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Induction of cell cycle arrest in lymphocytes after exposure to
theAggregatibacter actinomycetemcomitans cytolethal distend-
ing toxin (Cdt) is dependent upon the integrity of lipid mem-
brane microdomains. In this study we further demonstrate that
the association of Cdt with lymphocyte plasma membranes is
dependentuponbinding to cholesterol.Depletionof cholesterol
resulted in reduced toxin binding, whereas repletion of choles-
terol-depleted cells restored binding. We employed fluores-
cence resonance energy transfer and surface plasmon resonance
to demonstrate that toxin association withmodel membranes is
dependent upon the concentration of cholesterol; moreover,
these interactionswere cholesterol-specific as the toxin failed to
interact withmodelmembranes containing stigmasterol, ergos-
terol, or lanosterol. Further analysis of the toxin indicated that
theCdtC subunit contains a cholesterol recognition/interaction
amino acid consensus (CRAC) region. Mutation of the CRAC
site resulted in decreased binding of the holotoxin to cholester-
ol-containing model membranes as well as to the surface of Jur-
kat cells. The mutant toxin also exhibited reduced capacity for
intracellular transfer of the active toxin subunit, CdtB, as well as
reduced toxicity. Collectively, these observations indicate that
membrane cholesterol serves as an essential ligand for Cdt and
that this association can be blocked by either depleting mem-
branes of cholesterol or mutation of the CRAC site.

The cytolethal distending toxins (Cdts)2 are a family of heat-
labile protein cytotoxins produced by several different bacterial
species including diarrheal disease-causing enteropathogens
such as some Escherichia coli isolates, Campylobacter jejuni,
Shigella species, Haemophilus ducreyi, and Aggregatibacter
(formerlyActinobacillus) actinomycetemcomitans (1–7). There

is clear evidence that Cdts are encoded by three genes, desig-
nated cdtA, cdtB, and cdtC, which are arranged as an apparent
operon (7–14). These three genes specify three polypeptides
designated CdtA, CdtB, and CdtC with apparent molecular
masses of 28, 32 and 20 kDa, respectively, that form a heterotri-
meric holotoxin. Cdt toxicity is associated with cell cycle arrest
and eventual cell death resulting from activation of the apopto-
tic cascade (10, 11, 15–17). Although several cell lines and cell
types have been shown to be susceptible to the toxic effects of
Cdt, we have previously shown that lymphocytes are the most
sensitive (18). For this reason we believe that lymphocytes are a
likely in vivo target of Cdt and further propose that Cdt repre-
sents a novel immunotoxin.
Considerable agreement exists among investigators that

regardless of the microbial source of Cdt, the heterotrimeric
holotoxin functions as an AB2 toxin where CdtB is the active
(A) unit and the complex of CdtA and CdtC comprises the
binding (B) unit (12, 19, 20). There is compelling evidence that
CdtBmust be internalized to induce cell cycle arrest (19, 21, 22).
Moreover, we have recently demonstrated that the active Cdt
subunit, CdtB, functions as a phosphatidylinositol 3,4,5-
triphosphate phosphatase similar to that of the tumor suppres-
sor phosphatases, PTEN and SHIP1 (23–25). We have further
demonstrated that Cdt-inducedG2 arrest is dependent upon its
ability to function as a lipid phosphatase andmost likely results
from toxin induced perturbations in the Akt signaling pathway.
In previous studies we have shown that binding subunits

CdtA and CdtC are not only required for the toxin to associate
with cells but are necessary to localize the toxin to lipid mem-
brane microdomains (18, 26). Furthermore, Cdt-mediated tox-
icity is dependent upon the integrity of these lipid domains.We
now report that not only does cholesterol depletion and disrup-
tion of lipidmembranemicrodomains confer resistance toCdt-
induced G2 arrest, but association of the Cdt holotoxin to lym-
phocytes also involves cholesterol. Specifically, we have utilized
both fluorescence resonance energy transfer (FRET) and sur-
face plasmon resonance (SPR) analysis to demonstrate interac-
tion between the CdtC subunit and cholesterol in cholesterol
containing liposomes. Moreover, we have identified a choles-
terol recognition/interaction amino acid consensus site
(CRAC) on CdtC that is required for these interactions (27).
Mutation of the CRAC site reduces interaction with lympho-
cyte plasma membrane and with cholesterol-containing lipo-
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somes and also reduces delivery of CdtB to the cell and con-
comitant G2 arrest.

