
ARTICLE

A Unified Approach to Genotype Imputation
and Haplotype-Phase Inference for Large
Data Sets of Trios and Unrelated Individuals

Brian L. Browning1,* and Sharon R. Browning1

We present methods for imputing data for ungenotyped markers and for inferring haplotype phase in large data sets of unrelated indi-

viduals and parent-offspring trios. Our methods make use of known haplotype phase when it is available, and our methods are compu-

tationally efficient so that the full information in large reference panels with thousands of individuals is utilized. We demonstrate that

substantial gains in imputation accuracy accrue with increasingly large reference panel sizes, particularly when imputing low-frequency

variants, and that unphased reference panels can provide highly accurate genotype imputation. We place our methodology in a unified

framework that enables the simultaneous use of unphased and phased data from trios and unrelated individuals in a single analysis. For

unrelated individuals, our imputation methods produce well-calibrated posterior genotype probabilities and highly accurate allele-

frequency estimates. For trios, our haplotype-inference method is four orders of magnitude faster than the gold-standard PHASE program

and has excellent accuracy. Our methods enable genotype imputation to be performed with unphased trio or unrelated reference panels,

thus accounting for haplotype-phase uncertainty in the reference panel. We present a useful measure of imputation accuracy, allelic R2,

and show that this measure can be estimated accurately from posterior genotype probabilities. Our methods are implemented in version

3.0 of the BEAGLE software package.
Introduction

Genotype imputation and haplotype-phase inference are

important approaches for improving the power of genome-

wide association (GWA) studies.1 Imputation has resulted

in the detection of additional associations, particularly

when combining data from multiple studies genotyped

on different platforms.2–5 Haplotype-based association

testing with phased haplotype data can also detect addi-

tional associations.6 Imputation can be used for identifying

association between known, ungenotyped genetic variants

and a trait. In contrast, haplotype-based association testing

is not limited to testing known genetic variants, but the

interpretation of haplotype-based association analysis is

typically more difficult.

Imputation can be used for inferring genotypes at

markers that have not been genotyped in one’s sample.

This is possible by using patterns of haplotypic variation

seen in another data set (the reference panel) that includes

the larger set of markers. There are a variety of existing

methods for imputation or testing of ungenotyped

markers.7–12 Until now, the reference panels used for impu-

tation have been small, which has limited imputation accu-

racy. However, much larger reference panels are now, or will

soon be, available for many populations because of large-

scale sequencing and genotyping projects (e.g., HapMap

phase 3 and the 1000 genomes project; see Web Resources).

We show that larger reference panels substantially increase

imputation accuracy, particularly for low-frequency vari-

ants. Our previous work has shown that the performance

of the haplotype-frequency models that support imputa-

tion can depend on reference panel size.13 Methods that
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perform exceptionally well for small data sets may have

suboptimal performance for large data sets, particularly

when computational constraints limit the complexity of

the haplotype-frequency model. Existing imputation

methods have been tested and used with small reference

panels of 60 phased individuals. New imputation methods

are needed that can accommodate large reference panels

and combinations of unrelated and parent-offspring data.

We present new methods for imputation of ungenotyped

markers in which the sample and reference panel contain

data for parent-offspring trios, parent-offspring pairs, and

unrelated individuals. Our methods use a haplotype-

frequency model that is computationally efficient and

that can make full use of the information in large reference

panels.13 We have implemented our methods in a software

package, BEAGLE. We show that BEAGLE scales easily to

large reference panels with thousands of individuals,

whereas IMPUTE,7 one of the best-performing methods

for reference panels with 60 phased individuals from the

HapMap,14 does not scale well to larger reference panels.

Our current work also extends our haplotype-phase-infer-

ence methods for unrelated individuals to large trio data

sets. Trios contain additional information on haplotype

phase compared to unrelated individuals, in the form of

constraints imposed by the rules of Mendelian inheritance.

Thus,using specific trio-phasing methods leads toextremely

accurate estimates of haplotype phase.15 Our trio-phasing

method is four orders of magnitude faster than the gold-

standard PHASE program and has excellent accuracy.

We also present extensive results of data analyses, inves-

tigating not only the performance of our methodology, but

also examining questions of wider interest. In particular,
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we demonstrate the power advantages of large reference

panels for association testing, even when the reference

panels are unphased.

Researchers must be able to assess the accuracy of

imputed genotypes when the true genotype is unknown,

so that poorly imputed markers can be identified prior to

downstream analysis. To this end, we introduce a measure

of imputation accuracy, allelic R2, the squared correlation

between the allele dosage with the highest posterior prob-

ability and the true allele dosage. We discuss the advan-

tages of the allelic R2 measure, and we show that it can

be estimated from the posterior genotype probabilities

(see Appendix 1).

Material and Methods

Hidden Markov Model
We present a unified framework for inferring haplotype phase and

missing data that is applicable to a general class of hidden Markov

models (HMMs), which we call haplotype HMMs (see Appendix 2

and Rabiner16). In Appendix 2, we show that haplotype HMMs

can be generalized in an obvious way for producing HMMs for

genotype data for individuals, parent-offspring pairs (one parent

and one child), and parent-offspring trios (two parents and one

child). Analysis of haplotype HMMs can be used for inferring

haplotypes and imputing missing genotypes for individuals,

parent-offspring pairs, and parent-offspring trios conditional

upon the observed genotype data. For example, with parent-

offspring trios, the haplotype HMM provides a model of haplotype

frequencies for the four independent haplotypes in a parent-

offspring trio. The four independent haplotypes are the trans-

mitted and untransmitted haplotypes from each parent, and

each set of four haplotypes corresponds to a possible trio phasing.

The observed genotype data for a trio constrain the possible trio

phasings for each trio. These constraints are incorporated in the

emission probabilities for the HMM.

In Appendix 3, we present our methods for building a haplotype

HMM from phased genotype data. Haplotypes from any combina-

tion of individual or parent-offspring trios (with or without an

ungenotyped parent) can be used for building the model, if haplo-

types shared by parent and child are counted as a single haplotype.

Individuals, parent-offspring pairs, and parent-offspring trios

contribute two, three, and four independent haplotypes, respec-

tively. We use an iterative algorithm for fitting a haplotype HMM

to genotype data that alternates between model building and

sampling. In the model-building step, current estimates of phased

haplotypes are used for building a new haplotype HMM. In the

sampling step, new haplotypes are sampled for each individual,

parent-offspring pair, or parent-offspring trio conditional upon

the genotype data and the current haplotype HMM. The iterative

algorithm begins with model building. Estimated phased haplo-

types for the initial iteration are obtained by imputing missing

genotypes at random according to allele frequencies and randomly

phasing heterozygous genotypes. With our methods, typically ten

iterationsof the model-building and sampling steps are sufficient to

obtain a very accurate haplotype HMM.

We found that we were able to greatly improve the performance

of our method by including haplotype weights and adjusting these

weights during the first few iterations of the algorithm. Each haplo-

type is assigned a unit weight when building the model when there
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is sporadic missing data (see Appendix 3). When imputing ungen-

otyped markers in a sample with a reference panel, we assign

reference panel haplotypes a weight of 1, and we down-weight

the haplotypes in the sample during the model-building phase

for the first five iterations of the algorithm. If there are N haplotypes

in the sample, we assign each haplotype a weight of 1/N for the first

two iterations and a weight of 1/N(6-k)/4 for iterations k¼3, 4, and 5.

For iterations R6, all haplotypes in the sample and reference panel

are assigned weight of 1. This weighting scheme forces the initial

estimates of haplotype phase and missing data in the sample to

be primarily determined by the reference panel data. Our experi-

ments with simulated data indicate that if down-weights are not

used, hundreds of iterations are required to achieve the imputation

accuracy obtained when using down-weights with ten iterations

(data not shown).

Our methods also permit one to sample multiple haplotypes for

each individual, parent-offspring pair, and parent-offspring trio

and to use the multiple sampled haplotypes when building the

haplotype HMM. When multiple sampled haplotypes are used,

the multiple sampling is accounted for by down-weighting each

haplotype. For example, if k haplotype pairs are sampled for an

unrelated individual, each haplotype is given weight w/k, where

w is the weight per haplotype when only one haplotype pair is

sampled for the individual.

