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Abstract

Inconsistent differences in the corpus callosum (CC) structure between dyslexic readers (DRs) and
typical readers (TRs) have been reported. We examine differences in CC splenium microstructure
and the association of splenium microstructure with reading related skills. Nine DRs and eighteen
TRs completed a reading skills battery and diffusion tensor imaging (DT1). DRs had higher splenium
fractional anisotropy (FA) and axial diffusivity (LA) as compared to TRs. Retrieval of orthographic
information from the language lexicon was negatively associated with FA and LA within both reading
groups. Phonological awareness was positively associated with splenium FA and LA in TDs but not
DRs. This study suggests two white matter pathways that may be differentially associated with
reading skills in the CC splenium.
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Introduction

Developmental dyslexia, the most common learning disorder in America, is defined as poor
reading performance despite adequate intelligence, motivation and schooling [1]. Dyslexic
readers (DRs) who are considered “recovered,” and are admitted to college, manifest sub-
optimal performance in reading and reading-related tasks, proving that that early detection and
treatment do not guarantee abiding recovery [2]. To identify novel biological interventions and
paths to prevention, the underlying neural mechanisms of dyslexia need to be understood.

The neurological basis of dyslexia remains elusive. Classic, decades old, neuropathological
evidence implicated cortical dysplasias as key [3]. However, a preponderance of recent studies
pointto abnormalities in brain connectivity [4-12]. However, the largest interhemispheric white
matter tract, the corpus callosum (CC), has only been examined in terms of macrostructure,
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not microstructure. Interhemispheric connectivity is especially important in dyslexia, since
functional imaging studies have suggested that DRs recruit right hemisphere areas to
compensate for poor left hemisphere function during reading [13,14]. Macrostructure studies
of the CC in dyslexia have inconsistent findings, but several studies point to a difference in
posterior CC macrostructure, particularly the splenium [15,16]. Such findings are consistent
with the fact that the splenium contains interhemispheric crossing for the white matter tracts
connecting the temporal, parietal and occipital lobes, areas that demonstrate abnormal
lateralization of activity in dyslexia [13,14].

Whole brain voxel-based methods have not found differences in the CC microstructure related
to reading skill [8-11]. This is not surprising since such methods provide highly variable
measurements in the CC area [17]. Using fiber tracking analysis, Dougherty et al. [17] found
that the microstructure of temporal lobe interhemispheric pathways, measures 1cm on either
side of midline, projecting through the CC splenium in children without dyslexia was related
to the Phonological Awareness Composite (PA) of the Comprehensive Test of Phonological
Processing (CTOPP).

In the current study we specifically measure CC splenium microstructure using our recently
described and validated diffusion tensor imaging (DTI)-based segmentation algorithm [18,
19] in young adult DRs and typical readers (TRs). Given the striking alteration in hemispheric
cortical lateralization during reading in DRs into adulthood [13,14] and that CC microstructure
is a sensitive indicator of hemispheric language lateralization [20], CC microstructure might
be vital to understanding dyslexia. Since the CC continues to develop through adolescences
[21] and into adulthood [22], developmental changes in DRs that extend into adulthood may
be accompanied by neuroplastic changes in CC structure. Since abnormal lateralization of
temporoparietal and occipital function may develop along two different trajectories, we predict
that skills linked to each cortical area, specifically phonological awareness and orthographic
skills, respectively, will demonstrate different relationships to CC microstructure.

Nine young adults DRs were matched on a 2:1 ratio to 18 TRs based on age and gender.
Participants were given the Woodcock-Johnson 11 Letter-Word Identification (LWID), the
CTOPP PA, Alternative Phonological Awareness (PAA), Rapid Naming (RN) and Alternative
Rapid Naming (RNA) composites, the Tests of Variables of Attention (TOVA) and the
Comprehensive Test of Non-Verbal Intelligence (CTONI; Table 1). DRs reading skills varied
from normal to subnormal values and varied throughout the normal range for TRs. This
prevented significant linear correlations from arising simply due to large interclass differences.

Participants were recruited through flyers and contacts in the Houston area as well as from a
longitudinal child development study. DRs reported a history of reading disabilities during
grade school and demonstrated specific weakness in reading related skills. Reading groups
demonstrated equivalent intelligence and attention scores (Table 1). Phone interviews
eliminated non-native English speakers, individuals with a abnormal neurologic, psychiatric
or birth history, implanted ferromagnetic metal or device, claustrophobia or pregnancy. Right
handedness was confirmed using the Edinburgh Handedness Inventory [23]. After description
of the study to the participant, written informed consent was obtained in accordance with our
institutional review board regulations for the protection of human subjects.
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We utilized a high signal-to-noise ratio whole-brain DTI protocol at 3.0 T [18]. The CC was
segmented on the midsagittal slice using the fractional anisotropy (FA) and axial diffusivity

(LA). The feature space was obtained using region-of-interest (ROI) measurements placed on
several locations on the midsagittal CC [18,19,22,24,25] (See Figure 1).

Statistical Analysis

Results

Analysis-of-variance (ANOVA) compared microstructure values between reading group (RG).
Linear regression was used to investigate the relationships between microstructure and reading
skills. Linear regression was used to determine whether reading skills were related to
microstructure and whether this relationship was different by RG. The initial linear regression
model in the form ‘Reading Skill = Constant + Slope * Microstructure + RG*Constant + RG*
Slope * Microstructure’ was fit to the data. The higher order interactions were hierarchically
evaluated and dropped from the model if not significant and the model was recalculated. All
models with an overall significance of 0.05 are presented below. The significance of each
model coefficient is presented in Table 2.

