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Abstract
In cerebral cortex, ongoing activity absent a stimulus can resemble stimulus-driven activity in size
and structure. In particular, spontaneous activity in cat primary visual cortex (V1) has structure
significantly correlated with evoked responses to oriented stimuli. This suggests that, from
unstructured input, cortical circuits selectively amplify specific activity patterns. Current
understanding of selective amplification involves elongation of a neural assembly’s lifetime by
mutual excitation among its neurons. We introduce a new mechanism for selective amplification
without elongation of lifetime: “balanced amplification”. Strong balanced amplification arises when
feedback inhibition stabilizes strong recurrent excitation, a pattern likely to be typical of cortex. Thus,
balanced amplification should ubiquitously contribute to cortical activity. Balanced amplification
depends on the fact that individual neurons project only excitatory or only inhibitory synapses. This
leads to a hidden feedforward connectivity between activity patterns. We show in a detailed
biophysical model that this can explain the cat V1 observations.

1 Introduction
Neurons in cerebral cortex are part of a highly recurrent network. Even in early sensory areas
receiving substantial feedforward input from sub-cortical areas, intracortical connections make
up a large fraction of the input to cortical neurons [e.g., Binzegger et al. 2004, Stepanyants et
al. 2008, Thomson and Lamy 2007]. One function of this recurrent circuitry may be to
selectively amplify certain patterns in the feedforward input, enhancing the signal-to-noise
ratio of the selected patterns [e.g., Douglas et al. 1995, Ganguli et al. 2008].

A side effect of such selective amplification is that the selected patterns should also be amplified
in the spontaneous activity of the circuit in the absence of a stimulus [Ganguli et al. 2008]. We
imagine that spontaneous activity is driven by feedforward input that is unstructured except
for some spatial and temporal filtering. Thus, all patterns with similar spatial and temporal
frequency content should have similar amplitudes in the feedforward input. In the circuit
response, those patterns that are selectively amplified should then have larger average
amplitude than other, unamplified patterns of similar spatial and temporal frequency content.
This may underlie observations that cerebral cortex shows ongoing activity in the absence of
a stimulus that is comparable in size to stimulus-driven activity [Anderson et al. 2000b, Arieli
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et al. 1996, Fiser et al. 2004, Fontanini and Katz 2008, Kenet et al. 2003], and that in some
cases the activity shows structure related to that seen during functional responses [Fontanini
and Katz 2008, Kenet et al. 2003].

Existing models of selective amplification are “Hebbian-assembly” models, in which the
neurons with similar activity (above baseline or below baseline) in an amplified pattern tend
to excite one another while those with opposite activity may tend to inhibit one another, so that
the pattern reproduces itself by passage through the recurrent circuitry [e.g. Douglas et al.
1995, Goldberg et al. 2004, Seung 2003]. In these models, selective amplification of an activity
pattern is achieved by slowing its rate of decay. In the absence of intracortical connections,
each pattern would decay with a time constant determined by cellular and synaptic time
constants. Because the pattern adds to itself with each passage through the recurrent circuitry,
the decay rate of the pattern is slowed. Given ongoing input that equally drives many patterns,
patterns that decay most slowly will accumulate to the highest amplitude and so will dominate
network activity. (Note that, if a pattern reproduces itself faster than the intrinsic decay rate, it
will grow rather than decay. This along with circuit nonlinearities provides the basis for
“attractors”, patterns that can persist indefinitely in the absence of specific driving input, but
our focus here is on amplification rather than attractors.)

In V1 and other regions of cerebral cortex, recurrent excitation appears to be strong but
balanced by similarly strong feedback inhibition [Chagnac-Amitai and Connors 1989, Haider
et al. 2006, Higley and Contreras 2006, Ozeki et al. 2009, Shu et al. 2003], an arrangement
often considered by theorists [e.g. Brunel 2000, Latham and Nirenberg 2004, Lerchner et al.
2006, Tsodyks et al. 1997, van Vreeswijk and Sompolinsky 1998]. Here we demonstrate that
this leads to a new form of selective amplification, which we call balanced amplification, that
should be a major contributor to the activity of such networks, and that involves little slowing
of the dynamics. The basic idea is the following. The steady-state response to a given input
involves some balance of excitatory and inhibitory firing rates. If there is a fluctuation in which
the balance is variously tipped toward excitatory cell firing or inhibitory cell firing in some
spatial pattern, then, because excitation and inhibition are both strong, both excitatory and
inhibitory firing will be driven strongly up in regions receiving excess excitation, and be driven
strongly down in regions receiving excess inhibition. That is, small patterned fluctuations in
the difference between excitation and inhibition will drive large patterned fluctuations in the
sum of excitation and inhibition. The same mechanism will also amplify the steady-state
response to inputs that differentially drive excitation and inhibition. The amplification from
difference to sum will be largest for patterns that match certain overall characteristics of the
connectivity, thus allowing selective amplification of those patterns. This represents a large,
effectively feedforward connection from one pattern of activity to another, i.e. from a difference
pattern to a sum pattern. Although the circuitry is fully recurrent between neurons, there is a
hidden feedforward connectivity between activity patterns. Because the sum pattern does not
act back on the difference pattern and neither pattern can significantly reproduce itself through
the circuitry, neither pattern shows a slowing of its dynamics. This form of amplification should
make major contributions to activity in any network with strong excitation balanced by strong
inhibition, and so should be a ubiquitous contributor to cortical activity.

We show in particular that this mechanism can explain a well-studied example of selective
amplification in primary visual cortex (V1) of anesthetized cat. V1 neurons respond selectively
to oriented visual stimuli. In cats, nearby neurons prefer similar orientations and there is a
smooth map of preferred orientations across the cortical surface. Kenet et al. [2003] compared
the spatial patterns of spontaneous activity, in the absence of a visual stimulus, across V1 upper
layers with either the pattern evoked by an oriented visual stimulus (“evoked orientation map”)
or a similarly structured control activity pattern. An evoked orientation map is a pattern in
which neurons with preferred orientation near the stimulus orientation are coactive and other

Murphy and Miller Page 2

Neuron. Author manuscript; available in PMC 2010 February 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



neurons are inactive. While on average the correlation coefficient between snapshots of
spontaneous activity and the evoked map or control was 0, the distribution of correlation
coefficients was significantly wider for the evoked map than for the control pattern. That is,
excursions of the spontaneous activity were significantly larger in the direction of an evoked
orientation map than in the direction of other similarly structured patterns. This seems likely
to result from the preferential cortical amplification, from unstructured feedforward input, of
activity patterns in which neurons of similar preferred orientation are co-active. The likely
substrate for such amplification is orientation-specific connectivity. Neurons in middle and
upper layers of V1 receive both excitatory and inhibitory input predominantly from other
neurons with similar preferred orientations [Anderson et al. 2000a, Marino et al. 2005, Martinez
et al. 2002], and orientation-specific excitatory axonal projections can extend over long
distances [Gilbert and Wiesel 1989].