When imputing diallelic markers with alleles A and B in unre-

lated individuals, we calculate posterior genotype probabilities

by summing the probabilities of the HMM states that correspond

to the AA, AB, and BB genotypes. The imputed posterior genotype

probabilities can be used in downstream analyses. We have found

that averaging the posterior genotype probabilities over multiple

iterations of the algorithm increases the imputation accuracy.

When imputing missing ungenotyped markers with a reference

panel, we average posterior genotype probabilities obtained from

iterations R6.

Our methods for haplotype-phase inference and genotype

imputation are implemented in BEAGLE 3.0. BEAGLE produces

most likely haplotypes and sampled haplotypes for each indi-

vidual with all missing data imputed. When imputing genotypes

in samples of unrelated individuals, BEAGLE produces posterior

genotype probabilities for imputed genotypes. BEAGLE 3.0 also

includes an option for reducing memory usage with a two-level

‘‘checkpoint’’ algorithm.17,18 Checkpoint algorithms store proba-

bilities in HMM calculations for a subset of markers (called check-

points) and then recalculate probabilities from the checkpoints as

needed. Using BEAGLE’s optional checkpoint algorithm increases

running time by a factor of less than two and reduces memory

usage during HMM sampling from O(M) to order O(sqrt[M]), where

M is the number of markers.

All analyses in this study were performed with BEAGLE 3.0 with

default parameter settings (i.e., four samples per individual and

ten iterations). Computing runs were performed on a Linux server

with eight dual-core AMD Opteron 8220 SE processors (running at

2.8 GHz, with a 1 MB cache, and using a 64-bit architecture) and

a total of 64 GB of RAM. All reported computational times were

obtained by adding user and system times from the Linux

‘‘time’’ command, and they thus are equivalent to those that

would be obtained with only a single CPU core.

Real Data Sets
We used unphased trio data from HapMap release 21 for 30 trios of

Utah residents with ancestry from northern and western Europe

(CEU panel) and 30 trios of Yoruba sampled from Ibadan Nigeria
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(YRI panel).14 If a marker exhibited a Mendelian inconsistency

in the unphased HapMap data for a trio, the genotypes for that

marker were set to missing in both the parents and the child for

that trio. We assessed the accuracy of our methods for inferring

haplotype phase and missing data in parent-offspring trios by

applying our methods to unphased HapMap CEU and YRI data

and comparing our results with the HapMap’s published phasing

for these data generated with the PHASE program.19 We also

used the HapMap CEU data to compare the accuracy of genotype

imputation with a phased reference panel, an unphased unrelated

reference panel, and an unphased trio reference panel.

We used genotype data from the Affymetrix GeneChip Human

Mapping 500K Array (the Affymetrix 500K chip) generated by the

Wellcome Trust Case Control Consortium (WTCCC).20 The

WTCCC study included approximately 2000 cases for each of

seven diseases (bipolar disorder, coronary artery disease, Crohn’s

disease, hypertension, rheumatoid arthritis, type 1 diabetes, and

type 2 diabetes) and approximately 3000 shared controls. The

shared controls were comprised of 1500 individuals selected

from a UK sample of blood donors and 1500 individuals from

the 1958 British Birth Cohort.21 We also used genotype data gener-

ated by the Wellcome Trust Sanger Institute with the Illumina

Infinium HumanHap550 SNP BeadChip (the Illumina 550K

chip) for the 1958 British Birth Cohort samples. Genotypes for

the Affymetrix 500K chip were called with Chiamo,20 and geno-

types for the Illumina 550K chip were called with Illumina’s Gen-

Call software. We excluded all individuals who were excluded by

the WTCCC in their primary analysis.20 For the 1958 British Birth

Cohort, we limited our analyses to 1388 individuals that had been

genotyped on both the Affymetrix and Illumina platforms.

Our previous multilocus analysis of WTCCC data had demon-

strated that multilocus analysis can be particularly sensitive to

intercohort differences in genotype error rates.6 We excluded all

markers that were excluded in the WTCCC’s analysis,20 and we

imposed additional data-quality filters designed to increase geno-

type accuracy and to exclude markers with problematic data. Geno-

types for the Affymetrix 500Kchip were set to missing if the Chiamo

posterior probability for the genotype was <0.99. Genotypes for

the Illumina 550K chip were set to missing if the GenCall score

was <0.6. For members of the 1958 Birth Cohort, genotypes were

set to missing if the Affymetrix and Illumina platforms produced

conflicting genotypes. Markers were excluded for a cohort if the

missing rate was>2% in that cohort or if the Hardy-Weinberg equi-

librium p value for the marker was<10�7. We excluded any marker

with minor-allele frequency<0.01 in the 1958 British Birth Cohort.

Because the interpretation of the genotype depends on the chro-

mosome strand used to define the alleles, we checked that the

chromosome strand was consistent between data sets and changed

alleles to their complementary alleles when necessary. Markers

were excluded if the genomic position in NCBI Build 35 coordi-

nates in the marker annotation files for the Affymetrix data or

for the Illumina data were not consistent with the position given

for the marker in the HapMap data set. A decision to change alleles

to their complementary alleles was based on three sources of infor-

mation: observed alleles (A/C/G/T), minor-allele frequency, and

linkage disequilibrium correlation patterns within a 100 marker

radius. Differences in minor-allele frequency between data sets

were considered significant if the difference was >0.2 and if the

difference was significant at the 0.01 level. If changing an allele

to the complementary allele for a marker in a data set did not

resolve the discrepancy between data sets, the marker was

excluded from one of the non-HapMap data sets.
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For chromosome 1, after data-quality filtering, there were

53,683 markers genotyped on the 1958 British Birth cohort with

one or both of the Affymetrix 500K and Illumina 550K chips. A

subset of 24,705 of these markers were present on the Illumina

550K chip and in HapMap phase 2 data14 but absent from the Affy-

metrix 500K chip. This subset of 24,705 markers was masked and

imputed in subsamples of the 1958 British Birth Cohort. From

the 1388 individuals in the 1958 British Birth Cohort, we selected

three random samples of 188, 788, and 1088 individuals. The

24,705 chromosome 1 markers absent from the Affymetrix

500K chip but present on the Illumina 550K chip and in HapMap

phase 2 data were masked in each sample. For each sample, the

remaining 1200, 600, or 300 individuals (or a subset of these

remaining individuals) were used as a reference panel with geno-

type data from both the Affymetrix 500K and Illumina 550K

chip. Although a proportion of Illumina genotypes for the imputed

markers will be incorrect, this proportion is expected to be small,

and Illumina genotypes are considered to be the true genotype

when computing measures of imputation accuracy in this study.

Comparison with IMPUTE
We compared BEAGLE 3.0 with IMPUTE7 version 0.5.0 in terms

of imputation accuracy and computational efficiency. We evalu-

ated imputation accuracy by using Chromosome 1 markers

imputed in a sample of 188 individuals with reference panels of

60 phased individuals (CEU HapMap), 300 unphased individuals,

and 600 unphased individuals. A comparison using larger refer-

ence panels was not practical for the full chromosome 1 data

because of IMPUTE’s much greater computational requirements.

Because IMPUTE requires a phased reference panel, the unphased

reference panels were phased with BEAGLE13 for use in the

IMPUTE analysis. As a result, the accuracy of inferred haplotypes

in the reference panel was similar when imputing genotypes

with BEAGLE or IMPUTE.

We compared the computational efficiency of BEAGLE and

IMPUTE for increasingly large reference panels by using a subset

of chromosome 1 data comprising a 5 Mb region with 1356 markers

genotyped in the reference sample, of which 746 markers were gen-

otyped in the sample. Computational times were measured when

imputing ungenotyped markers in a sample of 188 individuals

with reference panels of 300, 600, and 1200 individuals. For

BEAGLE, the reference sample was unphased, whereas for IMPUTE,

the reference panel was phased (with phase inferred by BEAGLE).

