
map in the Mimulus guttatus species complex reveals transmis-
sion ratio distortion due to heterospecific interactions. Genetics,
159, 1701-1716.

Hofmann, A., Codon, A., Ivascu, C., Russo, V.E.A., Knight, C.D.,
Cove, D.J., Schaefer, D.G., Chakhparonian, M. and Zr, J.P. (1999)
A specific member of the Cab multigene family can be efficiently
targeted and disrupted in the moss, Physcomitrella patens. Mol.
Gen. Genet. 261, 92-99.

Jander, G., Norris, S.R., Rounsley, S.D., Bush, D.F., Levin, .M. and
Last, R.L. (2002) Arabidopsis map-based cloning in the post-
genome era. Plant Physiol. 129, 440-450.

Jenkins, G.I. and Cove, D.J. (1983) Phototropism and polarotropism
of primary chloronemata of the moss Physcomitrella patens:
responses of mutant strains. Planta, 159, 432-438.

Jenkins, G., Courtice, G.R.M. and Cove, D.J. (1986) Gravitropic
responses of wild-type and mutant strains of the moss Physc-
omitrella patens. Plant Cell Envir. 9, 637-644.

Kamisugi, Y. and Cuming, A.C. (2005) The evolution of the Abscisic
acid-response in land plants: comparative analysis of group 1
LEA gene expression in moss and cereals. Plant Mol. Biol. 59,
723-737.

Kamisugi, Y., Cuming, A.C. and Cove, D.J. (2005) Parameters
determining the efficiency of gene targeting in the moss Physc-
omitrella patens. Nucleic Acids Res. 33, e173.

Kamisugi, Y., Schlink, K., Rensing, S.A., Schween, G., von Stac-
kelberg, M., Cuming, A.C., Reski, R. and Cove, D.J. (2006) The
mechanism of gene targeting in Physcomitrella patens: homol-
ogous recombination, concatenation and multiple integration.
Nucleic Acids Res. 34, 6205-6214.

Journal compilation © 2008 Blackwell Publishing Ltd, The Plant Journal, (2008), 56, 855-866



866 Yasuko Kamisugi et al.

Kenrick, R. and Crane, P.R. (1997) The origin and early evolution of
plants on land. Nature, 389, 33-39.

Knight, C.D., Futers, T.S. and Cove, D.J. (1991) Genetic analysis of a
mutant class of Physcomitrella patens in which the polarity of
gravitropism is reversed. Mol. Gen. Genet. 230, 12-16.

Knight, C.D., Cove, D.J., Cuming, A.C. and Quatrano, R.S. (2002)
Moss Gene Technology. In Molecular Plant Biology, Vol. 2 (Gil-
martin, P.M. and Bowler, C., eds). Oxford: Oxford University
Press, pp. 285-299.

Lander, E.S., Green, P., Abrahamson, J., Barlow, A., Daly, M.J.,
Lincoln, S.E. and Newburg, L. (1987) MAPMAKER: An interactive
computer package for constructing primary genetic linkage maps
of experimental and natural populations. Genomics, 1, 174-181.

Lukowitz, W., Gillmor, C.S. and Scheible, W.R. (2000) Positional
cloning in Arabidopsis. Why it feels good to have a genome ini-
tiative working for you. Plant Physiol. 123, 795-805.

McDaniel, S., Willis, J.H. and Shaw, A.J. (2007) A linkage map
reveals a complex basis for segregation distortion in an inter-
populatiion cross in the moss Ceratodon purpureus. Genetics,
176, 2489-2500.

Myburg, A.A., Remington, D.L., O'Malley, D.M., Sederoff, R.R. and
Whetten, R.W. (2001) High-throughput AFLP analysis using
infrared dye-labeled primers and an automated DNA sequencer.
Biotechniques, 30, 348-357.

van Os, H., Stam, P., Visser, R.G.F. and Van Eck, H.J. (2005)
RECORD: a novel method for ordering loci on a genetic linkage
map. Theor. Appl. Genet. 112, 30-40.

Peters, J.L., Constandt, H., Neyt, P., Cnops, G., Zethof, J., Zabeau, M.
and Gerats, T. (2001) A physical amplified fragment-length
polymorphism map of Arabidopsis. Plant Physiol. 127, 1579-1589.

Rensing, S.A., Lang, D., Zimmer, A.D. et al. (2008) The Physcomit-

rella genome reveals insights into the conquest of land by plants.
Science, 319, 64-69.

Reski, R. (1998) Development, genetics and molecular biology of
mosses. Botanica Acta, 111, 1-15.

Reski, R., Faust, M., Wang, X.H., Wehe, M. and Abel, W.O. (1994)
Genome analysis of the moss Physcomitrella patens (Hedw) BSG.
Mol. Gen. Genet. 244, 352-359.

Schaefer, D.G. and Zr, J.P. (1997) Efficient gene targeting in the
moss Physcomitrella patens. Plant J. 11, 1195-1206.

von Stackelberg, M., Rensing, S.A. and Reski, R. (2006) Identifica-
tion of genic moss SSR markers and a comparative search in
twenty-four algal and plant gene indices reveal species-specific
rather than group-specific characteristics of microsatellites. BMC
Plant Biol. 6, 9.

Strepp, R., Scholz, S., Kruse, S., Speth, V. and Reski, R. (1998) Plant
nuclear gene knockout reveals a role in plastid division for the
homolog of the bacterial cell division protein FtsZ, an ancestral
tubulin. Proc. Natl Acad. Sci. USA, 95, 4368-4373.

Tautz, D. and Renz, M. (1984) Simple sequences are ubiquitous
repetitive components of eukaryotic genomes. Nucleic Acids Res.
12, 4127-4138.

Van Ooijen, J.W. and Voorrips, R.E. (2001) JoinMar® 3.0, Software
for the Calculation of Genetic Linkage Maps. Wageningen: The
Netherlands: Plant Research International.

Van Os, H., Andrzejeweski, S., Bakker, E. et al. (2006) Construction
of a 10,000-marker ultradense genetic recombination map of
potato: providing a framework for accelerated gene isolation and
a genomewide physical map. Genetics, 173, 1075-1087.

Vos, P., Hogers, R., Bleeker, M. et al. (1995) AFLP: a new technique
for DNA fingerprinting. Nucleic Acids Res. 23, 4407-4414.

Wang, T.L., Beutelmann, P. and Cove, D.J. (1981) Cytokinin bio-
synthesis in mutants of the moss Physcomitrella patens. Plant
Physiol. 168, 739-744.

© 2008 The Authors

Journal compilation © 2008 Blackwell Publishing Ltd, The Plant Journal, (2008), 56, 855-866