A “Hebbian-assembly” model of this amplification has been proposed [Goldberg et al. 2004].
However, a significant problem for such a model is that that it relies on slowing of the dynamics,
and the data of [Kenet et al. 2003] show limited slowing (see Discussion). The amplified
patterns of spontaneous activity observed in V1 fluctuate with a time scale of about 80 ms
(Kenet et al. 2003, and M. Tsodyks, private communication), comparable to the time scales
over which inputs are correlated [DeAngelis et al. 1993, Wolfe and Palmer 1998]. We show
that balanced amplification provides a robust explanation for the amplification observed in V1
by Kenet et al. [2003] and its time scale. We cannot rule out that Hebbian mechanisms are also
acting, but even if they contribute, balanced amplification will be a significant and heretofore
unknown contributor to the total amplification.

2 Results
We will initially study balanced amplification using a linear firing rate model. When neural
circuits operate in a regime in which synchronization of spiking of different neurons is weak,
many aspects of their behavior can be understood from simple models of neuronal firing rates
[e.g. Brunel 2000, Ermentrout 1998, Pinto et al. 1996, Vogels et al. 2005]. In these models,
each neuron’s firing rate approaches, with time constant Τ, the steady-state firing rate that it
would have if its instantaneous input were maintained. This steady-state rate is given by a
nonlinear function of the input, representing something like the curve of input current to firing
rate (F-I curve) of the neuron. When the circuit operates over a range of rates for which the
slopes of the neurons’ F-I curves do not greatly change, its behavior can be described by a
linear rate model:

(1)

Here, r is an N-dimensional vector representing the firing rates of a population of N neurons
(the ith element ri is the firing rate of the ith neuron). These rates refer to the difference in rates
from some baseline rates, e.g. the rates in the center of the operating region, and so can be
either positive or negative. W is an N × N synaptic connectivity matrix (Wij is the strength of
connection from neuron j to neuron i). Wr represents input from other neurons within the
network. I represents input to the network from neurons outside the network, e.g. feedforward
input.

The essential mechanisms of selective amplification can be understood from this model.
Equation 1 is most readily analyzed in terms of patterns of activity across the network, rather
than the individual firing rates of the neurons. The overall network activity r(t) can be
represented as a weighted sum of a set of N basis patterns, denoted pμ, μ = 1, …, N, with weights
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(“amplitudes”) rμ(t): r(t) = Σμrμ (t)pμ. Similarly, the input can be decomposed I(t) = Σμ Iμ (t)
pμ. Each basis pattern or “mode” represents a set of relative rates of firing of all neurons in the
network, e.g. neuron 2 fires at 3 times the rate of neuron 1 while neuron 3 fires at 1/2 the rate
of neuron 1, etc. The ith element of the μth pattern, , represents the relative rate of firing of
neuron i in that pattern. Examples of basis patterns can be seen in Fig. 3B, where each row
shows two basis patterns, labeled p− and p+, each representing a pattern of activity across the
excitatory (E) and inhibitory (I) neurons in a model network; this figure will be explained in
more detail later.

The basis patterns are typically chosen as the eigenvectors of W; this is the only basis set whose
amplitudes evolve independently of one another. pμ is an eigenvector if it satisfies Wpμ= wμ
pμ where wμ, a (possibly complex) number, is the eigenvalue associated with pμ. That is, pμ
reproduces itself, scaled by the number wμ, upon passage through the recurrent circuitry. Thus,
eigenvalues with positive real part, which correspond to patterns that add to themselves by
passage through the circuitry, are the basis of Hebbian amplification. To understand the
response to ongoing input, it suffices to know the response to input to each single basis pattern
at a single time, because responses to inputs to different patterns at different times superpose.
When the eigenvectors are the basis patterns, inputs to or initial conditions of the pattern pμ
affect only the amplitude of that pattern, rμ, with no crosstalk to other patterns. In the absence
of input, rμ decays exponentially with time constant Τμ = Τ/(1 − R(wμ)), where R(wμ) is the
real part of wμ. These are the mathematical statements that the amplitude of each pattern evolves
independently of all others, and that, if wμ has positive real part (but real part < 1 to ensure
stability), then the decay of rμ will be slowed, yielding Hebbian amplification

However, for biological connection matrices, this solution hides key aspects of the dynamics.
Because individual neurons project only excitatory or only inhibitory synapses, synaptic
connection matrices have a characteristic structure, as follows [e.g. Ermentrout 1998, Wilson

and Cowan 1972, 1973]. Let , where rE is the sub-vector of firing rates of excitatory
neurons and rI of inhibitory neurons. Let WXY be a matrix with elements ≥ 0 describing the
strength of connections from the cells of type Y (E or I) to those of type X. Then the full

connectivity matrix is . The left columns are non-negative and the right
columns are non-positive. Such matrices are non-normal, meaning that their eigenvectors are
not mutually orthogonal (see Supplemental Materials, S3). If non-orthogonal eigenvectors are
used as a basis set, the apparently independent evolutions of their amplitudes can be deceiving,
so that even if all of their amplitudes are decaying, the activity in the network may strongly
but transiently grow [Trefethen and Embree 2005, Trefethen et al. 1993]. This also yields
steady-state amplification of steady input that is not predicted by the eigenvalues. We will
illustrate this below. We will show that, given biological connection matrices with strong
excitation balanced by strong inhibition, this robustly yields strong balanced amplification,
which will occur even if all eigenvalues of W have negative real part so that there is no
dynamical slowing; and that these dynamics are well described using a certain mutually
orthogonal basis set (a “Schur basis”) rather than the eigenvectors.

The simplest example of balanced amplification is a network with two populations of neurons,
one excitatory (E cells) and one inhibitory (I cells), each making projections that are

independent of postsynaptic target (Fig. 1A). In terms of Eq. 1,  and

 (the case in which all four weights have distinct values gives similar results,
Supplementary Materials S3.3). Here, rE and rI are the average firing rates of the E and I
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populations, respectively, and w and kIw are the respective strengths of their projections. We
assume inhibition balances or dominates excitation, that is, kI ≥ 1. The eigenvalues of W are
0 and w − kIw = −w+ where w+ = w(kI − 1), so W has no positive eigenvalues and there is no
Hebbian amplification. Because inhibition balances or dominates excitation, when rE and rI

are equal, the synaptic connections contribute net inhibition. That is, letting, , which
is the pattern with equal excitatory and inhibitory firing, then Wp+ = −w+p+. However, when
there is an imbalance of excitatory and inhibitory rates, then the rates are amplified by the

synaptic connections. That is, letting , representing equal and opposite changes in
excitatory and inhibitory rates from baseline, then Wp− = wFFp+ where wFF ≡ w + kIw = w
(kI + 1). This means that small changes in the difference between E and I firing rates drive
large changes in the sum of their rates (note that, if recurrent excitation and inhibition are both
strong, then wFF is large). We refer to p+ as a sum mode and p− as a difference mode. Note
that p+ and p− are orthogonal, and that p− is not an eigenvector.

We decompose r(t) as a sum of these two basis patterns, r(t) = r+(t)p+ + r− (t)p−, with r+(t)
and r− (t) respectively representing the sum and difference of excitatory and inhibitory

activities: . Then the dynamics in the absence of
external input can be written

(2)

(3)

The network, despite recurrent connectivity in which all neurons are connected to all others
(Fig. 1A), is acting as a two-layer feedforward network between activity patterns (Fig. 1C).
The difference mode activates the sum mode with feedforward (FF) connection strength
wFF, representing an amplification of small firing rate differences into large summed firing
rate responses, and the sum mode inhibits itself with the negative weight −w+, but there is no
feedback from the sum mode onto the difference mode. As expected for a feedforward network,
the amplification scales linearly with the feedforward synaptic strength, wFF, and can be large
without affecting the stability or time scales of the network.