Simulated Data Sets
We evaluated our trio-phasing methods on large sample sizes with

realistic, simulated trio data. We generated simulated data by using

Cosi22 with parameters calibrated to empirical human data for indi-

viduals with European ancestry (CEU) or with ancestry of Yoruba in

Ibadan, Nigeria (YRI). Each simulated data set has a recombination

rate sampled from a distributionmatching the Decodemap.23 Three

sample sizes were simulated: 30, 300, and 3000 trios. Four parental

chromosomes were simulated, and one of the chromosomes of each

parent was selected to be transmitted to the offspring. The simu-

lated regions were all of 1 Mb in length. For each data set, we

randomly selected markers with minor-allele frequencies of greater

than 0.05 to achieve an average marker density of one marker per 6

kb or one marker per 1 kb. One hundred data sets were simulated for

each sample size, ethnicity, and marker density.

In each data set, 0.5% of individual genotypes, chosen at

random, were set to missing. In addition, 0.5% of trios were set
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to missing (i.e., the three genotypes for the trio were all set to

missing, as might be done when a Mendelian inconsistency is

found). These rates of missingness are somewhat different from

those seen in the unphased HapMap Phase II data. In the

HapMap data, after setting trios with Mendelian inconsistencies

to missing, there were 13 single-nucleotide polymorphisms

(SNPs) per Mb per trio with the entire trio missing in the CEU

panel (19 in the YRI panel), compared to 20 in the 1 SNP per kb

simulated data. The rate of sporadic missing data (one or two indi-

viduals in the trio missing at the SNP) was 78 SNPs per Mb per trio

in the CEU panel (83 in the YRI panel), compared to 20 in the

simulated data at the 1 SNP per kb density.

Allelic Association Tests
We investigated the effect of use of imputed genotype data on

power to detect disease associations by comparing p values

computed with true genotype data with p values computed with

imputed posterior genotype probabilities. For this analysis,

p values were computed after excluding 300 individuals in the

1958 British Birth Cohort that were used as an unphased reference

panel. p values were computed for markers that the WTCCC re-

ported as showing evidence of disease association, excluding any

marker that had more than 2% missing data in either of the two

control cohorts or the case cohort. p values were computed three

ways: with genotype data, with imputed data generated from

a phased reference panel of 60 individuals (HapMap CEU), and

with imputed data generated from an unphased reference panel

with 300 individuals. The data for each marker was imputed after

masking that marker in the sample. Standard chi-square, allelic

trend, and Fisher Exact tests are not valid when applied to the

posterior genotype probabilities for imputed data. Hence, we

compared estimated allele dosage in cases and controls with

a two-sample t test. For large sample sizes, the central limit

theorem ensures that the test statistic has the appropriate null

distribution. For genotype data, the allele dosage for each indi-

vidual was obtained from the observed genotype data. For

imputed data, the estimated allele dosage for each individual

was obtained from the imputed posterior genotype probabilities.

For imputed data, p values were computed with only those indi-

viduals who had nonmissing genotype data so that the p values

from imputed data and from observed genotype data are derived

from the same set of individuals.

Metrics for Trio Phasing
We used four metrics to measure accuracy of trio phasing. The

transmission error rate is the proportion of nonmissing parental

genotypes with ambiguous phase that were incorrectly phased.

The denominator of the transmission error rate is the number of

parent genotypes for which the parent is heterozygous and the

transmission is ambiguous (because of missing or heterozygote

genotypes for the child and other parent). The numerator of the

transmission error rate is the number of such parent genotypes

for which the phasing is incorrect (i.e., the incorrect allele is

recorded as having been transmitted). For example, if both parents

and child of a trio have the same heterozygous genotype, the trio

will contribute either 0 or 2 parents to the numerator, and

2 parents to the denominator of the transmission error rate.

The missing trio error rate is the proportion of parental alleles in

trios with missing data for both parent and child that are incor-

rectly imputed. The missing trio error rate has as its denominator

twice (given that there are two alleles per genotype) the number of

parent genotypes for which the parent and child genotypes are
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missing. The numerator of the missing trio error rate is the number

of alleles in such phased parent genotypes that are incorrectly

imputed. For example, if the true phased parental genotype is

AG, and the imputed phased parental genotype is AA, this would

count as one error, whereas if the imputed phased parental geno-

type is GA, this would count as two errors.

The sporadic missing error rate is the proportion of incorrectly

imputed alleles in parents with missing genotype data for them-

selves and nonmissing genotype data for their child. The sporadic

missing error rate has as its denominator twice the number of

parent genotypes for which the parent genotype is missing but

the child genotype is nonmissing. The numerator for the sporadic

missing error rate is the number of alleles in such phased parent

genotypes that are incorrectly imputed (as for the missing trio

error rate).

We also calculated an error rate per trio per SNP, which is the

sum of the numerators of the three types of error (transmission,

missing trio, and sporadic missing error rates), divided by the

number of trios and by the total number of SNPs.

Metrics for Imputation
We assessed the calibration and precision of estimated posterior

genotype probabilities for imputed genotypes. The metrics we

describe below are applied at multiple levels: the genotype level

(genotype concordance rate), the marker level (allelic R2 and stan-

dardized allele frequency), and the study level (allele-frequency

correlation). We also use a Wilcoxon signed-rank test to compare

accuracy of estimated allele frequencies for pairs of imputed data

that were imputed with different reference panels.

Genotype Concordance Rate

The calibration of imputed genotypes was evaluated by calculating

the concordance rate between the most likely imputed genotype

and the true genotype. For imputed genotypes with posterior

probability a, we expect the genotype concordance rate to be

approximately a.

Allelic R2

We assessed the accuracy of imputed genotypes in terms of the

squared correlation between the allele dosage (number of minor

alleles) of the most likely imputed genotype and the allele dosage

of the true genotype. We call this quantity the allelic R2. Allelic R2

has several desirable properties that make it an excellent metric for

evaluating imputation accuracy. Allelic R2 has a simple interpreta-

tion in terms of statistical power, similar to the interpretation of

the squared correlation between two diallelic markers.24 Under

Hardy-Weinberg equilibrium, if an allele confers risk for a disease,

N cases and controls with genotype data for the marker have

approximately the same statistical power to detect association

as N/r2 cases and controls with imputed data for the marker where

r2 is the allelic R2 for the imputed data. Thus, allelic R2 measures

the loss of power when the most likely imputed genotypes are

used in place of the true genotypes for a marker. Association anal-

yses using posterior imputed genotype probabilities can be more

powerful than analysis using most likely imputed genotypes

because posterior genotype probabilities contain more informa-

tion. Consequently, the loss of power measured by allelic R2 is

an upper bound on the loss of power when imputed posterior

genotype probabilities are used in place of the true genotypes for

a marker. Another advantage of allelic R2 is that its interpretation

does not depend on allele frequency.

We show that allelic R2 can be estimated from the imputed poste-

rior genotype probabilities without knowledge of the true geno-

types (see Appendix 1). The ability to estimate allelic R2 from
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imputed posterior genotype probabilities is an important feature

because the true genotype is generally unknown. The estimated

allelic R2 can be used for identifying or excluding markers with

poor imputation accuracy prior to downstream analysis.

Another estimate of imputation accuracy is the ratio of the

variance of the imputed allele dosage and the variance of the

true allele dosage. The variance of the true allele dosage is

unknown, but it can be estimated as 2p(1�p) under Hardy-

Weinberg equilibrium, where p is the estimated allele frequency.

This ratio of variances has also been called r2,25 but it does not

directly estimate allelic R2 and thus is different than the allelic

R2 estimate presented in Appendix 1.

Standardized Allele-Frequency Error

For each imputed marker, we define the allele-frequency error as

the difference between the true allele frequency in the sample and

the estimated allele frequency in the sample computed from the

posterior genotype probabilities. If the three posterior genotype

probabilities for an individual are denoted pAA, pAB, and pBB, then

the estimated A allele frequency is found by summing (2pAA þ pAB)

over all individuals and dividingby twice the number of individuals.

