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The Distribution of Mitochondrial DNA Heteroplasmy
Due to Random Genetic Drift

Passorn Wonnapinij,1 Patrick F. Chinnery,2 and David C. Samuels1,*

Cells containing pathogenic mutations in mitochondrial DNA (mtDNA) generally also contain the wild-type mtDNA, a condition called

heteroplasmy. The amount of mutant mtDNA in a cell, called the heteroplasmy level, is an important factor in determining the amount

of mitochondrial dysfunction and therefore the disease severity. mtDNA is inherited maternally, and there are large random shifts in

heteroplasmy level between mother and offspring. Understanding the distribution in heteroplasmy levels across a group of offspring

is an important step in understanding the inheritance of diseases caused by mtDNA mutations. Previously, our understanding of

the heteroplasmy distribution has been limited to just the mean and variance of the distribution. Here we give equations, adapted

from the work of Kimura on random genetic drift, for the full mtDNA heteroplasmy distribution. We describe how to use the Kimura

distribution in mitochondrial genetics, and we test the Kimura distribution against human, mouse, and Drosophila data sets.
Introduction

Mitochondrial DNA (mtDNA) encodes several subunits of

the electron transfer chain. Defects in human mtDNA

cause a wide range of disease conditions, mainly resulting

from the impairment of ATP production in the cell. Some

examples of the inheritable pathogenic point mutations

in mtDNA are the m.3243A > G (MIM #590050.0001)

mutation causing mitochondrial encephalomyopathies

lactic acidosis and stroke-like episodes (MELAS, MIM

#540000),1 the m.8344A > G (MIM #590060.0001) muta-

tion causing myoclonic epilepsy with ragged-red fiber

(MERRF, MIM #545000),2 the m.8993T > G (MIM

#516060.0001) mutation causing neuropathy, ataxia, and

retinitis pigmentosa (NARP, MIM #551500)3,4 and a num-

ber of different point mutations causing Leber’s hereditary

optic neuropathy (LHON, MIM #535000).5–7

Any individual cell contains many copies of the mito-

chondrial genome. The mtDNA copy number per cell

ranges from a few hundred to a few hundred thousand

copies. Generally, cells containing a pathogenic mtDNA

mutation also contain the wild-type genome, a condition

called heteroplasmy. Important exceptions to this rule

are the mitochondrial diseases such as LHON, which

have a low penetrance of the disease phenotype within

families carrying the mutation. Individuals may be homo-

plasmic for these particular pathogenic mutations, often

while remaining asymptomatic, and this is generally

attributed to the lack of some necessary pathogenesis

cofactor, either genetic or environmental.

MtDNA is transmitted through the maternal lineage in

humans.8 In pedigrees with an inheritable heteroplasmic

mtDNA mutation, the measured heteroplasmy level often

shifts by large and apparently random amounts between

mother and offspring.9–11 These variations cause complica-

tions in estimating the recurrence risks of these genetic dis-
582 The American Journal of Human Genetics 83, 582–593, Novemb
eases and therefore in giving accurate genetic counseling

to a female carrying a pathogenic mtDNA mutation.12–14

The inheritance of mtDNA heteroplasmy is described by

the expected probability distribution of heteroplasmy

values in a sibling group. Until now, our ability to predict

heteroplasmy distributions has been limited to predicting

the mean value and the variance, the two lowest-order statis-

tics. On the basis of neutral genetic drift and standard hap-

loid population genetics, we have been able to predict that

the mean heteroplasmy in the offspring should be equal to

the mother’s heteroplasmy and that the variance of the

offspring heteroplasmy should have the following form15:

VðtÞ ¼ p0
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The variance of heteroplasmy, V, in a group of individuals

with a single common maternal ancestor after t genera-

tions can be calculated from the initial gene frequency,

p0, and the effective population size, Neff. This variance

equation is generally referred to in this field as the Sew-

ell-Wright formula. We note again that these equations

are based on the assumption of random genetic drift.

Although the mean and variance of the heteroplasmy

distribution in a population is useful information, it is

very limited information. It does not give us the hetero-

plasmy distribution itself. In particular, this is a problem

if the heteroplasmy distribution is not symmetric, which

must be the case at high and low heteroplasmy levels,

two extremes of enormous practical importance. Ideally,

we would want to be able to predict the entire hetero-

plasmy probability distribution. Fortunately, this problem

was solved in 1955 by Motoo Kimura.16 His solution was

for gene frequency probabilities in diploid populations,

but the application of this theory to mitochondrial hetero-

plasmy is straightforward. The variance in Equation 1 can
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be derived from Kimura’s theory, so the full Kimura theory

does not displace the previous work that has been done in

mitochondrial genetics on the basis of this variance equa-

tion. Instead, it greatly extends our capability to calculate

the full heteroplasmy distribution.