The resulting dynamics, starting from an initial condition in which excitation but not inhibition
is active above baseline, is illustrated in Fig. 1B. The excess of excitation drives up the firing
rates of both excitation and inhibition, until inhibition becomes strong enough to force both
firing rates to decay. In terms of the sum and the difference of the rates, the difference decays
passively with time constant Τ. The difference serves as a source driving the sum, which
increases until its intrinsic decay exceeds its drive from the decaying difference. The sum

ultimately decays with a somewhat faster time constant . This is the basic
mechanism of balanced amplification in circuits with strong, balancing excitation and
inhibition: differences in excitatory and inhibitory activity drive sum modes with similar
excitatory and inhibitory firing patterns, while the difference itself decays. In the absence of a
source, the sum mode then decays.

Murphy and Miller Page 5

Neuron. Author manuscript; available in PMC 2010 February 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



The description of these same dynamics in terms of the eigenvectors of W is deceptive, because
the eigenvectors are far from orthogonal. If orthonormal basis patterns (meaning mutually
orthogonal and normalized to length 1) are used, then the amplitudes of the basis patterns will
accurately reflect the amplitudes re and ri of the actual neural activity, in the sense that the sum
of the squares of the amplitudes of the basis patterns is equal to the sum of the squares of the
neuronal firing rates. Transformation to a non-orthogonal basis, such as that of the eigenvectors
of a non-normal matrix, distorts these amplitudes. In the case of a network like that in Fig. 1,
this distortion is severe: what is actually transient growth of the firing rates becomes monotonic
decay of each amplitude in the eigenvector basis (for reasons explained in Trefethan and
Embree, 2005 and in Supplemental Materials, S3.2).

To understand balanced amplification in more intuitive terms, we consider the response of the
excitatory population to an external input IE to the excitatory population (Fig. 2). We contrast
the balanced network just studied (Fig. 2, right) with a Hebbian counterpart: a single excitatory
population of neurons recurrently exciting itself with strength w (Fig 2, left). We set w for the
Hebbian network to produce the same integrated excitatory cell response to a delta-pulse of
input (a pulse confined to a single instant of time), and thus the same overall amplification in
response to a sustained input, as the balanced network. The responses are plotted with (red
lines) and without (blue lines) recurrent connections.

We first consider the response to a delta-pulse of input sufficient to set the initial excitatory
state to rE (0) = 1 (Figs. 2A-B); for the balanced network, rI (0) = 0. In the Hebbian network,

the effect of the recurrent circuitry is to extend the decay time from Τ to . In contrast, as
we saw above, in the balanced network, the recurrent circuitry produces a positive pulse of
response without substantially extending the response time course. This extra pulse of response
represents the characteristic response of r+ to a delta-pulse input to r− (Supplementary
Materials S1.1, S3.4), which is added to an exponential decay with the membrane time constant.
For the sum to produce an initially increasing response in the E population, as shown, the circuit
must have w > 1. This means that the excitatory network by itself is unstable, but the circuit is
stabilized by the feedback inhibition, a regime likely to characterize circuits of cerebral cortex
[Chagnac-Amitai and Connors 1989, Latham et al. 2000, Ozeki et al. 2009]. Given the
unbalanced initial condition, the activity of the unstable excitatory network starts to grow, but
it also drives up the activity of the inhibitory population, which ultimately stabilizes the
network.

We next consider the response to a sustained input IE = 1 (Figs. 2C-D). Because the system is
linear, the sustained input can be regarded as identical delta-pulses of input at each instant of
time, and the response as the sum of the transient responses to each delta-pulse of input. The
time-course of the rise to the steady-state level is thus given by the integral of the transient
response – that is, the rise occurs with the time course of the accumulation of area under the
transient curve. Thus, the stimulus onset response is greatly slowed for the Hebbian network,
but only slightly slowed for the balanced network, relative to the time course in the absence of
recurrent circuitry. This can be seen by comparing the scaled versions of the responses without
recurrent circuitry (blue dashed lines) to the responses with recurrent circuitry (red lines).

As we increase the size of the recurrent weights by increasing w to obtain more and more
amplification, the delta-pulse response of the Hebbian network decays more and more slowly,
so the approach to the steady state becomes slower and slower (Fig. 2E). For the balanced
network, increased amplification leads to a higher and higher pulse of response without a
slowing of the decay of this response. In fact, higher levels of amplification yield increasing
speed of response, due to the increasingly negative eigenvalue w+, so that for large w the
response speed becomes identical to the speed without recurrence (Fig. 2F, and see
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Supplementary Materials S1.1.2). In sum, in the Hebbian mechanism, increasing amplification
is associated with increasingly slow responses. This leads to an inherent tradeoff between the
speed of a Hebbian network’s response and the amount by which it can amplify its inputs. For
the balanced mechanism, responses show little or no slowing no matter how large the
amplification.

In spatially extended networks with many neurons, balanced amplification can selectively
amplify specific spatial patterns of activity. We first consider a case with two simplifications.
We take the number of excitatory and inhibitory neurons to be equal; using realistic (smaller)
numbers of inhibitory neurons, with their output weights scaled so that each cell receives the
same overall inhibition, does not change the dynamics. We also assume that excitatory and
inhibitory neurons, though making different patterns of projections, make projections that are
independent of postsynaptic cell type. Then, if WE describes the spatial pattern of excitatory

projections and WI of inhibitory projections, the full weight matrix is . A
full analysis of this connectivity is in Supplemental Materials (S1.2); here we report key results.
If WE and WI are N × N, then W has N eigenvalues equal to zero and another N equal to the
eigenvalues of the matrix WE − WI. We take inhibition to balance or dominate excitation, by
which we mean the eigenvalues of WE − WI have real part ≤ 0. Thus, W has no eigenvalues
with positive real part and there is no Hebbian amplification. But there is strong balanced
amplification.

We can define a set of N pairs of spatially patterned difference and sum modes, pμ− and pμ+,
μ = 1, …, N, that each behave very much like the difference and sum modes, p−, p+ in the
simpler, two-neuron model we studied previously. The E and I cells in the μth pair each have
an identical spatial pattern of activation, given by the μth eigenvector of WE + WI, up to a sign;
this pattern has opposite signs for E and I cells in pμ− but identical signs for E and I cells in
pμ+. The feedforward connection strength from pμ− to pμ+ is given by the μth eigenvalue of
WE + WI. That is, the strongest amplification is of spatial patterns that are best matched to the
circuitry, in the sense of best reproducing themselves on passage through WE + WI. WE +
WI has entries that are non-negative and large, assuming excitation and inhibition are both
strong, so at least some of these feedforward weights will be large. The difference modes
pμ− decay with time constant Τ, while the sum modes pμ+ decay at equal or faster rates that
depend on the eigenvalues of WE−WI. Thus, there is differential amplification of activity
patterns without significant dynamical slowing. This mechanism of transient spatial pattern
formation (or sustained amplification of patterned input) should be contrasted with existing
mechanisms of sustained pattern formation, which involve dynamical slowing [Ermentrout
1998].