EXPERIMENTAL PROCEDURES

Cell Lines and Analysis of Cell Cycle—The human leukemic
T cell line Jurkat was maintained in RPMI 1640 supplemented
with 10% fetal calf serum, 2 mM glutamine, 10 mM HEPES, 100
units/ml penicillin, and 100 �g/ml streptomycin. Cells were
harvested in mid-logarithmic growth phase and plated at 5 �
105 cells/ml or as indicated in 24-well tissue culture plates. The
cells were exposed tomediumorCdt and incubated for 18 h. To
measure Cdt-induced cell cycle arrest, Jurkat cells were washed
and fixed for 60 min with cold 80% ethanol (18). After washing,
the cells were stained with 10�g/ml propidium iodide contain-
ing 1 mg/ml RNase (Sigma) for 30 min. Samples were analyzed
on a BD Biosciences FacstarPLUS flow cytometer. Propidium
iodide fluorescence was excited by an argon laser operating at
488 nm, and fluorescence was measured with a 630/22-nm
bandpass filter using linear amplification. A minimum of
15,000 events was collected on each sample; cell cycle analysis
was performed using Modfit (Verity Software House; Top-
sham, ME).
Construction and Expression of CdtABCY71P Mutant—

Amino acid substitution was introduced into the cdtC gene by
in vitro site-directed mutagenesis using the following oligonu-
cleotide primer pair: (forward) 5�-GGAATTAATTGATC-
CCAAGGGAAAAGA-3� and (reverse) 5�-TCTTTTCCCTT-
GGGATCAATTAATTCC-3� (bold letters indicate nucleotide
substitutions). Site-directed mutagenesis was performed using
the QuikChange II site-directed mutagenesis kit (Stratagene)
according to the manufacturer’s directions. Amplification of
the mutant plasmid was carried out using PfuUltra HF DNA
polymerase (Stratagene) and pUCAacdtABChis as a template;
construction and characterization of this plasmid was previ-
ously described (28). The mutation was verified by DNA
sequencing. Expression of the plasmid and purification of the
mutant peptide is described below.
Expression and Purification of Cdt Holotoxin—Construction

and expression of the plasmid containing the cdt genes for the
holotoxin (pUCAacdtABChis) has previously been reported
(28), and CdtABCY71P is described above. The plasmids were
constructed so that the cdt genes were under control of the lac
promotor and transformed into E. coli DH5�. Cultures of
transformed E. coli were grown in 1 liter of LB broth and
induced with 0.1 mM isopropyl 1-thio-�-D-galactopyranoside
for 2 h; bacterial cells were harvested, washed, and resuspended
in 50mMTris (pH8.0). The cellswere frozen overnight, thawed,
and sonicated. The histidine-tagged peptide holotoxin was iso-
lated by nickel affinity chromatography as previously described
(10).
Preparation of Lipid Vesicles and Analysis of Cdt-Liposome

Binding—Phosphatidylcholine, phosphatidylethanolamine,
phosphatidylserine, sphingomyelin, and cholesterol were
obtained from Avanti Polar Lipids; lipids were stored in chlo-
roform at �20 °C with desiccation. Briefly, large unilamellar
vesicles (LUVs) were prepared with a lipid ratio of phospha-
tidylcholine/sphingomyelin/phosphatidylethanolamine �
50:13:37 (mol %) or as indicated in the presence of varying

amounts of cholesterol as described by Hekman et al. (29). For
some experiments LUV cholesterol was substituted with ergos-
terol, stigmasterol, or lanosterol as described in the figure leg-
ends. Lipids were co-solubilized in chloroform and dried under
N2, and trace amounts of residual solvent were removed under
high vacuum. The lipidmixtures were re-hydrated at a concen-
tration of 8mM (total phospholipid) in 20mMTris-HCl (pH7.4)
containing 50 mMNaCl for 1 h; the suspensions were then vor-
texed and freeze-thawed in liquid nitrogen, and LUVs were
prepared by extrusion, 11 passes through a 100-nmmembrane
(Mini Extruder; Avanti Polar Lipids).
All SPR experimentswere carried out on aBiacoreX (Biacore

AB; Upsala, Sweden) with active temperature control at 25 °C.
The running buffer for the experiments was 20mMHEPES (pH
7.4) containing 50 mM NaCl. LUVs (0.8 mM) in running buffer
equivalent to 5000 RUwere injected onto a LI sensor chip (Bia-
core). Routinely, cholesterol-containing vesicles were coupled
to flow cell 1 (Fc1) and control vesicles containing no choles-
terol to flow cell 2 (Fc2). Cdt holotoxin (or mutant) was diluted
in the running buffer and flowed across the immobilized lipo-
somes for 3 min at a flow rate of 5 �l/min (association), sample
was replacedwith buffer, and disassociation of bound toxinwas
followed for 10min.The chip surfacewas regenerated by inject-
ing a 1-min pulse of 30 mM n-octyl-�-D-glucopyranoside. Sen-
sorgramswere corrected for nonspecific binding by subtracting
the control sensorgram (Fc2) from the experimental surface
sensorgram (Fc1).
FRET Analysis—Vesicle solutions were prepared using