However, allele-frequency error is difficult to interpret unless the

true allele frequency and sample size are known. An allele-frequency

error of 0.01 is more serious when the allele frequency is 0.01 than

when the allele frequency is 0.5. An allele-frequency error of

0.01 is also more serious when the sample size is 10,000 than

when the sample size is 100 because the larger sample size gives

a much more precise population allele-frequency estimate from

genotype data. This motivates us to standardize the allele-frequency

error by the standard error of the population allele-frequency esti-

mate from the true genotype data. If pA is the allele frequency in

the sample of n individuals from a population in Hardy-Weinberg

equilibrium, the standard error of the population allele-frequency

estimate is approximately sqrt(pA[1 � pA]/[2n]). If qA is the

estimated allele frequency obtained from the imputed posterior

genotype probabilities, we define the standardized allele-frequency

error to be

jpA � qA j =ðpA½1� pA�=½2n�Þ1=2

Thus, a standardized allele-frequency error of z indicates that the

error in estimated allele frequency from imputed data is approxi-

mately z times the standard deviation of the estimated population

allele frequency obtained from the true genotypes.

Allele-Frequency Correlation

The allele-frequency correlation is the correlation over the set of

imputed markers between the estimated sample minor-allele

frequency from imputed posterior genotype probabilities and

the true sample minor-allele frequency. The allele-frequency corre-

lation can be used for comparing imputation accuracy under

different scenarios, with different reference panels or different

samples.

Wilcoxon Signed-Rank Test

We used a two-sided Wilcoxon signed-rank test to test for differ-

ences in imputation accuracy for markers imputed with two

different reference panels but the same sample. For each imputed

marker m, let Xm be the absolute allele-frequency error using refer-

ence panel 1 and let Ym be the absolute allele-frequency error using

reference panel 2. The null hypothesis of the Wilcoxon signed-

rank test is that the median of Xm � Ym equals 0. Rejecting the

null hypothesis implies that there are differences in accuracy of

the estimated sample allele frequencies derived from the two

reference panels.
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Results

Calibration of Posterior Genotype Probabilities

The posterior genotype probabilities produced by our

methods are well calibrated. Figure 1 presents the genotype

accuracy rate for the imputed genotype with the highest

posterior probability. Genotypes were imputed in a sample

of 1088 individuals with a phased reference panel of 60 indi-

viduals, and imputed genotypes were binned according to

their posterior probability. For each bin, the proportion of

imputed genotypes concordant with the called genotype

was approximately equal to the posterior genotype proba-

bility for the bin. Similar results were obtained when impu-

tation was performed with an independent unphased

reference panel of 300 individuals (data not shown).

We also found that our estimate of allelic R2, calculated

from posterior genotype probabilities (see Appendix 1),

had good accuracy. Allelic R2 was estimated for each imputed

marker in a sample of 1088 individuals. Markers were

imputed with a phased reference panel of 60 individuals

(HapMap CEU panel) and imputed with an unphased refer-

encepanelof 300 individuals. For the phased referencepanel

(60 individuals), the correlation was 0.938 between the esti-

mated allelic R2 (estimated without knowledge of the true

genotypes) and the actual allelic R2 (calculated from the

true genotypes). For the unphased reference panel (300 indi-

viduals), the correlation was 0.986 between the estimated

and actual allelic R2. When markers were imputed with the

Figure 1. Calibration of Posterior Genotype Probabilities
Genotypes for chromosome 1 markers on the Illumina 550K chip,
but not the Affymetrix 500K chip, were imputed with a phased
reference panel of 60 individuals (HapMap CEU panel) in a sample
of 1088 individuals genotyped on the Affymetrix 500K chip.
Imputed genotypes are divided into bins according to their poste-
rior genotype probability. The proportion of imputed genotypes
that are consistent with the Illumina genotype are given for
each bin. The line is the set of points with equal posterior genotype
probability and accuracy rate.
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phased reference panel of 60 individuals, 62%, 83%, and

91% of imputed of markers had estimated allelic R2 within

0.05, 0.1, and 0.15, respectively, of the actual allelic R2. For

the larger unphased reference panel of 300 individuals, the

estimates were even more accurate: 87%, 97%, and 99% of

markers had estimated allelic R2 within 0.05, 0.1, and 0.15,

respectively, of the actual allelic R2. We also investigated

the accuracy of the estimated allelic R2 for larger unphased

reference panels and for different sample sizes. As expected,

we found that using larger unphased reference panels

or larger samples increases the accuracy of the estimated

allelic R2 (data not shown).

Effect of Reference Panel Size

We next investigated the effect of reference panel size on

imputation accuracy. Figure 2 shows the cumulative distri-

bution function of allelic R2 in a sample of 188 individuals

for markers imputed with different reference panels:

60 phased individuals (CEU HapMap) and 100, 300, 600,

or 1200 unphased individuals. Figure 2 demonstrates

that increasing the reference panel size markedly increases

imputation accuracy.

Imputation accuracy increases with increased reference

panel size across all frequencies, but the increase is greatest

for the lowest-frequency markers. Figure 3 shows the

median allelic R2 as a function of allele frequency for

imputed markers in a sample of 1088 individuals obtained
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Figure 2. Imputation Accuracy and Reference Panel Sample
Size
Genotypes for markers on the Illumina 550K chip, but not the
Affymetrix 500K chip, were imputed in a sample of 188 individuals
with five different reference panels: 60 phased individuals and 100,
300, 600, and 1200 unphased individuals. For each reference
panel, the proportion of imputed markers whose allelic R2

(see Material and Methods) exceeds each threshold is given. The
allelic R2 for each imputed marker is calculated with the assump-
tion that the Illumina genotypes are the true genotypes.
The America
from imputation with reference panels of 60 phased

individuals and 300 unphased individuals. The larger,

unphased reference panel has markedly higher median

allelic R2 than the smaller phased reference panel, with

low-frequency markers showing the greatest difference.

With a reference panel of 300 unphased individuals, the

median allelic R2 was R0.92 for all frequency bins. Figure 3

also shows that imputation accuracy tends to increase with

the minor-allele frequency of the imputed marker.

The advantage of larger reference panels is also seen with

the allele-frequency correlation metric. For reference

panels of 60 phased individuals and 100, 300, 600, and

1200 unphased individuals, the allele-frequency correla-

tion increases with reference panel size: 0.9902 (60),

0.9944 (100), 0.9976 (300), 0.9982 (600), and 0.9986

(1200). Similarly, the proportion of imputed markers for

which the standardized allele-frequency error is less than

0.25 also increases: 0.51 (60), 0.60 (100), 0.71 (300), 0.75

(600), and 0.78 (1200).

The advantages of improved imputation accuracy are also

seen when testing imputed markers for association with

a trait. The left panel of Figure 4 shows p values from allelic

association tests (see Material and Methods) using WTCCC

data for 15 markers that the WTCCC described as showing

the strongest association signals in its study,20 that have

control frequency >0.10, and that have evidence of associ-

ation in replication studies (excluding markers in the major

histocompatibility complex [MHC]). The right panel of

Figure 4 shows p values from allelic association tests for

nine markers showing moderate or strong evidence of
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Figure 3. Median Allelic R2 and Minor-Allele Frequency
Genotypes for markers on the Illumina 550K chip, but not the
Affymetrix 500K chip, were imputed with two different reference
panels in a sample of 1088 individuals genotyped on the Affymetrix
500K chip. For each minor-allele frequency, x¼ 0.01, 0.02, ., 0.5,
the median allelic R2 for imputed markers with minor-allele
frequency between x � 0.01 and x þ 0.01 is plotted.
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Figure 4. Allelic Test p values for SNPs
Associated with Disease in the WTCCC
Study
Allelic test p values were computed from
data for approximately 2000 cases and
approximately 2500 controls genotyped
with the Affymetrix 500K chip. Two refer-
ence panels were used for imputing data:
300 unphased individuals genotyped on
both the Affymetric 500K and Illumina
550K chips and 60 phased individuals
from the HapMap CEU panel. For each
marker of interest, p values were calculated
for the original genotype data and for the
imputed data obtained from each reference
panel. The imputed data for each marker of
interest was obtained after masking the
genotype data for the marker in the sample.
The allelic test was a two-sample t test of
the estimated allele dosage in each indi-
vidual. Left panel: p values for 15 markers
(outside the MHC) that have minor-allele

frequency >0.10 in controls, that show the strongest association (p < 5 3 10�7) on an allelic or genotypic test in the WTCCC study,
and that have evidence of association in replication studies. Right panel: p values for nine markers with minor-allele frequency between
0.06 and 0.10 in controls that were reported to show moderate or strong association (p < 10�5) on an allelic or genotypic test in the
WTCCC study. One marker (rs6679677) that is associated with two diseases (rheumatoid arthritis and type 1 diabetes) is repeated.
association (p < 10�5) in the WTCCC study, that had

minor-allele frequency<0.10 in controls, and<2% missing

data in each case and control cohort.