The five pairs of difference modes pμ− and sum modes pμ+ with the five largest feed-forward
weights wFF are illustrated in Fig. 3B, for a simple model of synaptic connectivity based on
known properties of V1. In this model, the strength of a synaptic connection between two
neurons is determined by the product of Gaussian functions of distance and of difference in
preferred orientation (see Methods). The orientation map is a simple 4×4 grid of pinwheels
(Fig. 3A). The only difference between the patterns of excitatory and inhibitory synapses is
that excitatory synapses extend over a much larger range of distances, as is true in layer II/III
of V1 [Gilbert and Wiesel 1989]. The orientation tunings of excitatory and inhibitory synapses
are identical, as is suggested by the fact that intracellularly measured excitation and inhibition
have similar orientation tuning in upper layers of V1 [Anderson et al. 2000a,Marino et al.
2005,Martinez et al. 2002]. Inhibition is set strong enough that all the eigenvalues of W have
real part ≤ 0. Next to each pair of modes in Fig. 3B is the weight wFF between them, and the
maximal correlation coefficient (cc) between the sum modes and any stimulus-evoked
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orientation map (evoked maps are computed as the response of a rectified version of Eq. 1 to
an orientation-tuned feedforward input).

The mode corresponding to the largest wFF is spatially uniform. Kenet et al. [2003] filtered
out this mode in their experiments because it can result from artifactual causes, but it shows
much variance (M. Tsodyks, private communication). The next two modes closely resemble
evoked orientation maps. To characterize the time course of this amplification, we examine
the time course of the overall size of the activity vector, |r(t)|, in response to an initial
perturbation consisting of one of the difference modes (Fig. 3C). The first mode follows the

time course  once , corresponding to a zero eigenvalue of WE−WI.
Subsequent modes peak progressively earlier, interpolating between timecourses proportional

to  and et/Τ, representing the influence of increasingly negative eigenvalues (see
Supplemental Materials S1.1.2). Thus, patterns that resemble evoked orientation maps can be
specifically amplified by balanced amplification without significant dynamical slowing, given
a circuit with balanced, orientation-specific excitatory and inhibitory circuitry. We will show
shortly that this can account well for the observations of Kenet et al. [2003] in the context of
a nonlinear spiking network.

In the more general case, when WEE, WEI, WIE, and WII all have distinct structure, one cannot
write a general solution, but one can infer that similar results should apply if strong inhibition
balances or dominates strong excitation (see Supplementary Materials, S3.3, S3.5). Any such
matrix has strong hidden feedforward connectivity, as shown by the Schur decomposition
(Supplementary Materials, S3.2). We have seen that use of an orthonormal basis set provides
strong advantages for understanding the dynamics. The Schur decomposition finds a (non-
unique) orthonormal basis in which the matrix, which means the effective connectivity between
basis patterns, is as simple as possible given orthonormality: the effective connectivity includes
only self-connections and feedforward connections, but no loops. The dynamics can be
analytically solved in this basis (Supplementary Materials, S3.4). In Fig. 1, the orthogonal sum
and difference vectors (if properly normalized) are a Schur basis. For a normal matrix, the
Schur basis is the eigenvector basis. In the eigenvector basis, a matrix is simply the diagonal
matrix of eigenvalues, that is, there are only self-connections (Fig. 4A). However, these basis
patterns are not mutually orthogonal for non-normal matrices, such as biological connection
matrices. A non-normal matrix in the Schur basis also has the eigenvalues as diagonal entries
or self-connections, and zeros below the diagonal, but there are non-zero entries above the
diagonal. These entries represent feedforward connectivity between patterns: there can only
be a connection from pattern i to pattern j if i > j (Fig. 4B). Given strong excitation and
inhibition, the strongest feedforward weights should be be from difference-like patterns
(meaning patterns in which excitatory and inhibitory activities tend to have opposite signs) to
sum-like patterns (in which they tend to have the same signs) (Supplemental Materials, S3.5),
as shown. If the eigenvalues are small due to inhibition balancing excitation, but the original
matrix entries are large, then there will be large entries off the diagonal in the Schur
decomposition, because the sum of the absolute squares of the matrix entries is the same in
any orthonormal basis. That is, strong but appropriately balanced excitation and inhibition
leads to large feedforward weights and small eigenvalues, so that the effective connectivity
becomes almost purely feedforward (Fig. 4C) and involves strong balanced amplification.

The eigenvector picture illuminates a simple biological fact hidden in the biological
connectivity matrix: some activity patterns may excite themselves or inhibit themselves, and
if so their integration and decay times are slowed or sped up, respectively. This fact, which
underlies Hebbian amplification, is embodied in the eigenvalues, and is retained in the Schur
picture: the eigenvalues continue to control the integration and decay times of the Schur basis
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patterns, exactly as for the eigenvector basis patterns. However, there is another biological fact
hidden in the biological connectivity matrix that remains hidden in the eigenvector picture:
small amplitudes of some patterns (difference patterns) can drive large responses in other
patterns (sum patterns). This fact underlies balanced amplification. In the eigenvector picture,
this fact is hidden in the non-orthogonal geometry of the eigenvectors (Supplemental Materials
S3.2). In the Schur picture, this biological fact is made explicit in the feedforward connection
from one pattern to another.

The linear rate model demonstrates the basic principles of balanced amplification. To
demonstrate that these principles apply to biological networks, in which neurons are nonlinear,
spiking, and sparsely connected, we study a more detailed biophysical model capturing basic
features of V1 connectivity. The model is highly simplified and is not meant to serve as a
complete and accurate model of V1. It consists of 40,000 excitatory and 10,000 inhibitory
integrate-and-fire neurons connected by fast conductance-based synapses. The excitatory and
inhibitory neurons are each arranged on square grids spanning the orientation map used
previously (Fig. 3A). The neurons are connected randomly and sparsely, with probabilities of
connection proportional to the weight matrix studied in the linear model, that is, dependent on
distance and difference in preferred orientation. Each neuron receives feedforward input spike
trains, modeled as Poisson processes with time-varying rates, to generate sustained
spontaneous activity. The input rates vary randomly with spatial and temporal correlations,
determined by filtering spatiotemporally white noise with a spatial and a temporal kernel, that
reflect basic features of inputs to upper layers. During visually evoked activity each neuron
receives a second input spike train, modeled as a Poisson process whose rate depends on the
difference between the neuron’s preferred orientation and the stimulus orientation. The
network exhibits irregular spiking activity as in other models of sparsely connected spiking
networks with balanced excitation and inhibition [Brunel 2000,Lerchner et al. 2006,van
Vreeswijk and Sompolinsky 1998] (see Supplementary Materials, S4.1 and Figure S1).