Kimura derived a set of probability distribution func-

tions to explain the gene frequency distribution of popula-

tions under pure random genetic drift. The underlying

assumptions of this derivation are nonoverlapping genera-

tions, no selection, no migration, no de novo mutation,

and a finite and steady population size.16 Kimura made

the assumption of a constant population size to simplify

the mathematics. Other work17 has shown that this as-

sumption is not necessary. If the population size is allowed

to vary, either through fluctuations18 or through events

such as population bottlenecks,17 then the definition of

the effective population size in terms of the actual popula-

tion size becomes complicated. That complication does

not concern us here because we will treat the effective pop-

ulation size, Neff, merely as a parameter of the model. The

solution of this model consists of three equations: a proba-

bility f(0,t) for losing an allele, a probability f(1,t) for fixing

on that allele, and a probability distribution function f(x,t)

that the allele is present at frequency x in the population.
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The meaning of each variable in these equations is the same

as for the Sewall-Wright variance formula (Equation 1). The

interpretation in terms of mitochondrial heteroplasmy is

straightforward; p0 is the mtDNA heteroplasmy level in

the maternal lineage founder and is also the mean hetero-

plasmy in the offspring distribution, f(0,t) and f(1,t) are the

probabilities of fixing on the wild-type or mutant,

respectively, in generation t, and x is the offspring hetero-

plasmy level. The function F(1� i, iþ2, 2, z) is the hypergeo-

metric function.For simplicity, wewill refer toEquations 2–4

as the Kimura distribution. Because this is a probability dis-

tribution, the integration of all three terms is equal to unity.

f ð0,tÞ þ
ð1

0

fðx,tÞdxþ f ð1,tÞ ¼ 1 (5)

Although the mathematical form of the Kimura distribution

is certainly complicated, and although care must be taken in

the numerical calculation of these equations, the distribu-

tion values can be calculated. In this paper, we apply the
The America
Kimura distribution to measurements of the mtDNA heter-

oplasmy distributions in humans, mice, and Drosophila.

Material and Methods

Experimental Data
The observed heteroplasmy distributions used in this paper have

been collected from several sources in the published litera-

ture.19–22 For experimental data that were available only in graph-

ical form, we used the software Engauge Digitizer to determine

approximate numerical values. The experimental data sets

analyzed here covered three organisms; human,19 mouse,21 and

Drosophila.20,22 The human study protocol was approved by the

participating institutional review boards.

Setting the Parameter Values for Kimura’s

Probability Distribution
The variance formula as it is normally written is a function of three

parameters; p0, t, and Neff. However, the form of the equations

Figure 1. The Heteroplasmy Distribution of the A3243G
mtDNA Mutation in a Sample of Human Primary Oocytes Is
Compared to the Kimura Distribution
(A) Frequency histogram of the heteroplasmy in both the data and
the Kimura distribution fit to the data. Parameter values for the
Kimura distribution are given in Table 1 for all figures.
(B) Cumulative probability distribution functions for the data and
the Kimura distribution fit to the data. A KS test indicates that
there is no significant difference between the measured and the
theoretical probability distributions.
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Table 1. The Parameters Estimated from Experimental Data: The Mean Heteroplasmy, p0, and the b Parameter Calculated from
the Variance and the p Value Calculated from the KS Test

Organism Lineage Sample Generations Mean Heteroplasmy, p0 Variance N b KS Test p Value

Humans

N/A primary oocytes - 0.1264 0.01432 82 0.8705 0.827

Mice

515 tail biopsy 1 0.051 0.00240 41a 0.9505 0.646

515 mature oocytes - 0.047 0.00646 31 0.8558 0.049*

517 tail biopsy 1 0.076 0.00447 43 0.9363 0.75

517 mature oocytes - 0.094 0.0119 26 0.8604 0.834

603A mature oocytes - 0.009 0.000185 49 0.9793 0.681

603A primary oocytes - 0.011 0.00023 49a 0.9789 0.037*

603B mature oocytes - 0.031 0.00098 31 0.9674 0.435

603B primary oocytes - 0.025 0.000638 46a 0.9738 0.223

Drosophila mauritiana

H1 unfertilized eggs 30 0.4150 0.18670 60 0.2310 0.004**

H1-31M 3 0.1784 0.00952 59 0.9350 0.587

H1-18D 3 0.4763 0.01711 31 0.9314 0.993

H1-12B 5 0.8155 0.02791 52 0.8146 0.865

G20-5 3 0.3250 0.01257 55 0.9430 0.922

G71-12 3 0.5834 0.01804 50 0.9258 0.542

Drosophila simulans

6YF16 3 0.1270 0.0096 44 0.9131 0.79

The ‘‘generations’’ column gives the number of organism generations, and thus this value is not given for samples of mature oocytes or primary oocytes. The