The genotype signal data for all markers in Figure 4 were

checked by the WTCCC for confirmation of good geno-

type clustering.20 p values were calculated with genotype

data, with imputed data from a phased reference panel of

60 individuals, and with an unphased reference panel of

300 individuals. In the left panel of Figure 4, there is no

clear difference between the two reference panels for the

15 imputed high-frequency markers, unlike the results in

Figure 2 for the much larger set of imputed chromosome

1 markers. However, for all nine low-frequency markers

in the right panel, p values obtained with a reference panel

of 300 unphased individuals were smaller than p values

obtained with a reference panel of 60 phased individuals.

For six of the nine markers, the p values from the larger

reference panel were at least 25% smaller than the p values

from the smaller reference panel. All of these markers had

minor-allele frequencies >0.06 (but <0.10) in controls.

Figure 3 suggests that larger reference panels will have

even greater impact on p values for markers with minor-

allele frequency <0.06.

For some markers in Figure 4, the p value calculated from

imputed data is smaller than the p value calculated from

genotype data. This could indicate the presence of genotype

error in the original data. However, genotype error rates

should be extremely low because of our stringent data-

quality filters, and the WTCCC reported good genotype

clustering for all of these markers.20 In our view, a more

likely explanation for the occasional smaller p value from
216 The American Journal of Human Genetics 84, 210–223, Februar
imputed data is the variability in the estimates of allele

dosage from imputed data.

Comparison with IMPUTE

We measured imputation accuracy for BEAGLE 3.0 and

IMPUTE 0.5.0 with reference panels of 60, 300, and 600

individuals and a sample of 188 individuals. The difference

in accuracy between BEAGLE and IMPUTE decreases as the

size of the reference panel increases. The allele-frequency

correlations were 0.9902 (BEAGLE) and 0.9917 (IMPUTE)

with a reference panel of 60 individuals, 0.99753 (BEAGLE)

and 0.99761 (IMPUTE) with a reference panel of 300 indi-

viduals, and 0.99824 (BEAGLE) and 0.99822 (IMPUTE)

with a reference panel of 600 individuals. The difference

in accuracy between IMPUTE and BEAGLE is substantially

smaller than the gain in accuracy obtained from using

larger reference panels.

We also compared computation times for BEAGLE and

IMPUTE when imputing data in a 5 Mb region of chromo-

some 1 in a sample of 188 individuals with reference panels

of 300, 600, and 1200 individuals. Running times for

BEAGLE were 2.7 min, 5.5 min, and 12.0 min for reference

samples of 300, 600, and 1200 unphased individuals.

Running times for IMPUTE were 60.3 min, 220.2 min, and

829.6 min for reference samples of 300, 600, and 1200

phased individuals. IMPUTE’s computation times increased

relative toBEAGLE’s as the referencepanel size increases, and

for a reference panel of 1200 individuals, IMPUTE’s compu-

tation time was 69 times longer than BEAGLE’s. IMPUTE

required 33 Gb of memory to impute data for the 5 Mb

region when using a reference panel of 1200 individuals,
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and BEAGLE required 1 Gb. IMPUTE could be modified to

reduce memory usage by using a checkpoint algorithm

(see Material and Methods), but this modification would

be expected to double IMPUTE’s running time.

Computational times for IMPUTE are approximately

quadratic in the size of the reference panel and linear in

the size of the sample. Computational times for BEAGLE

depend on the combined size of the reference panel and

the sample. BEAGLE’s computation time can be made

linear in the size of the sample by dividing the sample

into disjoint subsamples and performing imputation sepa-

rately in each subsample.

Other Factors Affecting Imputation Accuracy

Size of the Sample

The accuracy of estimated allele frequency increases as the

size of the sample increases. However, the effect of the

sample size on imputation accuracy is much smaller than

the effect of the reference panel sizeon imputation accuracy.

Genotypes were imputed in samples of 1088, 544 (1088/2),

and 272 (1088/4) individuals. As the sample size increases,

the allele-frequency correlation increases, as follows:

0.9981 (272), 0.9985 (544), and 0.9987 (1088). Although

the allele-frequency correlation increases with sample size,

the proportion of markers with standardized allele-

frequency error<0.25 decreases as the sample size increases,

as follows: 0.69 (272), 0.64 (544), 0.56 (1088). Thus, as the

sample size increases, a larger portion of the error in the

population allele-frequency estimate is due to imputation,

and a smaller proportion of the error is due to sampling

variability in the sample. Similar results were seen with

a reference panel of 60 phased individuals (HapMap CEU)

and samples of 272, 544, and 1088 individuals.

Population Differences between Sample and Reference Panel

Figure 2 shows that imputation using a reference panel of

60 phased individuals is less accurate than imputation

using a reference panel of 100 unphased individuals.

Some of this difference in accuracy may be due to popula-

tion differences between the sample and the reference

panel. The reference panel of 60 phased individuals is

from the HapMap CEU data, whereas the reference panel

of 100 unphased individuals and the sample are both

from the 1958 British Birth Cohort. We investigated the

effect of these population differences while controlling for

differences in markers, haplotype phasing, and reference

panel size. We did not control for differences in sporadic

missing data and genotype error profiles that exist between

the HapMap CEU data and the 1958 British Birth Cohort

data. However, we expect differences in missing genotype

profiles and genotype error profiles to have a relatively

minor effect on imputation accuracy because of the strin-

gent quality-control filtering we applied to the 1958 British

Birth Cohort data and the high quality of the HapMap data.

We compared two unphased reference panels of 60 indi-

viduals each. One unphased reference panel was the

parental data for the 30 CEU HapMap trios obtained by

randomly phasing the phased parental data. The other
The Americ
unphased reference panel was 60 individuals from the

1958 British Birth Cohort. Both reference panels were

restricted to the markers genotyped on at least one of the

Affymetrix or Illumina chips. We used each unphased

reference panel to impute markers in the sample of 188

individuals from the 1958 British Birth Cohort. The

allele-frequency correlation was 0.9895 with the unphased

HapMap CEU reference panel and 0.9903 with the 1958

British Birth Cohort reference panel. For comparison, the

allele-frequency correlation with a larger unphased refer-

ence panel of 100 individuals from the 1958 British Birth

Cohort was 0.9944. This indicates that most of the differ-

ence in imputation accuracy seen in Figure 2 between

the reference panel of 60 phased individuals (HapMap

CEU) and the reference panel of 100 unphased individuals

is due to sample size rather than to population differences

between the HapMap reference panel and the sample.

Phased versus Unphased Reference Panel

Because the phase of unphased data can be inferred, we

expect any difference in imputation accuracy between

phased and unphased reference panels will reflect the differ-

ence in haplotype-phase accuracy between phasing unre-

lated individuals and parent-offspring trios. We imputed

Illumina markers in 1088 individuals with phased parental

data (phased with PHASE19) for the 30 Hapmap CEU trios

and with unphased parental data for the 30 HapMap

CEU trios. The unphased parental data was obtained by

randomly ordering the heterozygote genotypes in the

phased parental data. The difference in imputation accu-

racy was small but statistically significant (Wilcoxon test

p < 10�8). The allele-frequency correlation was 0.9908

with unphased parental data and 0.9916 with phased data.

Trio Reference Panel

All applications of imputation to genome-wide association

studies that we have seen so far have used phased HapMap

data as a reference panel. The inferred haplotypes in the

phased HapMap data are extremely accurate because they

are obtained from parent-offspring trio data.15 However,

one disadvantage of using a phased reference panel is

that any uncertainty in the inferred haplotype phase and

missing data imputation is ignored. This disadvantage

can be overcome by using unphased trio data as a reference

panel. We performed imputation in a sample of 1088 indi-

viduals with unphased HapMap CEU trio data as a refer-

ence panel and compared the imputation accuracy to

results obtained with the corresponding phased HapMap

data. As expected, imputation using a trio reference panel

was slightly more accurate than imputation using a phased

reference panel. The difference in imputation accuracy was

small but statistically significant (Wilcoxon test p < 10�7).