By averaging the response of the network to a stimulus of a given orientation, we produce an
evoked orientation map. Frames of spontaneous activity frequently resemble these evoked
maps (Figs. 5A,B). As in Kenet et al. [2003], we quantify the similarity between two patterns
by the correlation coefficient between them. We chose our parameters so that frames of
spontaneous activity show a distribution of correlation coefficients with a given evoked map
that is 2 times as wide as that for a control map (Fig. 5C), the same as the amplification observed
by Kenet et al. [2003] (Supplemental Materials, S2.2). We examine the dynamics of the
amplified pattern by examining the autocorrelation of its time series of correlation coefficients.
This results from two factors. The inputs to cortex, created by filtering white noise with a
temporal kernel, have a correlation time of about 70 ms. This input is amplified by balanced
amplification, which filters with a pulse response whose time course varies between te−t/Τ and
e−t/Τ (Fig. 3C, Supplemental Material S1.1.2). Here Τ is Τm, the neuronal membrane time
constant, which has an average value of 20ms during spontaneous activity (the synaptic time
constants could also play a role, but are very fast in our model, ≈ 3ms). The time series
autocorrelation is well described by the autocorrelation of this doubly-filtered white noise, with
the larger input correlation time dominating the total timescale (Figs. 5D,E). If all recurrent
weights are scaled up by a common factor, amplification increases but the time scale of the
amplified pattern only decreases, due to the decreased membrane time constant caused by the
increased conductance (Fig. 6). That is, the recurrent connectivity amplifies input activity
patterns resembling evoked maps while causing no appreciable slowing of their dynamics, as
predicted by balanced amplification. We show that this conclusion holds across a variety of
network parameters, and contrast this with Hebbian amplification, in Supplemental Materials
S4.3 and Figure S2.
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To further demonstrate that balanced amplification underlies selective amplification in the
spiking model, we examine additional predictions. The difference patterns in Fig. 3B should
each produce a time course of the corresponding sum pattern like that shown in Fig. 3C. In the
spiking model, we cannot use a pure difference pattern as an initial condition because it leads
to synchronized spiking responses. Instead, we probe the noisy spontaneous activity for the
same effect. If difference modes are being amplified and converted into sum modes, patterns
of activity resembling sum modes will tend to be strongest shortly after patterns of activity
resembling their corresponding difference mode. We find that this is the case, with very similar
behavior in the spiking model and in a rectified linear model that closely resembles the linear
cases we analyzed. We project the network activity onto the sum and difference patterns of Fig
3B in one millisecond intervals and calculate the cross-covariance between each pair of
projection timeseries. For both the spiking model (Fig. 7A) and the rectified linear model (Fig.
7B): (1) the peak of the cross-covariance is shifted to the right of zero, reflecting conversion
of difference modes to sum modes; (2) the peak covariances are larger for patterns with larger
amplification; and (3) the effect is specific: little cross-covariance is seen between mismatched
sum and difference patterns (“control”), which have no feedforward connection.

The balanced amplification model also predicts that the difference modes should not be
differentially amplified and so should have roughly equal amplitudes in the spontaneous
activity (all the leading modes, sum and difference, have roughly equal power in the input).
The sum modes, being differentially amplified, should have larger amplitudes that decrease
with mode number (i.e. with decreasing feedforward weight). Examining the standard
deviation of the amplitudes of patterns 2-8 (the first pattern is filtered out in the model, as in
the experiments), this prediction is well obeyed. In the spiking model, the difference modes
show little variation (mean 0.076 with root mean square (rms) difference from the mean 0.010)
and no tendency to grow larger or smaller with mode number (r = 0.28, p = 0.54). The sum
modes monotonically decrease with mode number (though modes 2 and 3 are very similar),
from 0.2 for mode 2 to 0.075 for mode 8. The linear rectified model behaves similarly.

3 Discussion
In cortical networks, strong recurrent excitation coexists with strong feedback inhibition
[Chagnac-Amitai and Connors 1989, Haider et al. 2006, Higley and Contreras 2006, Ozeki et
al. 2009, Shu et al. 2003]. This robustly produces an effective feedforward connectivity
between patterns of activity, in which small, spatially patterned imbalances between excitatory
and inhibitory firing rates (“difference patterns”) drive, and thus amplify, large, spatially
patterned balanced responses of excitation and inhibition (“sum patterns”). This balanced
amplification should be a ubiquitous feature of cortical networks, or of any network in which
strong recurrent excitation and strong feedback inhibition coexist, contributing both to
spontaneous activity and to functional responses and their fluctuations. If inhibition balances
or dominates excitation, then balanced amplification can occur without slowing of dynamics.
If some patterns excite themselves and thus show Hebbian slowing, then Hebbian amplification
and balanced amplification will coexist (see Fig. 4 and Supplemental Materials, S3.4).

Given stochastic input, we have found that balanced amplification in a network in which
excitatory and inhibitory projections have similar orientation tuning produces orientation-map-
like patterns in spontaneous activity, as observed in cat V1 upper layers [Kenet et al. 2003].
This is consistent with results from intracellular recordings that cells in cat V1 upper layers
receive excitatory and inhibitory input with similar tuning [Anderson et al. 2000a, Marino et
al. 2005, Martinez et al. 2002]. Previous work [Goldberg et al. 2004] found that these patterns
could be explained by Hebbian slowing, but this relied on “Mexican hat” connectivity in which
inhibition is more broadly tuned for orientation than excitation to create positive eigenvalues
for orientation-map-like patterns.
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The ≈ 80ms timescale of experimentally observed evoked-map patterns in spontaneous activity
(Kenet et al. 2003, and M. Tsodyks, private communication) and their amplification of about
2X relative to control patterns (Supplemental Materials, S2.2) place significant constraints on
the degree of Hebbian slowing. As we discuss in detail in Supplemental Materials, S4.4, given
the correlations of the inputs [DeAngelis et al. 1993, Wolfe and Palmer 1998], a purely
Hebbian-assembly model of this requires an intrinsic (cellular/synaptic) decay time, in the
absence of recurrent connections, of no more than about 20 ms. This is plausible, but so too is
a considerably longer intrinsic time scale. The intrinsic decay time reflects both the decay of
synaptic conductances and the membrane time constant [Ermentrout 1998, Shriki et al.
2003]. Conductances in excitatory cortical synapses include a significant component driven
by N-methyl-D-aspartate (NMDA) receptors [Feldmeyer et al. 1999, 2002, Fleidervish et al.
1998], which at physiological temperatures have decay time constant > 100 ms [Monyer et al.
1994]. If these contribute significantly to the intrinsic decay time of cortical activity, the
Hebbian-assembly scenario would produce too long a time scale.

With present data, we cannot rule out a contribution of Hebbian slowing to the observations
of Kenet et al. [2003]. However, we have shown that balanced amplification will play a major
role in the dynamics of circuits with strong but balanced excitation and inhibition, as is believed
to be the case for cerebral cortex [Chagnac-Amitai and Connors 1989, Haider et al. 2006,
Higley and Contreras 2006, Ozeki et al. 2009, Shu et al. 2003]. Thus, we can say that balanced
amplification is almost surely a significant contributor, and may be the sole contributor, to the
observations of Kenet et al. [2003]. Comparison of the dynamics of control patterns and
amplified patterns in the spontaneous data would reveal the extent, if any, to which
amplification is accompanied by slowing.

In sum, balanced amplification represents a mechanism by which arbitrarily strong recurrent
connectivity can shape activity in a network with balanced, similarly tuned excitation and
inhibition, while maintaining the fast dynamics normally associated with feed-forward
networks.