Splenium FA and LA were significantly higher for DRs as compared to TRs (Figure 2) [FA F
(1,25)=9.34, p=0.005; LA F(1,25)=6.11, p=0.021]. LWID was negatively associated with FA
and LA with these associations similar for both RGs (Figure 3A.1,B.1). PA and RN were
positive associated with FA, and PA, PAA and RNA were positive associated with LA, for
TRs but not DRs (Figure 3A.2-3,B.2-4). The coefficients in the regression analyses indicated
that the average microstructure (FA,LA) values were significantly higher for DRs than TRs
for the PA, RN, PAA and RNA regression models (Table 2).

Discussion

This is the first study to specifically compare splenium microstructure between DRs and TRs.
We found an increase in both FA and LA in the splenium of DRs as compare to TRs, as well
as several relationships between reading skills and splenium microstructure. Studies in the past
have examined the CC macrostructure but have provided inconsistent results. The findings
from the current study could explain the reports of macrostructural differences in the posterior
CC. Since increased FA is positively correlated with CCA [22], and the current study suggests
that DRs, as a group, manifest increased FA, it is very possible that the FA in some groups of
DRs may be high enough to be detectable in macrostructural measurements. In addition, since
CCA and FA are dynamic, changing from childhood through adulthood, group differences in
these indices may be very sensitive to age [21,22,24,25].

Skills associated with retrieval of orthographic information from the language lexicon (LWID)
were negatively associated with indices of splenium white matter organization (Figure 3A.1,B.
1). This decreased organization of splenium interhemispheric white matter tracts may represent
decreased connectivity between the ventral occipital areas through occipital interhemispheric
callosal fibers, and, thus, greater lateralization of orthographic processing. This would be
consistent with the fact that TRs show left lateralized activation of the ventral occipital area,
near the so-called visual word form area, while DRs show bilateral activation of this area,
during reading [13].

White matter organization in the splenium was positively related to skills associated with
phonological awareness (PA, PAA, RN, RNA; Figure 3A.2-3,B.2-4). This finding is consistent
with the positive correlation between CC microstructure and hemispheric language
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lateralization found in previous studies [20]. It should be noted that although the microstructural
indices of white matter organization for the DRs groups are not related to these specific reading
skills in the splenium, these indices were, on average, higher for the DRs groups than the TRs
group. The lack of correlation between phonological awareness skills and splenium
microstructure for DRs could be due to the fact that these microstructure values are at a ceiling,
possibly as part of a compensatory interhemispheric pathway. These data may also suggest
that DRs use alternative pathways for phonologically awareness that are less reliant on
interhemispheric fibers that cross at the splenium.

Conclusion

Overall, this study has demonstrated differences in the splenium microstructure between DRs
and TRs. Two relationships with reading skills and CC microstructure were found. Skills
associated with retrieval of orthographic information from the language lexicon were related
to splenium microstructure with a similar relationship in both reading groups. Skills associated
with phonological awareness were related to splenium microstructure differently in the two
reading groups. While other studies have implicated only one specific white matter pathway
related to reading skills, the current study suggests that two separate interhemispheric white
matter pathways may be associated with different aspects of skills related to reading.
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Figure 1.

Illustration of the DTI-segmented midsagittal corpus callosum regional subdivisions based on
the Witeson 7 segments for a representative subject. (a) midsagittal anatomical MRI View, (b)
FA modulated principal vector (brightest gray = rostral-caudal direction, medium gray =
anterior-posterior, lightest gray = medial-lateral), (c) segmented CC regions.
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Figure 2.

Differences in splenium microstructure between typical readers and dyslexic readers. Larger
(A) fractional anisotropy and (B) axial diffusivity values were found for dyslexic readers as
compared to typical readers.
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Participant Characteristics

Table 1

Typically Developing

Reading Disability

N (Male) 18 (12) 9 (6)

Mean (SE) Mean (SE) t-test
Age (years) 24.3 (1.9) 23.2(0.9) 0.65
Intelligence
CTONI (std) 111.6 (2.8) 104.1 (4.0) 157
Attention
TOVA: Commissions (std) 108.2 (2.6) 108.5 (3.2) 0.07
TOVA: Omissions (std) 101.8 (3.3) 99.5 (3.5) 0.45
TOVA: Reaction Time (std) 111.9 (2.6) 100.9 (6.9) 1.93
TOVA: Reaction Time (ms) 345.3 (10.9) 389.5 (27.5)
Language
Letter-Word Identification (std) 104.7 (1.5) 84.8 (6.3) 2427
Phonological Awareness (std) 112 (1.1) 93.2(5.3) 50077
Rapid Naming (std) 106.0 (4.4) 82.8 (4.2) 3.48""
Alt. Phonological Awareness (std) 109.8 (3.3) 89 (6.4) 339"
Alt. Rapid Naming (std) 103 (3.1) 94.4 (4.8) 1.48

*
p<0.05

Fk

p<0.01

F%k

3
p<0.001

Fokkk

p<0.0001
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Table 2
F-values of Linear Regressions with Significant Effects for the Relationship
Between Microstructure Indices and Language Skills for the CC Splenium
Language Skill Typical Slope Typical*Slope
Fractional Anisotropy
Letter Word Identification 9,45**
Phonological Awareness Composite 6.82" 3.54 573"
Rapid Naming Composite 6.94" 0.66 454"
Axial Diffusivity
Letter Word Identification 10.70**
Phonological Awareness Composite 8.52"" 2.03 7.88"
Alternative Phonological Awareness Composite 8.33** 0.40 6.01*
Alternate Rapid Naming Composite 5.68" 1.00 444"
<0.05
p<0.01
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