The allele-frequency correlation was 0.9916 with phased

parental data and 0.9918 with trio data.

Model Averaging

One way of obtaining an additional small increase in impu-

tation accuracy is to perform imputation multiple times

and average the resulting posterior probabilities. We used

a reference panel of 30 parent-offspring trios and a sample
an Journal of Human Genetics 84, 210–223, February 13, 2009 217



Table 1. Error Rates for Phasing Trios

Data Source

Number

of Trios SNPs/kb Ethnicity

Transmission

Error Rate

Missing Trio

Error Rate

Sporadic Missing

Error Rate

Errors per

Trio per SNP

Simulated with Cosi 3000 6 CEU 0.0047 0.0080 0.0042 0.00083

Simulated with Cosi 3000 6 YRI 0.0017 0.0058 0.0031 0.00035

Simulated with Cosi 300 6 CEU 0.0095 0.0130 0.0069 0.00154

Simulated with Cosi 300 6 YRI 0.0116 0.0198 0.0108 0.00179

Simulated with Cosi 30 6 CEU 0.0224 0.0237 0.0125 0.00341

Simulated with Cosi 30 6 YRI 0.0321 0.0420 0.0231 0.00447

Simulated with Cosi 3000 1 CEU 0.0006 0.0009 0.0005 0.00010

Simulated with Cosi 3000 1 YRI 0.0003 0.0009 0.0005 0.00006

Simulated with Cosi 300 1 CEU 0.0018 0.0029 0.0015 0.00030

Simulated with Cosi 300 1 YRI 0.0012 0.0028 0.0014 0.00020

Simulated with Cosi 30 1 CEU 0.0061 0.0095 0.0050 0.00102

Simulated with Cosi 30 1 YRI 0.0045 0.0098 0.0051 0.00074

HapMap phase II 30 ~1 CEU 0.0388 0.0351 0.0143 0.00456

HapMap phase II 30 ~1 YRI 0.0188 0.0465 0.0185 0.00357

Definitions of the error rates are given in the Material and Methods section.
of 188 individuals. We imputed data four times and used

a different seed for generating random numbers in each

run. The allele-frequency correlation for the markers on

the Illumina chip was 0.9904 for the first run, 0.9909 for

the average posterior probabilities from the first two runs,

and 0.9911 for the average posterior probabilities for all

four runs. The difference in imputation accuracy was statis-

tically significant when comparing results from different

numbers of runs (Wilcoxon test p < 10�15).

Dividing the Sample

We investigated the imputation accuracy and computa-

tional efficiency when dividing a sample into subsets and

imputing data in each set separately. Imputation was per-

formed on the entire sample of 1088 individuals and also

on four equal-sized subsamples of 272 individuals. For

a reference panel of 60 phased individuals and a sample of

1088 individuals, the allele-frequency correlation was

0.9916 for the entire sample and 0.9923 for the subdivided

sample. For a reference panel of 300 unphased individuals,

the allele-frequency correlation was 0.9987 for the entire

sample and 0.9988 for the subdivided sample. The increase

in allele-frequency correlation with the subdivided sample

is probably due to the benefits of model averaging, given

that the allele-frequency estimates for each subsample are

obtained from a different random model. Total computa-

tional time for imputing genotypes on the four subsamples

was less than the computational time for imputing geno-

types on the entire sample. Dividing a sample into subsets

and imputing data in each subset separately can decrease

total computing time because computing time for our

methods scales more than linearly in the size of the

combined reference panel and sample. Dividing a sample

into subsets also permits imputation in each subset to run

in parallel to further reduce the effective computing time.

Trio Phasing

Table 1 shows error rates for phasing trios. Error rates

decrease with increasing sample size and with increasing
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SNP density. There is no clear pattern of difference

between CEU and YRI data—for some combinations of

marker density and sample size, CEU has lower error rates,

whereas for others, YRI has lower error rates. The real data

(HapMap Phase 2) has an approximately five times higher

error rate than the corresponding simulated data (30 trios

at a density of 1 SNP per kb). A possible explanation for

this is that for the simulated data, the true genotypes

and phase with which imputed genotypes and phase are

compared are known without error, whereas for the real

HapMap data, there are two significant sources of error.

First, there are probably some genotype errors in the

HapMap data, so that the imputed genotype and phase

may be correct but look incorrect. Second, we do not

know the true genotype and phase, but we are comparing

our results to those obtained by PHASE (i.e., the HapMap

phased data). Thus, whenever our imputation differs

from that of PHASE, we record it as an error; however,

we have no way to know whether the error is from our

method or from PHASE.

Overall, the error rates in imputed genotypes and phase

in trios are extremely low. The error rate per trio per SNP in

Table 1 ranges from 0.4% to 0.006%. The transmission

error rate (incorrect determination of transmitted allele

from a heterozygous parent, where the other parent and

the child are heterozygous or missing) in Table 1 ranges

from 4% to 0.03%. Thus, although we have not directly

compared our trio-phasing results to those from the most

accurate competing methods (which was not possible

because of the high computing requirements or inability

to analyze large data sets of existing software implement-

ing those methods), the error rates are so low that any

such comparison would have little practical value.

We attempted to use PHASE v2.1.1 to phase one of our

smaller simulated data sets (300 trios with 167 SNPs in simu-

lated YRI). In order to do, we first had to split the data into

two components of 83 and 84 markers. The total time for

the analysis was 56 hr. In comparison, BEAGLE analyzed
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these data (without splitting into two components) in 14 s.

Our software took a total of 5.5 hr to phase the 3.8 million

autosomal markers for the 30 HapMap Phase II CEU trios

and 6.3 hr for the 3.7 million autosomal markers for the

30 YRI trios. Phasing times for 3000 simulated trios on

1000 markers (1 SNP per kb) were highly variable, depending

on the extent of linkage disequilibrium and missing data

patterns, and had a mean time of 122 min.

Discussion

New Methods

The new methods presented here for genotype imputation

and haplotype phasing provide a unified approach to the

problem of missing data and haplotype-phase inference.

Our methods permit family data (parent-offspring pairs or

trios) to be analyzed simultaneously with phase-unknown

and phase-known genotype data from unrelated individ-

uals, with missing genotypes being automatically imputed

during haplotype phasing. We show that our methods scale

easily to permit analyses of thousands of individuals. This

flexibility and capability is expected to be particularly valu-

able as new, larger reference panels become available (e.g.,

HapMap phase 3 data). We have demonstrated that our

imputation and haplotype-phasing methods achieve

a high level of accuracy and that the posterior probabilities

produced by our methods are well calibrated.

We also presented a new method for estimating allelic R2,

the correlation between the imputed and true allele dosage

for a marker. We showed empirically and theoretically that

allelic R2 can be accurately estimated when the imputed

posterior probabilities are accurately calibrated (as they

are for our method). Allelic R2 is a natural metric for

estimating imputation accuracy that is normalized for

marker-allele frequency. The estimated allelic R2 can be

used for estimating the loss in statistical power when using

imputed data in place of genotype data for a marker. The

allelic R2 metric can also be used for detecting intercohort

differences in imputation accuracy that could bias statis-

tical tests for association in a manner similar to ‘‘differential

missingness.’’26

Importance of Large Reference Panels

One important conclusion from this study is that the size of

the reference panel has a substantial impact on imputation

accuracy, particularly when imputing low-frequency

genetic variants. We have demonstrated with WTCCC

data that the use of large reference panels produces substan-

tial gains in imputation accuracy and that improved impu-

tation accuracy results in lower p values when testing

low-frequency disease-associated variants.

With our methods, it is relatively unimportant whether

the reference panel is phased or unphased because the

phase of genotype data for unrelated individuals can be

inferred during genotype imputation with good accuracy.

We have shown that a reference panel of 100 unphased

individuals gives markedly more accurate imputed geno-
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types than a reference panel of 60 phased individuals.

This is not surprising because unphased genotype data

contain almost as much information as phased genotype

data. This is why samples of unrelated individuals with

unphased genotype data can be phased with fairly high

accuracy.

The value of a large reference panel is most evident when

imputing low-frequency genetic variants. We have shown

that variants with frequency as low as 1% are accurately

imputed (with high allelic R2) when using a large reference

panel. We expect that large reference panels can be used

for accurately imputing markers with frequency <1%

provided that the reference panel and sample genotype

data are sufficiently accurate.