Implications for Experiments
The experiments of Kenet et al. [2003] were conducted in anesthetized animals. The connection
between spontaneous activity and columnar structures such as evoked orientation maps is less
clear in awake animals (D. B. Omer, L. Rom, U. Ultchin, A. Grinvald. Program No. 769.9,
2008 Neuroscience Meeting Planner. Washington, DC: Society for Neuroscience, 2008.
Online.). Awake cortex may also show a significant difference in the time scale of network
activity relative to anesthetized cortex: in awake V1 (Fiser et al. 2004 and J. Zhao, G. Szirtes,
M. Eisele, J. Fiser, C. Chiu, M. Weliky, and K.D. Miller, unpublished observations) and in
awake monkey LIP [Ganguli et al. 2008], one mode involving common activity among neurons
across some distance has a decay time of hundreds of milliseconds, while all other modes have
considerably faster decay times. These differences suggest differences in the effective
connectivity of awake and anesthetized states. For example, a decrease in the overall level of
inhibition in the awake state could cause one common-activity mode to show Hebbian slowing.
More subtle changes in effective connectivity might disrupt the amplification of evoked-map-
like activity or its spatial or temporal coherence.

From the patterns with largest variance in spontaneous activity in a given state, predictions of
connectivity that would amplify those patterns and of further tests for such connectivity can
be made. Comparing this predicted connectivity across states may suggest key loci for state-
dependent modulations of circuitry [Fontanini and Katz 2008]. Similarly, experiments could
characterize the fluctuations of activity around visually evoked responses in both states.
Individual neurons in upper layers have variable responses to a drifting grating [reviewed in
Kara et al. 2000], which might be part of larger patterns like the patterned fluctuations in
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spontaneous activity [Fontanini and Katz 2008]. If there is similar effective connectivity in
spontaneous and evoked activity, one would expect in anesthetized animals to see patterns
resembling evoked maps of all orientations in the fluctuations about the response to a particular
orientation (although nonlinearities, e.g. synaptic depression/facilitation, might suppress or
enhance the evoked map relative to others).

It should soon be possible to directly test for the presence of balanced amplification in cortical
networks by optically exciting or inhibiting identified excitatory or inhibitory neurons over an
extended region of the upper layers of cortex [e.g. Zhang et al. 2007]. Suppose the excitatory
network by itself is unstable and is stabilized by feedback inhibition, as appears to be the case
for V1 during visual stimulation [Ozeki et al. 2009]. Then balanced amplification causes a brief
stimulation of excitatory cells to yield a positive pulse of transient response among both
excitatory and inhibitory neurons, as in Fig. 2B. Hebbian amplification causes a slowed decay
of the response, as in Fig. 2A. Coexistence of both mechanisms would yield both a positive
pulse and a slowed decay. A circuit transient might occur over a time difficult to separate from
the time course of closure of the light-activated channels. One could instead examine the
response to sustained activation of inhibitory cells, which paradoxically leads to a steady-state
decrease of inhibitory cell firing if the excitatory subnetwork is unstable [Ozeki et al. 2009,
Tsodyks et al. 1997]. This effect reflects the same dynamics that underly balanced amplification
(Supplemental Text S1.1.3).

The intrinsic decay time of cortical responses in the absence of recurrent connections might
be measurable, allowing determination of the slowing induced by the recurrent circuitry. In
V1 upper layers, this might be accomplished by intracellularly measuring voltage rise and
decay times to the onset and offset of visual stimuli under normal conditions and after optically-
induced inhibition of excitatory cells in those layers. This would leave feedforward excitation
and inhibition intact so that, after compensating for conductance-induced changes in membrane
time constant, the differences in response times would reflect the infiuence of the local recurrent
network.

Other Models
Previous models have examined dynamical effects of the division of excitation and inhibition
into distinct neuronal classes [Ermentrout 1998, Kriener et al. 2008, Li and Dayan 1999, Pinto
et al. 2003, Wilson and Cowan 1972, 1973]. Wilson and Cowan [1973] observed “active
transients”, in which a sufficiently large initial condition was amplified before it decayed, in
some parameter regimes in simulations of a nonlinear rate model, and argued that this may be
the regime of sensory cortex. Pinto et al. [2003] modeled somatosensory (S1) cortex as a similar
“excitable system”, in which a threshold level of rapidly increased input engages excitatory
recurrence that raises excitatory firing rates before slower inhibition catches up and stabilizes
the system. There are likely to be interesting ties between these results and the dynamics
exposed here. Kriener et al. [2008] recently showed that random connnectivity matrices with
separate excitatory and inhibitory neurons produce much more variance than random matrices
without such separation. This effect can be understood from non-normal dynamics: the
separation yields large effective feedforward weights that greatly increase the variance of the
response to ongoing noisy input, as in the amplification of evoked-map-like patterns.

Li and Dayan [1999] suggested a different mechanism of selective amplification that also
depends on the division into E and I cells. They studied a rate model with a threshold
nonlinearity. When a fixed point is unstable, which can be induced by a slow inhibitory time
constant, the network can oscillate about the fixed point. This oscillation may have large
amplitude, so that at its peak a pattern like the fixed point is strongly amplified. This differs
from the present work both in mechanism and in biological implications. Their mechanism
would yield a periodic rather than a steady response to a steady input, and for spontaneous
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activity would predict a periodic alternation in the autocorrelation function of the time series
of correlation coefficients that is not seen in the data.

The role of excitatory and inhibitory neurons in generating balanced amplification is specific
to neural systems, but similar dynamical effects can arise through combinations of excitatory
and inhibitory feedback loops [Brandman and Meyer 2008]. More generally, the ideas of
feedforward connectivity between patterns arising from non-normal connection matrices may
be applicable to any biological networks of interacting elements, such as signaling pathways
or genetic regulatory networks. Non-normal dynamics have been previously applied to biology
only in studies of transient responses in ecological networks [Chen and Cohen 2001, Neubert
and Caswell 1997, Neubert et al. 2004, Townley et al. 2007].

In conclusion, the well-known division of neurons into separate excitatory and inhibitory cell
classes renders biological connection matrices non-normal and opens new dynamical
possibilities. When excitation and inhibition are both strong but balanced, as is thought to be
the case in cerebral cortex, balanced amplification arises: small patterned fluctuations of the
difference between excitation and inhibition drive large patterned fluctuations of the sum. The
degree of drive between a particular difference and sum pair depends on overall characteristics
of the excitatory and inhibitory connectivity, allowing selective amplification of specific
activity patterns, both in responses to driven input and in spontaneous activity, without slowing
of responses. This previously unappreciated mechanism should play a major and ubiquitous
role in determining activity patterns in the cerebral cortex, and related dynamical mechanisms
are likely to play a role at all levels of biological structure.

4 Experimental Procedures
4.1 Linear Model

The linear model consists of overlapping 32×32 grids of excitatory and inhibitory neurons,
each assigned an orientation according to a superposed orientation map consisting of a 4×4
grid of pinwheels and taken to be 4mm × 4mm. Each pinwheel is a square and each grid point
inside a given pinwheel is assigned an orientation according to the angle of that point relative
to the center of the square, so that orientations vary over 180° as angle varies over 360°.
Individual pinwheels are then arranged in a 4×4 grid such that the orientations along their
borders are contiguous. This is accomplished by making neighboring pinwheel squares mirror
images, flipped across the border between them.

The strength of a synaptic connection from neuron j of type X (E or I) to neuron i is determined
by the product of Gaussian functions of the distance (rij) and the difference in preferred

orientation (θij) between them: , with parameters ,
, and . The input synaptic strengths to each neuron are normalized

(scaled) to make the sum of excitatory and of inhibitory inputs each equal 20.