the rapid solvent exchange technique (30). Briefly, stock
solutions of phospholipid, either 1,2-dimyristoyl-sn-glyc-
ero-3-phosphocholine or 1,2-dioleoyl-sn-glycero-3-phospho-
choline, sphingomyelin (SM), cholesterol, and 1-myri-
stoyl-2-[12-[(5-dimethylamino-1-naphthalenesulfonyl)amino]-
dodecanoyl]-sn-glycero-3-phosphocholine (DAN-PC) dissolved
in chloroform were added to 20-ml flat-bottom vials in the
required proportions. Three ml of aqueous buffer at 60 °C was
added, and the solutionwasvortexedunder continuousvacuumat
25 inches of Hg for 1 min. The lipid mixtures were diluted with
0.15 MNaCl, 5mMCaCl2, 5mMHEPES, and 3mMNaN3 (pH 7.4)
to a final lipid concentration of 0.5mM. Samples contained 10, 25,
or 40 mol % cholesterol, 10 or 40 mol % SM, and 1,2-dioleoyl-sn-
glycero-3-phosphocholine. For each lipid composition, one sam-
ple was labeled with 3% DAN-PC, and one sample was unlabeled
as indicated in the figure legends.
FRET provides ameasure of the average distance between an

array of donor and acceptor molecules. Toxin binding was
detected by an increase in the efficiency of energy transfer as the
average distance between tryptophan on the protein and
DAN-PC in the vesicle increases upon binding. 63.75 �g of
toxin was added to 15ml of each vesicle solution and incubated
at room temperature for 1 h. The solution was then separated
into 5 aliquots of 3ml each for the emission scans. The extent of
energy transfer for each series of vesicle preparation was deter-
mined upon excitation (ex285) of tryptophan and emission from
em325 to 550 nm. All emission scans were conducted at 30 °C.
The emission profiles were smoothed using a Savitsky and
Golay protocol (31). FRET efficiency was calculated from the
measured steady-state fluorescence intensity of the donor
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(tryptophan) at its maximal emission wavelength (360 nm) in
the presence and absence of acceptor (DAN-PC) using the
equation E(%) � 1 � FDA/FD, where FDA and FD are the donor
emission intensities in the presence and absence of acceptor,
respectively (32). Fluorescence measurements were obtained
using a steady-state fluorescence spectrometer (Photon Tech-
nology International, Ontario, Canada) with a circulating water
bath to maintain the sample temperature to �0.5 °C. The tem-
perature was read on a cuvette thermometer (Fisher).

Immunofluorescence and Flow
Cytometry—Jurkat cells (2 � 106)
were incubated for 2 h in the pres-
ence of medium or 2 �g/ml of
CdtABCwt or CdtABCY71P at 5 °C.
Cells were washed, exposed to nor-
mal mouse IgG (Zymed Laborato-
ries Inc.; San Franscisco, CA) and
then stained (30min) for cell surface
CdtC peptides with anti-Cdt sub-
unit monoclonal antibody conju-
gated to Alexafluor 488 (Molecular
Probes; Eugene, OR) according to
themanufacturer’s directions. After
washing, the cells were fixed in 2%
paraformaldehyde and analyzed by
flow cytometry or confocal micros-
copy as previously described (26).
Intracellular CdtB was detected
after exposure of Jurkat cells to 2
�g/ml concentrations of either
CdtABCwt or CdtABCY71P for 60
min at 37 °C. Cells were fixed with
2% formaldehyde for 30 min, per-
meabilized with 0.1% Triton X-100
in 0.1% sodium citrate, and stained
with anti-CdtB monoclonal anti-
body conjugated to Alexafluor 488
(Molecular Probes).
Statistical Analyses—Data were

analyzed using Sigma Stat Ver-
sion 3.1. Concentration-dependent
binding of toxin to sterol or sphin-
gomyelin-containing vesicles were
analyzed by Student t test using a
95% confidence interval. One-way
analysis of variance was used to
determine whether there was a sta-
tistically significant trend in binding
of toxin to liposomes or energy
transfer between toxin and lipo-
somes of various compositions.