The results from this study are consistent with previous

work showing that the BEAGLE haplotype HMM gives

good results for small sample sizes and excellent results for

large sample sizes.13 In our earlier work applying the

BEAGLE model to haplotype-phase inference in unrelated

individuals, there was no reference panel as such, and this

result applied to thewhole sample.Here, in thecaseof impu-

tation, the critical quantity is the size of the reference panel.

We have compared our imputation method with

IMPUTE, one of the best-performing and widely used

imputation methods. We have shown that IMPUTE is

slightly more accurate than BEAGLE for small reference

panels, but much bigger gains in imputation accuracy are

obtained by using larger reference panels. We also show

that BEAGLE scales easily to the larger reference panel

sizes, whereas IMPUTE does not. One could modify

IMPUTE to reduce its computational time by constraining

the complexity of its HMM (e.g., by limiting the number

of HMM states). However, constraining the model

complexity would be expected to reduce imputation accu-

racy because more complex models are needed to use the

full information in larger reference panels. Other excel-

lent, state-of-the-art methods that use HMMs similar to

those used by IMPUTE face similar challenges with large

reference panels (Li et al., 2007, Am. Soc. Hum. Genet.,

abstract 2071).1,27 In contrast, BEAGLE can model large-

scale data sets with 15,000 or more individuals without

constraining the complexity of its haplotype frequency

model.6 This enables BEAGLE to achieve increased imputa-

tion accuracy by making full use of the data in large

reference panels.

New Analysis Options

Our methods provide researchers with additional options

for imputing genotypes. In the current study, we have

used reference panels genotyped on the Affymetrix

500K and Illumina 550K chips. However, much denser

genotyping chips are now available. The Affymetrix

Genome-wide Human SNP Array 6.0 has 900K SNPs,

and the Illumina Human 1M Beadchip has over 1M

SNPs. Our work indicates that the accuracy of genotype

imputation in the British population could be improved

by genotyping the 1958 British Birth cohort on the
an Journal of Human Genetics 84, 210–223, February 13, 2009 219



densest genotype chips available and using this cohort as

an unphased reference panel.

When a reference panel for a population is not available,

one can still choose a subset of the sample to genotype

with a larger set of markers (e.g., the Affymetrix 6.0 chip

or the Illumina 1M chip) and use the densely genotyped

subset to impute the SNPs for the remainder of the

sample.28 An additional advantage of this approach is

that the reference panel is perfectly matched to the sample.

One of the most valuable uses of genotype imputation

has been combining data from multiple studies that have

used different genotyping platforms, thus increasing

power to detect associations.3,5 For European cohorts, our

results indicate that use of a large reference panel, such

as the 1958 British Birth Cohort, that has been genotyped

on both Affymetrix and Illumina genotype platforms will

substantially increase power compared to use of smaller

reference panels, such as the HapMap phase 2 CEU panel.

With our methods, one can also use trio data directly for

imputation. Using trios as a reference panel permits any

phase uncertainty in the trio data to be accounted for

when imputing genotypes. Our trio-phasing methods

also make it easy to impute variants that are not included

in the phased HapMap. For example, current genotype

arrays contain SNPs that are not present in the phased

HapMap CEU and YRI data. Because HapMap panels are

typically genotyped with these commercial arrays, the

resulting genotypes can be added to HapMap data and

used as a trio reference panel. Also, data for HapMap phase

3 samples have been genotyped on the Affymetrix 6.0 and

Illumina 1M platforms. These data are publicly available

from the HapMap web site, and population cohorts from

these data can be used as reference panels in BEAGLE for

genotype imputation.

Software Implementation

Our imputation and haplotype-inference methods are

implemented in version 3.0 of the BEAGLE software

package, which is freely available. BEAGLE 3.0 enables users

to combine multiple data sets in a single analysis to increase

sample size and accuracy. In particular, users can simulta-

neously analyze phased and unphased data for unrelated

individuals and parent-offspring pairs and trios. BEAGLE is

written in Java and runs on all major computing platforms.

Appendix 1: Estimating Allelic R2

We have used the squared correlation between the

imputed most likely allele dosage and the true allele dosage

for a marker (allelic R2) to measure the accuracy of geno-

type imputation for the marker. This squared correlation

is an attractive measure because it has a simple interpreta-

tion in terms of sample size and power24 and because its

interpretation does not depend on the marker-allele

frequency. In this appendix, we show that the correlation

between the imputed and true allele dosage can be esti-

mated from the posterior genotype probabilities when
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the true genotypes are not observed. The results in this

study show that the estimate of allelic R2 has good accuracy

when the posterior genotype probabilities are accurately

calibrated and informative.

We use the following random variables: X ¼ the unob-

served true genotype, Y ¼ the imputed posterior genotype

probabilities, and Z ¼ the genotype with highest posterior

probability (based on Y).

The values of the random variables X and Z can take

values of 0, 1, or 2, corresponding to the number of copies

(dosage) of the minor allele in the genotype. The random

variable Y is a vector-valued random variable whose values

are ordered triplets (a0, a1, a2) where ak is the posterior

genotype probability of genotype k (k ¼ 0, 1, or 2). Assume

there are n individuals in the sample. Let yi be the ordered

triplet of posterior genotype probabilities in the i-th

sample, let yi(k) denote the posterior probability of geno-

type k in the i-th sample, and let zi be the most likely

imputed genotype in the i-th sample. We assume that

the posterior probabilities are accurately calibrated, so

that the probability P(X ¼ k j Y ¼ yi) ¼ yi(k).

The squared correlation (R2) between the unobserved

true allele dosage and the imputed allele dosage is equal to

R2 ¼ CovðX,ZÞ2=ðVarðXÞ VarðZÞÞ (1)

where Cov(X, Z) is the covariance of X and Z, and Var(X)

and Var(Z) are the variances of X and Z, respectively. We

can estimate R2 by expressing Cov(X, Z), Var(X), and

Var(Z) in terms of the imputed data zi and yi.

We estimate the variance of Z and X by using the sample

mean:

VarðZÞ ¼ E
�
Z2
�
� ðE½Z�Þ2

zð1=nÞSiz
2
i �

�
1=n2

�
ðSiziÞ2

VarðXÞ ¼ E
�
X2
�
� ðE½X�Þ2

¼ E
�
E
�
X2 jY

��
� ðE½E½X jY��Þ2

zð1=nÞSiE
�
X2 j yi

�
�
�
1=n2

� �
Si E½X j yi�

�2

Similarly, we use the sample mean to estimate covariance

of X and Z as

CovðX,ZÞ ¼ E½XZ� � E½X� E½Z�

¼ E½E½XZ jY�� � E½E½X jY�� E½Z�

zð1=nÞSi

�
zi E
�
X j yi

��
�
�
1=n2

� �
Si E

�
X j yi

��
Si zi

An estimate for allelic R2 is obtained by substituting the

values of E[X j yi] and E[X2 j yi] into the estimates for

Cov(X, Z) and Var(X) and using Equation 1. Let ui ¼
E[X j yi ] ¼ yi(1) þ 2yi(2) and wi ¼ E[X2 j yi ] ¼ yi(1) þ 4yi(2);

then
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Appendix 2: Haplotype Hidden Markov Models

Using Rabiner’s notation,16 the five components of a HMM

are as follows: (1) hidden states: S1, S2, . SN; (2) observed

values: v1, v2, ., vM; (3) state-transition probabilities:

aij is the probability of a state transition from state Si to

state Sj; (4) emission probabilities: bj(vk) is the probability

of observing value vk in state Sj; and (5) initial-state proba-

bilities: pi is the probability that the HMM process starts

in state Si.

We assume that there are D markers ordered in chromo-

somal order. For simplicity, we assume that all markers are

diallelic, but the model generalizes to the multiallelic case.

Our methods are applicable to any HMM that meets the

following two conditions. First, the HMM is leveled with

D levels (one level per marker). In a leveled HMM, each

state belongs to a single level, the first level consisting of

states with nonzero initial probabilities, and all state tran-

sitions with nonzero probability are from states at level l to

states at level l þ 1. Second, the set of observed values

consists of all alleles for all markers, and the only values

emitted with nonzero probability by states at level l are

alleles for the l-th marker.