To generate evoked orientation maps we simulate response of a rectified version of the linear
equation to an orientation-tuned feed-forward input. The rectified equation is Eq. 1 with Wr
replaced by W[r]+ (this is the appropriate equation if r is regarded as a voltage rather than a
firing rate), where [v]+ is the vector v with all negative elements set to zero. The feedforward
input to each neuron, excitatory or inhibitory, is a Gaussian function of the difference θ between
the preferred orientation of the neuron and the orientation of the stimulus: Revoked =
4e−θ2/(20°)2. The evoked orientation map is the resulting steady-state pattern of activity.
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4.2 Spiking Model
The network consists of forty thousand excitatory and ten thousand inhibitory integrate-and-
fire neurons. The voltage of each neuron is described by the equation:

(4)

Here C is the capacitance, and gleak, ge and gi are the leak, excitatory, and inhibitory
conductances with corresponding reversal potentials Eleak, Ee and Ei. When the voltage reaches
spike threshold, Vthresh, it is reset to Vreset and held there for trefract. Parameters, except for C,
are from Murphy and Miller [2003] and are the same for excitatory and inhibitory neurons:
gleak = 10nS, C = 400pF, Eleak = −70mV, Ee = 0mV, Ei = −70mV, Vthresh = −54mV, Vreset =
−60mV and trefract = 1:75ms. The capacitance is set such that, taking into account mean synaptic
conductances associated with ongoing spontaneous activity, the membrane time constant is
about 20 ms. At rest, with no network activity, the membrane time constant is 40 ms.

Conductances
The time course of synaptic conductances is modeled as a difference of exponentials:

(5)

Here Δtj is defined as (t − tj), where tj is the time of the jth pre-synaptic action potential that
has tj < t. For simplicity we include only fast synaptic conductances, AMPA and GABAA,
with identical timecourses for excitation and inhibition: Τrise = 1ms, Τfall = 3ms. The equality
and speed of timecourses are not necessary for our results (see Supplemental Materials, S4.5).
What is necessary is that the inhibition not be so fast or strong that it quenches the response to
the feedforward connection before it can begin to rise, nor so slow or weak that it fails to
stabilize the network if the excitatory subnetwork alone is unstable. The network operates in
the asynchronous irregular regime in which neurons fire irregularly and without global
oscillations in overall rate (see Supplemental Materials, S4.1 and Figure S1). To operate in this
regime, time constants must be chosen appropriately [Brunel 2000, Shriki et al. 2003, Wang
1999], but this is not a tight constraint.

The sizes of the synaptic conductances evoked by a pre-synaptic action potential, ḡ, are defined

in terms of the integrated conductance ḡΤint where . Values
used are ḡiΤint = 0.02875nS ·ms and ḡeΤint = 0.001625nS · ms. These are chosen to produce a
certain strength of orientation-map like patterns in the spontaneous activity, while maintaining
average conductance during ongoing spontaneous activity of roughly 2 times the resting leak
conductance [Destexhe and Paré 1999]. Increasing the overall size of the conductances or the
ratio of excitation to inhibition increases the strength of the patterns.

Synaptic connectivity
Neurons are in an evenly spaced grid, 200×200 for excitatory neurons and 100×100 for
inhibitory neurons (inhibitory cell spacing is twice excitatory cell spacing). As in the linear
model, each neuron is assigned an orientation from a superposed orientation map consisting
of a 4×4 grid of pinwheels.
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The synaptic connectivity is sparse and random, with the probability  of a connection from

neuron j of type X (E or I) to neuron i equal to , where  is the function used in the
linear model.  is chosen to separately normalize excitatory and inhibitory connections to
each neuron so that the expected number (average over random instantiations) of connections
received by each neuron is Ne = 100 excitatory and Ni = 25 inhibitory connections.

Because the connections are random, some neurons will receive more or fewer connections.
To obtain similar firing rates for all neurons in the network we scale up or down the excitatory
and inhibitory synaptic conductances received by each neuron so that its ratio of excitatory to

inhibitory conductances is . To achieve this, all the excitatory conductances onto a

given neuron by scaled by fe, and inhibitory conductances fi, with ,  and x =
Neni/(Nine). Here ne and ni are the actual number of excitatory and inhibitory synapses received

by the given neuron. This sets  for the cell, while also setting (1.0 − fe) = (fi − 1.0).
The latter condition imitates a homeostatic synaptic plasticity rule in which excitation and
inhibition are increased or decreased proportionally to maintain a certain average firing rate.

Spontaneous and Evoked Input
During spontaneous activity each neuron receives background feed-forward input consisting
of an excitatory Poisson spike train, with rate randomly determined by convolving white noise
with a spatial and temporal filter. The spatial filter is proportional to e−x2/(200μm)2, the temporal
filter to t2e−γt with γ = 40Hz. This kernel is slower than the average temporal kernel of LGN
cells [Wolfe and Palmer 1998], but is closer in speed to the temporal kernels of simple cells in
layer 4 [DeAngelis et al. 1993] that provide the main input to layers 2/3. For simplicity, we do
not replicate the biphasic nature of real LGN or simple-cell temporal kernels, but simply try
to capture the overall time scale.

We set the standard deviation of the unfiltered, zero-mean input noise to 1250 Hz and normalize
the integrals of the squares of the spatial and temporal filters to 1 to produce filtered noise with
the same standard deviation. This rate noise is added to a mean background rate of 10250 Hz.
Each input event evokes synaptic conductance 0.00025 nS · ms. Steady input at the mean
background rate is sufficient to just barely make the neurons fire (less than 1Hz), while steady
input at the mean plus three standard deviations yields a firing rate of about 24Hz.

Visually evoked orientation maps are generated by averaging frames of network activity (see
Comparison to Experiment below) for three seconds in response to a visually evoked input
added to the background input. The evoked input to a neuron is a Poisson spike train with a
rate Revoked = 10000e

−(Δθ)2/(20°)2 where Δθ is the difference between the neuron’s preferred
orientation and the stimulus orientation. Synaptic conductance is again 0.00025 nS · ms.

Comparison to Experiment
To compare spontaneous and visually evoked activity we compute the correlation coefficient
between frames of spontaneous activity and the visually evoked orientation map every
millisecond. A frame is constructed by taking the shadow voltages of all the excitatory neurons,
subtracting the mean across these neurons, and spatially filtering with a Gaussian filter with
p a standard deviation of . The shadow voltage is the membrane potential of the
neuron integrated continuously in time without spike threshold, i.e. it is not reset when it
reaches spike threshold. This is meant to approximate the voltage in the portions of the cell
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membrane not generating action potentials, which appear to dominate the voltage-sensitive-
dye signal [Berger et al. 2007]. The filter is used because we are comparing to experimental
data that does not resolve individual neurons. The filter width is chosen to conservatively
underestimate the point spread function of the experimental images [Polimeni et al. 2005]. We
also compute the correlation coefficient between frames of spontaneous activity and a control
pattern. This control pattern is constructed by starting with Fourier amplitudes corresponding
to the average power spectrum of the evoked orientation maps, assigning random phases, and
transforming back to real space. We then subtract off any components in the space spanned by
the evoked maps so that the correlation with each evoked map is zero. The width of the
distribution of correlation coefficient depends strongly on the width of the Gaussian filter used,
and cannot be directly compared to experiment because both the filtering and the noise in the
experimental system are unknown. The ratio of the widths of the real and control distributions
shows a gentler dependence on the filter width(Fig. S3) and is likely to be a better number to
compare to experiment (further discussed in Supplement S2.2).