RESULTS

It is generally accepted that the
CdtA and CdtC subunits are
required for interaction of the Cdt
holotoxin with target cell mem-
branes leading to intracellular deliv-

ery of the active subunit, CdtB, and subsequent G2 arrest. We
have previously shown that after exposure toCdt holotoxin, the
individual subunits can be detected associated with Jurkat cell
membranes and, in particular, with membrane lipid rafts. We
have also demonstrated that Cdt association with lymphocytes
is dependent upon the integrity of lipid membrane microdo-
mains (26). Furthermore, we now demonstrate that the associ-
ation ofCdt holotoxinwith lymphocytes is cholesterol-depend-
ent. Jurkat cell membranes were depleted of cholesterol with

FIGURE 1. Cdt holotoxin association with Jurkat cells is dependent upon the presence of cholesterol.
Jurkat cells were exposed to medium (panels A and D) or 5 mM M�CD (panels B and E (Sigma)) for 30 min. Cells
were washed, and some of the M�CD-treated cells were incubated with cholesterol-saturated M�CD (0.5 mM)
for 30 min (panels C and F). Cells were incubated with Cdt holotoxin (2 �g/ml) for 1 h, washed, and treated with
control murine IgG (data not shown) or anti-CdtC monoclonal antibody conjugated to Alexafluor 488. Jurkat
cells were then analyzed by flow cytometry (panels A–C), or images of cells were taken on a Bio-Rad Radiance
2100 Confocal Microscope (Bio-Rad); representative images are shown in panels D–F. Results are representa-
tive of three experiments. The relative level of cholesterol in 107 Jurkat cells was compared by semiquantitative
TLC. Cholesterol was identified based on calculated Rf values and color after detection by charring with sulfuric
acid/EtOH (1:1 vol:vol). The intensity of cholesterol for each sample was compared with the intensity of known
standards using digital densitometry; values were 11.8, 0.37, and 20.7 �g cholesterol/107 cells for control,
M�CD-treated, and cholesterol-saturated M�CD-treated cells, respectively.
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5 mM methyl �-cyclodextrin (M�CD) for 30 min and then
exposed to Cdt holotoxin for 1 h. Toxin association with cells
was monitored by assessing immunofluorescence of the CdtC
subunit with monoclonal antibody. As shown in Fig. 1, panels
A, B, D, and E), cholesterol depletion resulted in a significant
reduction in the level of Cdt associated with Jurkat cells; mean
channel fluorescence (MCF) was reduced from 29.7 in control
(untreated) cells to 15.7 in M�CD-treated cells. Furthermore,
cholesterol repletion with cholesterol-saturated M�CD
restored toxin binding (MCF � 200.3) to levels greater than
that observed in control cells (Fig. 1, C and F). Alterations in
toxin binding paralleled changes in levels of cholesterol
extracted from similarly treated cells: 11.8 (control cells), 0.37
(M�CD-treated cells), and 20.7 �g of cholesterol/107 cells
(M�CD-saturated cholesterol-repleted cells).
In the next series of experiments we utilized model mem-

branes to determine whether Cdt binding was the result of
direct interaction of the toxin with membrane cholesterol.

FRET was first employed to assess
Cdt association with model mem-
branes composed of varying
amounts of cholesterol. For these
experiments, DAN-PC was incor-
porated into LUVs, and energy
transfer to tryptophan residues
intrinsic to Cdt was measured as a
function of increasing cholesterol
(Fig. 2A). Energy transfer increased
from 8.9% in the presence of 10%
cholesterol to 21.3% in the presence
of 40% cholesterol. Direct binding of
Cdt to cholesterol was also meas-
ured in real-time using SPR. Choles-
terol-containing LUVs were immo-
bilized on L1 sensor chips; LUVs
prepared in the absence of choles-
terol were also immobilized and
used as a control. Cdt holotoxin was
injected, and the association of
toxin with LUV was followed for 3
min. The sample was then replaced
with buffer, and the dissociation of
the complex was followed for
another 10 min. Fig. 2B shows a
group of sensorgram overlays for
the binding of Cdt holotoxin to
immobilized LUVs containing
varying amounts of cholesterol
(0–20%). Increases in binding were
observed as the percentage of cho-
lesterol in the LUV increased from
46 RU in the presence of 2.5% cho-
lesterol (not shown) to 267 RU in
the presence of 20% cholesterol.
Furthermore, we observed that the
amount of Cdt binding is dependent
upon the concentration of toxin
(Fig. 2C); significantly more toxin

bindingwas observed in the presence of 20�g/mlCdt thanwith
10 �g/ml Cdt with LUVs containing 5–20% cholesterol. Cho-
lesterol specificity was tested by replacing cholesterol in the
LUVs with stigmasterol, ergosterol, or lanosterol. Cdt binding
to the LUVs was significantly reduced when cholesterol was
replaced with each of these sterols (Fig. 2D); we observed max-
imum RU of 937 in the presence of cholesterol compared with
179, 92, and 32RUwith lanosterol, ergosterol, and stigmasterol,
respectively. These results suggest that binding is specific for
cholesterol as there was no difference in the relative amount of
each sterol extracted from the liposomes (see the Fig. 2 legend).
Tomimic the association of toxin with lipid rafts, LUVs were