We will call a HMM that satisfies the preceding condi-

tion a haplotype HMM. The class of haplotype HMMs is

very broad and includes the models used by many state-

of-the-art programs for inferring haplotype phase and

missing data (Li et al., 2007, Am. Soc. Hum. Genet.,

abstract 2071).7,13,27 Haplotypes, with or without missing

alleles, can be considered as sequences of emitted values

from the haplotype HMM. We assume that the observed

data is consistent with the haplotype HMM, so that stan-

dard HMM methods can be used for determining the prob-

ability of each sequence of hidden states that is consistent

with the observed data. In particular, we can sample

a sequence of states from the haplotype HMM, and we

can determine a probability distribution for the missing

data conditional on the observed allele data with standard

HMM methods.13,16

A haplotype HMM, H, determines HMMs for genotype

data from unrelated individuals, parent-offspring pairs,

and parent-offspring trios. For unrelated individuals,

phased genotype data is a pair of haplotypes. Thus, for an

individual, we use a HMM denoted H2, whose states are

ordered pairs of states from each level of H. For a parent

and offspring where one parent is ungenotyped, we use

a HMM H3, whose states are ordered triplets of states from

each level of H. The ordered triplets represent the genotyped

parent’s transmitted allele, the genotyped parent’s untrans-

mitted allele, and the child’s allele received from the ungen-

otyped parent. For parent-offspring trio data, we use a HMM

H4 whose states are ordered quartets of states from each level

of H. The ordered quartet represents the first parent’s trans-
The Americ
mitted and untransmitted alleles and the second parent’s

transmitted and untransmitted alleles.

The formal definition of the HMM, Hk for k ¼ 1, 2, 3, .,

is as follows. Let Ll be the set of states in H at level l. The

states of the HMM Hk are the union over l of all ordered

k-tuples of states in Ll. The transition probability between

two states of Hk is equal to the product of the element tran-

sition probabilities in H. For example, the transition prob-

ability from state (S1, S2, S3) to state (S4, S5, S6) in H3 is equal

to a13a24a36. The initial probability of a state s in Hk is the

product of the initial probabilities of the elements of s. For

example, the initial probability of state (S1, S2, S3) is p1p2p3.

The observed values in Hk are fk(v*) where v* is an ordered

k-tuple of emitted values of H, and fk are functions, described

below, that transform ordered k-tuples of values of H into

observed genotype data. The functions fk are not one to

one because genotypes are unordered pairs and k-tuples

are ordered. So calculations of emission probabilities

must sum over the inverse image fk
�1(fk(v*)) consisting of

all k-tuples of values in H that are mapped to fk(v*). For

each element of the inverse image, the probability of

observing the corresponding emission probability is the

product of the component emission probabilities in H. For

example, if f3
�1(f3(v1, v2, v3)) contains two elements, (v1, v2,

v3) and (v4, v5, v6), the probability of observing f3(v1, v2, v3)

in state (S7, S8, S9) is b7(v1)b8(v2)b9(v3) þ b7(v4)b8(v5)b9(v6).

With these definitions, Hk is a leveled HMM.

Given a haplotype HMM H, we use H2, H3, H4 to infer

phase and missing data in diploid individuals, parent-

offspring pairs, and parent-offspring trios, respectively.

The functions fk transform ordered k-tuples of values of

H into genotypes. For individuals, f2 maps the ordered

pair of values (v1, v2) to the corresponding unordered geno-

type. For parent-offspring data, f3 maps the ordered triplet

of values (v1, v2, v3) to parent genotype f2(v1, v2) and to

child genotype f2(v1, v3). For parent-offspring trio data,

f4 maps the ordered quartet of values (v1, v2, v3, v4) to

first-parent genotype f2(v1, v2), to second parent genotype

f2(v3, v4), and to child genotype f2(v1, v3).

Given a haplotype HMM and diploid data for a set of

individuals, parent-offspring pairs, or parent-offspring

trios, with or without missing data, one can use standard

HMM methods to sample a sequence of hidden states

(ordered k-tuples) conditional on the observed data or to

determine a probability distribution for missing data.

Sampled hidden states can be used for determining a

haplotype phasing consistent with the observed genotype

data.

Appendix 3: The BEAGLE Haplotype HMM

Appendix 2 details the general haplotype HMM frame-

work. Here, we describe the particular haplotype HMM

that we use in our method. The model is most easily

described by detailing the procedure from which it is built

with haplotype data.
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A BModel-building steps Figure 5. Building the BEAGLE HMM
(A) Building level lþ1 from level l. The first
step is merging. In this example, states S1

S2, and S4 are merged, and states S3 and S5

are merged. After merging, haplotype clus-
ters are split on the basis of the allele at
marker lþ1. All haplotypes in states S7

and S10 have allele 1 at this marker
whereas all haplotypes in states S8, S9

and S11 have allele 2.
(B) Transition probabilities between the
states at the two levels. All transitions
with nonzero probabilities are shown. Tran-
sitions with the same probability have the
same pattern on the arrow shaft.
The model-building process proceeds along a chromo-

some from marker to marker. Each step involves ‘‘merging’’

and ‘‘splitting’’ of haplotype clusters, which are the states of

the HMM. At the first level (corresponding to the first

marker) of the haplotype HMM, the haplotypes are clus-

tered according to the allele at the first marker. Thus for

a SNP marker, there will be two clusters (i.e., two states),

one containing all haplotypes for which the first allele is

the major allele, and the other containing all haplotypes

for which the first allele is the minor allele. In creating level

lþ1 from level l, a merging and a splitting step are applied.

The merging step involves calculating a merging score

(described below) for each pair of haplotype clusters. If

the smallest score is less than the threshold (given below),

the corresponding pair of haplotype clusters will be merged

into a single cluster, and the merging step is repeated with

the new set of haplotype clusters. Once all merging has

been completed, each haplotype cluster is split by the alleles

at marker lþ1. Again, for a SNP marker, all haplotypes in

a cluster carrying the major allele at marker lþ1 will form

one new cluster, whereas all haplotypes in the cluster

carrying the minor allele at marker lþ1 will form another

cluster. The new clusters obtained at the end of the splitting

procedure are the states of the haplotype HMM at level lþ1.

Figure 5A illustrates the process.

The merging score for two clusters at level l is obtained as

follows. In merging two clusters, we ask whether their prob-

abilities of allele sequences at markers lþ1, lþ2, . differ.

The score is the maximum over k (k ¼ 1, 2,.) and over all

possible sequences of alleles at markers lþ1, lþ2, ., lþk of

the observed frequency difference of this sequence between

the two clusters. The observed frequency accounts for any

weighting of individuals. For example, if cluster one

contains five fully weighted individuals, of whom three

have the sequence ACG at markers lþ1, lþ2, lþ3, plus three

individuals weighted at 0.1, of whom one has this

sequence, the observed frequency for this sequence in this

cluster is 3.1/5.3. A worked example for the case in which

all individuals have unit weight is given in our earlier

work.29 The threshold on the scores is sqrt(1/nx þ 1/ny),
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where nx and ny are the sum of the weights of each cluster

(e.g., 5.3 for the cluster described above). A rationale for

this threshold is given in our earlier work.29

All haplotypes within a cluster at level l have the same

allele at marker l because of the splitting process (see

Figure 5A). Thus, the emission probabilities are all 0/1. The

transition probabilities can be obtained from the cluster

counts. The transition probability from state SA at level l to

state SB at level lþ1 is the number of haplotypes in SB divided

by the sum of haplotype counts from all parent states of SB.

Because state SB is derived by merging and then splitting

states at the previous level, the parent states of SB are all

the states at level l that contribute to the merged cluster

from which state SB was derived (by splitting). For, example,

in Figure 5B, state S7 at level lþ1 has n1 haplotypes, and states

S1, S2, and S4, the parent states, have n1 þ n2 haplotypes

among them. Thus, the transition probability from S1 to S7

is n1/(n1 þ n2) (which is also the transition probability

fromS2 toS7 or fromS4 toS7).Asbefore, the haplotypecounts

are weighted counts if some individuals are down-weighted.
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