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Balanced amplification in the two population case
A) Diagram of a balanced circuit with an excitatory and an inhibitory population. Excitatory
connections are green and inhibitory connections are red. B) Plot of the sum (blue line) and
difference (black line) between activity in the excitatory (rE, green line) and inhibitory (rI, red
line) populations in response to a pulse of input to the excitatory population at time 0 that sets
rE (0) = 1 (rI (0) = 0). Diagrams above the plot represent the color-coded levels of activity in
the excitatory and inhibitory populations at the time points indicated by the dashed lines. C)
The circuit depicted in A can be thought of as equivalent to a feedforward network, connecting
difference activity pattern to sum activity pattern with strength wFF = w(1+kI). In addition, the

sum pattern inhibits itself with strength w+ = w(kI − 1). Parameters: kI = 1.1;  (for reasons
explained in Fig. 2 legend).
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Figure 2. Amplification of response to a pulse input and a sustained input
The firing rate response rE of the excitatory population to an external input IE to the excitatory
population, in two models. Left column: The excitatory population makes a recurrent
connection of strength w to itself, leading to Hebbian amplification. Right column: Balanced
network as in Fig. 1, kI = 1.1. In all panels, blue lines show case without recurrent connections
(w = 0). A, B) response to a pulse of input at time 0 that sets rE (0) = 1. Time course of input
is shown below plots. Red curve shows response with weights set so that integral of response

curve is 4 times greater than integral of blue curve (A, w = 0.75; B, ). C, D) Response to
a sustained input IE = 1 (time course of input shown7). below plots). Blue dashed line shows
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w = 0 case scaled up to have same amplitude as the recurrently connected case. E, F) Time
course of response to a sustained input, IE = 1, in recurrent networks with weights set to
ultimately reach a maximum or steady-state amplitude of 1 (blue), 3 (green), 4 (red), or 10
(cyan). All curves are normalized so that 100% is the steady-state amplitude. Blue curves have
w = 0. Other weights are: E, w = 2/3 (green), w = 3/4 (red), w = 0:9 (cyan); F, w = 2.5 (green),

 (red), w = 90 (cyan).
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Figure 3. Difference modes (p−) and sum modes (p+) in a spatially extended network
A) Orientation map for both linear and spiking models. Color indicates preferred orientation
in degrees. B) The five pairs of difference modes (p−, left) and sum modes (p+, right) of the
connectivity matrix with the largest feedforward weights wFF (listed at right), by which the
difference activity pattern drives the sum pattern (as indicated by arrows). Each pair of squares
represents the 32 × 32 sets of excitatory firing rates (E, left square of each pair) and inhibitory
firing rates (I, right square) in the given mode. In the difference modes (left), inhibitory rates
are opposite to excitatory, while in the sum modes (right), inhibitory and excitatory rates are
identical. Also listed on the right are the correlation coefficient (cc) of each sum mode with
the evoked orientation map with which it is most correlated. Pairs of difference and sum modes
are labeled p1 to p5. The second and third patterns are strongly correlated with orientation
maps. C) Plots of the time course of the magnitude of the activity vector, |r(t)|, in response to
an initial perturbation of unit length consisting of one of the difference modes from B (indicated
by line color).
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Figure 4. Alternative pictures of the activity dynamics in neural circuits
A The eigenvector picture: when the eigenvectors of the connectivity matrix are used as basis
patterns, each basis pattern evolves independently, exciting or inhibiting itself with a weight
equal to its eigenvalue. The eigenvectors of neural connection matrices are not orthogonal, and
as a result this basis obscures key elements of the dynamics. B The orthogonal Schur basis.
Each activity pattern excites or inhibits itself with weight equal to one of the eigenvalues. In
addition, there is a strictly feedforward pattern of connectivity between the patterns, which
underlies balanced amplification. There can be an arbitrary feedforward tree of connections
between the patterns, but in networks with strong excitation and inhibition, the strongest
feedforward links should be from difference patterns to sum patterns, as shown. There may be
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convergence and divergence in the connections from difference to sum modes (not shown,
e.g., see Supplemental Materials, S1.2). At least one of the patterns will also be an eigenvector,
as shown. C If strong inhibition appropriately balances strong excitation, so that patterns cannot
strongly excite or inhibit themselves (weak self-connections), the Schur basis picture becomes
essentially a set of activity patterns with a strictly feedforward set of connections between
them.
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Figure 5. Spontaneous patterns of activity in a spiking model
A) The 0° evoked map. B) Example of a spontaneous frame that is highly correlated with the
0° evoked map (correlation coefficient = 0.53). C) Distribution of correlation coefficient for
the 0° evoked orientation map (solid line) and the control map (dashed line). The standard
deviations of the two distributions are 0.19 and 0.09 respectively. The figure represents 40000
spontaneous frames corresponding to 40 seconds of activity. D) The solid black line is the
autocorrelation function (ACF) of the time series of the correlation coefficient (CC) for the 0°
evoked map and the spontaneous activity. It decays to 1/e of its maximum value in 85ms. The
dashed black line is the autocorrelation function of the input temporal kernel. It decays to 1/e
of its maximum value in 73ms. The widening of the ACF of the response relative to the ACF
of the 3uctuating input is controlled by the same time scales that control the rise time for a
steady-state input (Supplemental Materials S1.1.2) and, for a balanced network, is expected to
be between the ACF of the convolution of the input temporal kernel with te−t/Τm (dashed red
lines) and with e−t/Τm (dashed blue lines). E) A four-second-long example section of the full
timeseries of correlation coefficient used to compute the autocorrelation function in panel D.
All results are similar using an evoked map of any orientation.
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Figure 6. Increasing Strength of Balanced Amplification Does Not Slow Dynamics in the Spiking
Model
All recurrent synaptic strengths (conductances) in the spiking model are scaled as shown, where
100% is the model of Figs. 5 and 7. The amplification factor increases with recurrent strength
(this is the ratio of the standard deviation of the distribution of correlation coefficient of the 0°
evoked orientation map to that of the control map; these are shown separately in Supplemental
Materials Fig. S2B). The correlation time of the evoked map’s activity ΤACF monotonically
decreases with recurrent strength (dashed line) (ΤACF is the time for the autocorrelation function
(ACF) of the time series of evoked map correlation coefficient to fall to 1/e of its maximum).
This is because the membrane time constant Τm is decreasing due to the increased conductance.
The difference ΤACF − Τm does not change with recurrent strength (dashed-dot line), while
amplification increases 3-fold.
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Figure 7. Cross-covariance of difference and sum modes in spiking and linear rectified models
Cross-covariance functions between sum modes and difference modes in spiking (A) and linear
rectified B) versions of model in Fig. 3 (spiking model as in Fig. 5). The four colored curves
plotted in each figure labeled r2 through r5 correspond to the 2nd through fifth pairs of modes
illustrated in Fig. 3. The time series of projections of the spontaneous activity pattern onto each
sum mode and each difference mode were determined, and then the cross-covariance was taken
between the time series of a given difference mode and that of the corresponding sum mode.
Positive time lags correspond to the difference mode amplitude preceding the sum mode’s.
The dashed lines labeled control show all combinations of difference modes from one pair and
sum modes from a different pair.
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