prepared with lipid compositions favoring raft formation by
increasing SM content from 13 to 26% in the presence of 10%
cholesterol. As shown in Fig. 3, Cdt binding to LUV was meas-
ured by SPR and found to be dose-dependent;maximumRU for
LUV containing 13% SM increased from 61 RU in the presence
of 5 �g/ml Cdt to 522 RU in the presence of 20 �g/ml Cdt.

FIGURE 2. Cdt holotoxin preferentially binds to LUVs containing cholesterol. The interaction of Cdt holo-
toxin with LUVs containing varying amounts of cholesterol was analyzed by FRET and SPR. Panel A shows FRET
analysis of Cdt with LUVs containing varying amounts (10 – 40 mol %) cholesterol. Values are the mean � S.D.
(n � 3), expressed as relative % energy transfer. Results are statistically significant (p � 0.05; multivariant
analysis of variance with post-hoc Scheffe test) for differences in energy transfer as cholesterol concentration
is increased. Panel B shows the SPR results of Cdt interaction with LUVs. An overlay of sensorgrams shows the
interaction of Cdt (10 �g/ml) with immobilized LUVs containing decreasing concentrations of cholesterol; data
points were collected every 0.2 s. Data are plotted as response units versus time and are representative of three
experiments. Panel C shows the results of SPR analysis for the interaction of two concentrations of Cdt (10 and
20 �g/ml) with immobilized LUVs containing 5, 10, and 20% cholesterol; data are the mean � S.D. of three
experiments and are plotted as the number of response units obtained from each sensorgram after 3 min
post-injection. Results are statistically significant (p � 0.29; multivariant analysis of variance) for differences in
response units as toxin concentration is increased. Panel D shows the results of SPR analysis of Cdt (20 �g/ml)
with immobilized LUVs containing 20% of either cholesterol, lanosterol, ergosterol, or stigmasterol. The
mean � S.D. of the maximum response is plotted for three experiments. Results are statistically significant for
differences between cholesterol and lanosterol (p � 0.001), cholesterol and ergosterol (p � 0.029), and cho-
lesterol and stigmasterol (p � 0.029). To verify that liposomes contained comparable levels of sterol, aliquots of
liposomes were extracted, and the amount of sterol was determined as described in Fig. 1; extraction yields
were 7.9 �g (lanosterol), 8.6 �g (ergosterol), 7.6 �g (stigmasterol), and 7.8 �g (cholesterol).
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There was an increase in toxin binding at all toxin concentra-
tions to LUVs containing 26% SM; at the highest toxin concen-
tration, 20 �g/ml Cdt, we observed a 30% increase in Cdt bind-
ing, which was statistically significant. Toxin association with
membrane rafts was further investigated using FRET. Energy
transfer between DAN-PC and toxin increased as the mole
fractions of raft-associated cholesterol increased; that is, 15.3�
2.2% energy transfer at 0.56 mol fraction cholesterol versus
6.2� 2.4% energy transfer at 0.11mol fraction cholesterol. The

SPR and FRET studies suggest that
the Cdt holotoxin favors association
with membrane raft-associated
cholesterol.
Collectively, our results strongly

support the notion that Cdt holo-
toxin interaction with membranes
and cells is dependent upon choles-
terol. Therefore, we extended our
studies to consider the possibility
that binding subunits, CdtA and/or
CdtC, contain a cholesterol recogni-
tion motif. In this regard it has been
reported that several proteins that
interact with cholesterol contain an
amino acid sequence known as the
CRAC region. The CRAC site con-
forms to the pattern (L/V)X1–5-
YX1–5(R/K) in which X1–5 repre-
sents between one and five residues
of any amino acid (27). Motif
analysis of Cdt identified a CRAC
site within the CdtC subunit,
68LIDYKGK74. Location of the
CRAC site in CdtC is shown in Fig.
4; this site is at the surface of the
molecule and, theoretically, accessi-

ble to the membrane. To determine whether the CRAC region
was required for cell surface interaction and the downstream
toxic effects of Cdt, we generated a single-point mutant,
CdtABCY71P. It should be noted that the tyrosine residue in this
position has been shownbymutational analysis to be critical for
cholesterol binding in other proteins (33). We initially
employed FRET to determinewhether theCdtABCY71Pmutant
toxin was capable of interacting with cholesterol in model
membranes. As shown in Fig. 5A, CdtABCY71P compared with
the wild type toxin (CdtABCwt) exhibited a significant reduc-
tion in energy transfer between DAN-PC and tryptophan res-
idues intrinsic to the toxin at all concentrations of cholesterol
employed. Although energy transfer with CdtABCwt exhib-
ited cholesterol dose dependence, CdtABCY71P did not and is
consistent with the reduced binding of themutant toxin result-
ing from nonspecific interactions. Furthermore, SPR analysis
indicated that the mutant toxin was unable to bind to immobi-
lized LUVs containing cholesterol as comparedwith CdtABCwt

(Fig. 5B); the maximum RU for CdtABCwt was 508 compared
with 28 RU for the CRAC mutant.
In addition to interaction with model membranes, we

employed immunofluorescence and flow cytometry to assess
CdtABCY71P for its ability to interact with Jurkat cells. In Fig. 6,
A–C, association of the mutant Cdt holotoxin was compared
with the wild type toxin by assessing anti-CdtC fluorescence.
The MCF for cells treated with CdtABCwt was 12 compared
with 4.5 for control cells exposed to medium alone. The CRAC
mutant exhibited a significant reduction in its ability to associ-
ate with Jurkat cells; cells treated with the CdtABCY71P exhib-
ited a MCF of 4.4. Because it was possible that the decreased
immunofluorescence resulted from reduced availability of the

FIGURE 3. CdtABC preferentially associates with cholesterol and lipid rafts. LUVs were prepared contain-
ing either 13% (black bars) or 26% (gray bars) SM along with 20% cholesterol. The LUVs were assessed in real
time for binding to immobilized Cdt. The maximum response units (mean � S.D. of five experiments) is plotted
versus Cdt concentration. The asterisk denotes a statistically significant difference between 13 and 26% sphin-
gomyelin (p � 0.040); no significant difference was detected at the lower toxin concentrations.

FIGURE 4. Localization of the CRAC site on CdtC. Ribbon representation
(left) of A. actinomycetemcomitans Cdt holotoxin (PDB accession number
2F2F). CdtC is represented in blue with residues Leu-68 —Lys-74 of the CRAC
site colored red. CdtA is shown in yellow, and CdtB is shown in gray. Shown is
a surface representation (right) of the holotoxin indicating the accessibility of
the CRAC site.
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epitope as opposed to decreased toxin binding, we also assessed
the relative ability of the CdtABCwt and CdtABCY71P to deliver
CdtB intracellularly. As shown in Figs. 6, D–F, and as we have
previously reported, CdtABCwt was effective in delivering CdtB
intracellularly in Jurkat cells; 1 h after exposure to 2 �g/ml
toxin, MCF increased from 5.2 in control cells to 21.6. By com-
parison, the MCF was 6.9 in cells exposed to 2 �g/ml
CdtABCY71P. Finally, we assessed the CRACmutant for its abil-
ity to induceG2 arrest in Jurkat cells (Fig. 7). Sixteen hours after
exposure to CdtABCwt, we observed an increase in the percent-
age of G2 cells from 10.9% (control) to 43.4%; this compares to
11.2% in cells similarly treated with CdtABCY71P.

DISCUSSION

A. actinomycetemcomitans Cdt holotoxin is composed of a
heterotrimeric complex consisting of three distinct peptides,
designated CdtA, CdtB, and CdtC. Several investigators have
demonstrated that CdtB is the active subunit (18, 34–36); our

own studies indicate that CdtB exhibits a unique lipid phospha-
tase activity whereby it de-phosphorylates the lipid second
messenger, phosphatidylinositol 3,4,5-triphosphate (23).
Although the role for CdtA and CdtC has been elusive, there is
compelling evidence that these subunits are involved in form-
ing a stable holotoxin complex and for recognition of cell asso-
ciated receptors (12, 14, 37, 38). Indeed, our observations as
well as those of other investigators support the notion that not
only are CdtA and CdtC required for maximum toxin activity
but also that they are involved in toxin-cell interaction (18, 26).
These observations are also supported by analysis of the crystal
structure of both A. actinomycetemcomitans and H. ducreyi
Cdt. Nesic et al. (12) showed direct contact between CdtA-
CdtB, CdtA-CdtC, and CdtB-CdtC and further that the H. du-
creyi tripartite complex shows no signs of oligomerization. Fur-
ther analysis suggests the CdtA and CdtC are both lectin-like
structures, analogous to the B-chain repeats of ricin. CdtA and
CdtC together form two surface elements, an aromatic cluster
and a deep groove. The Cdt holotoxin structure has been con-
firmed for A. actinomycetemcomitans Cdt (37), where it has
been suggested that CdtA and CdtC form the cap of a “fat stem
mushroom.” These investigators further report that CdtA and
CdtC have structural features similar to the lectin repeats in
ricin, although they cannot be superimposed as a rigid unit over
these repeats. It should also be noted that McSweeney and
Dreyfus (38) have shown that E. coli Cdt binding to HeLa cells
can be blocked by glycoproteins and fucose specific lectins but
not simple sugars; these investigators proposed that Cdt binds
to HeLa cells via an N-linked fucose-containing structure.
These studies, however, could not discriminate between spe-
cific inhibition of binding to fucose versus steric hindrance of a
distinct receptor located in the proximity of lectin and glyco-
protein binding.
Our previous studies clearly indicate that the Cdt holotoxin

interacts with the Jurkat cell surface and specifically associates
with lipid microdomains where the Cdt subunits initially co-
localize with the ganglioside, GM1. We further demonstrated
that cholesterol depletion usingM�CDprotects cells from tox-
in-induced G2 arrest; thus, lipid raft integrity is necessary for
the action of Cdt on target cells. In this study we also provide
evidence that cholesterol depletion reduces the ability of Cdt to
associate with Jurkat cells. Moreover, cholesterol repletion of
M�CD-treated cells restored toxin binding to Jurkat cells to
levels greater than that observed in control cells; this increase is
consistent with the levels of cholesterol extracted from simi-
larly treated cells. These results suggest that the toxin binding
subunits, CdtA and/or CdtC, recognize the sterol, perhaps, in
the context of lipid rafts. The possibility that Cdt interacts with
cholesterol is further demonstrated by our studies in which we
employed model membranes. Clearly, FRET and SPR analysis
of Cdt interactionwith LUVswas dependent upon the presence
and concentration of cholesterol; moreover, toxin recognition
of sterols was specific to cholesterol, whereas the toxin failed to
bind to LUVs containing lanosterol, ergosterol, and stigmas-
terol. In other experiments LUVs were prepared in which the
SM levels were increased from 13 to 26% to mimic a lipid com-
position that favors lipid raft formation (29). These experi-

FIGURE 5. Cdt holotoxin containing a CRAC mutation (CdtABCY71P) exhib-
its reduced ability to associate with cholesterol. Panel A shows the results
of the FRET analysis of the ability of CdtABCWT versus that of CdtABCY71P to
bind to LUVs containing 10 – 40 mol % cholesterol. Results are plotted as the
percentage of energy transfer versus cholesterol concentration and represent
the mean � S.D. of three experiments. Panel B, SPR analysis of the ability of
immobilized CdtABCWT (broken line) and CdtABCY71P (solid line) to bind LUVs
containing 20% cholesterol; results are representative of three experiments.
Results are statistically significant (p � 0.035) for the differences between
CdtABCwt and CdtABCY71P at all concentrations of cholesterol.
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ments demonstrated an increase in
Cdt binding as detected by SPR in
the presence of 20% cholesterol and
further suggest that Cdt binds to
cholesterol under conditions where
lipid raft formation is favored.
These observations clearly establish
that not only are lipid rafts involved
in Cdt holotoxin-Jurkat cell interac-
tions but also that toxin binding to
both cell and model membranes
directly involves cholesterol.
Several proteins have been shown

to bind cholesterol; these include
the benzodiazepine receptor, the
human immunodeficiency virus
transmembrane protein gp41, and
caveolin (27, 33, 39, 40). Each of
these cholesterol-binding proteins
contain the cholesterol recognition
amino acid consensus sequence
(CRAC), (L/V)X1–5YX1–5(R/K),
where X1–5 represents one to five
residues of any amino acid. Based
upon the results from our experi-
ments along with the effects of cho-
lesterol depletion of lymphocytes on
Cdt binding and toxicity, we ana-
lyzed both CdtA and CdtC to deter-
mine whether they also contain a
CRAC motif. Motif analysis of
these subunits identified a CRAC
site within the CdtC subunit,
68LIDYKGK74; furthermore, struc-
tural analysis of CdtC in the context
of the holotoxin indicates that this
site is at the surface of the molecule
and, theoretically, is accessible to
the membrane. Mutation of the
tyrosine residue within this motif
has resulted in significant reduction

FIGURE 6. CdtABCY71P exhibits a reduction in association with Jurkat cells as well as in its ability to deliver
CdtB. Jurkat cells were exposed to medium (panels A and D), CdtABCWT (panels B and E), or CdtABCY71P (panels
C and F) for 1 h and then analyzed by immunofluorescence for the presence of surface CdtC (panels A–C) and
intracellular CdtB (panels D–F). Alexafluor fluorescence is plotted versus relative cell number. Numbers repre-
sent the mean channel fluorescence; at least 10,000 cells were analyzed per sample. Results are representative
of three experiments.

FIGURE 7. CdtABCY71P exhibits reduced ability to induce cell cycle arrest. Jurkat cells were incubated with medium alone (panel A), 50 pg/ml CdtABCWT

(panel B), or 50 pg/ml CdtABCY71P (panel C) for 18 h, stained with propidium iodide, and analyzed for cell cycle distribution by flow cytometry as described under
“Experimental Procedures.” Numbers represent the percentage of cells in the G0/G1, S, and G2/M phases of the cell cycle. Results are representative of three
experiments; 15,000 cells were analyzed for each sample. PI, propidium iodide.
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in the ability of the holotoxin to interact with LUVs. Moreover,
the mutant toxin exhibited reduced binding to Jurkat cells
along with a reduced intracellular transfer of CdtB and a con-
comitant reduction in toxicity. These observations are consist-
entwith those of Jamin et al. (33)whomutated the same residue
of the CRAC motif within the benzodiazepine receptor, which
also resulted in a loss of cholesterol binding. Collectively, our
results provide strong support for the notion that not only is
Cdt association with target cells dependent upon the integrity
of membrane lipid rafts but, furthermore, that the CdtC sub-
unit binds to cholesterol.
Lipid rafts represent liquid-ordered microdomains that are

distributed in the plasma membrane and whose lipid composi-
tion and high cholesterol content differs from the rest of the
membrane. Thus, a protein such as a bacterial toxin that recog-
nizes cholesterol would be expected to co-localize with lipid
rafts; this is consistent with our observations for Cdt (26). Fur-
thermore, association with lipid microdomains provides sev-
eral advantages for proteins in general and bacterial toxins in
particular because these membrane regions serve several func-
tions including triggering internalization and transport of
extracellular proteins as well as signaling platforms (41, 42).
Moreover, it has become increasingly evident that several
pathogens andmicrobial-derived toxins interact with their tar-
get cell via membrane rafts (43, 44). For instance, rafts may
provide a mechanism by which receptors are concentrated and
thereby promote ligand or pathogen binding. One such exam-
ple is cholera toxin, which is pentameric and binds to targets
cells via the ganglioside GM1. It is likely that cholera toxin
simultaneously binds with high affinity to multiple receptors as
result of receptor concentration within the raft (44, 45). Like-
wise, pore-forming toxins such as aerolysin from Aeromonas
hydrophila, which binds to glycosylphosphatidylinositol-an-
chored proteins, utilize the concentrating properties of rafts to
facilitate oligomerization, a requisite for channel formation (44,
46).Membrane rafts may also facilitate signaling after the bind-
ing of bacterial toxins to raft-associated receptors. In this
regard, bacterial lipopolysaccharide (LPS) interacts with rafts
via CD14, a glycosylphosphatidylinositol-anchored receptor;
LPS binding results in mitogen-activated protein kinase activa-
tion and eventually cytokine production. Finally, membrane
rafts may serve as entry sites for pathogens; in this regard sev-
eral pathogens enter host cells in a cholesterol-dependentman-
ner (43, 44). For example, the uptake of E. coli strains which
express FimH have been shown to involve cholesterol-rich
rafts. Similarly, Shigella invades cells via interaction between
the invasin, IpaB, and the raft-associated receptor, CD44 (47).
Several enveloped and non-enveloped viruses (for example,
SV40, human immunodeficiency virus, and herpes simplex
virus) also require lipid rafts for binding or entry by endocytosis
(48, 49).
In conclusion, we propose that binding of cholesterol by the

CRAC region contained in the CdtC subunit results in the asso-
ciation of the Cdt holotoxin with membrane lipid rafts. It is
likely that lipid raft association is critical for the internalization
of the active subunit, CdtB, leading to cell cycle arrest and even-
tual cell death. These studies predict that cholesterol disposi-
tion within the membrane influences binding of CdtC to the

cell surface; therefore, we propose that CdtC favors raft-associ-
ated cholesterol, resulting in localized toxin-rich regions. This
association may also be critical to the mode of action of the
toxin, thereby allowing it to hijack lipid raft-associated signal-
ing platform(s) and perhaps provide access to pools of inositol
1,4,5-triphosphate. Although these studies do not exclude the
possibility of the existence of a second receptor that might be
recognized by CdtA, they do clearly demonstrate that disrup-
tion of cholesterol binding by either cholesterol depletion or
mutation of the CRAC region is sufficient to block Cdt-medi-
ated toxicity in lymphocytes.
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