p0 parameter is obtained from the average of the heteroplasmy measurements. N is the number of samples from the experiment. The p value is the level of

significance for the null hypothesis that the experimental heteroplasmy distribution matches the Kimura distribution. The asterisks indicate significance

levels: * 0.01 < p < 0.05 and ** p < 0.01.
a In these three cases,we found discrepancies between the number of samples listed in the citedpaper21 and thenumber of samples actually given in the data set.
allows us to combine the t and Neff parameters into a single param-

eter that we call b, as follows.
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The new parameter b is then defined as

b ¼ e�t=Neff (7)

Substituting these parameters into the Kimura probability density

functions simplifies them to a two-parameter model, with param-

eters p0 and b, which both range from zero to one.
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Given a data set of mtDNA heteroplasmy values for a set of indi-

viduals arising from a common founder, we can fit a Kimura

probability distribution to the heteroplasmy values by determin-
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ing the values for the two parameters p0 and b. These two param-

eters can be determined from the two lowest-order statistics of

the data set; the mean and the variance. We take the parameter

p0 to be equal to the mean heteroplasmy value of the data set.

Then we can use Equation 6 to determine the parameter b from

p0 and the variance of the data. The entire data set, including het-

eroplasmy values fixed at the two extremes of 0 and 1, is used in

the calculation of the variance and p0 and then is used in the

calculation of b.

Calculating the Numerical Value

of the Hypergeometric Function
Accurately calculating the numerical value of the hypergeometric

function F(a,b,c,z) is a difficult technical problem. Because this

is a fundamental mathematical function, this issue has been

faced in many different scientific fields. Recently, as a solution

to this problem occurring in a spectroscopy application, Hoang-

Binh23 developed an accurate and practical algorithm for the

numerical calculation of hypergeometric functions, and we

have followed this method. This method uses the following

recurrence relation:

Fð�1Þ ¼ Fð�1,b,c,zÞ ¼ 1� ðbz=cÞ (11)

Fð0Þ ¼ Fð0,b,c,zÞ ¼ 1 (12)

ða� cÞFða� 1Þ ¼ að1� zÞ½FðaÞ � Fðaþ 1Þ� þ ðaþ bz� cÞFðaÞ (13)
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Numerical Calculation of the Kimura

Probability Distributions
The infinite series in Equations 8–10 were truncated when the

difference between the i þ 1 and i terms became less than 10�4.

Note that the infinite series in Equations 8–10 have oscillating

sign terms, so numerical convergence of these series is slow. We

tested the accuracy of the resulting probability distributions by

calculating the integral in Equation 5; this integral which should

be unity. The difference of the numerical calculation from unity

in the results presented here was typically on the order of 10�5,

and the maximum difference was less than 0.004. All calculations

were carried out in C programs, which are available from the

authors (details are given in Web Resources).

Statistical Test
We applied the Kolmogorov-Smirnov (KS) test to compare the

experimental data for mtDNA heteroplasmy distributions to the

Kimura probability distributions. Because the parameters for

the theoretical Kimura probability distributions were determined

from the statistics of the experimental data sets, the p values of

Figure 2. The Measured Heteroplasmy
Distribution from Offspring and Mature
Oocytes in the Heteroplasmic Mouse
Line 515 Is Compared to the Kimura
Distribution
(A) The heteroplasmy frequency histogram
from the offspring.
(B) KS test comparing the offspring heter-
oplasmy data to the Kimura distribution fit
to the data.
(C) The heteroplasmy frequency histogram
of the mature oocytes in the 515 line.
(D) KS test for the line 515 mature oocyte
data. There is a significant difference
between the two distributions in the
mature oocyte data.

this comparison had to be determined

from Monte-Carlo simulations.24 For the

Monte-Carlo simulations, 1000 simulated

data sets with the same population size as

the experimental data set were drawn

from the theoretical distribution, and

the p values were determined from the

fraction of simulated data sets whose

maximum deviation from the theoretical

probability distribution was larger than

the maximum deviation of the experimen-

tal data set.

Results

The Kimura distribution represents

the distribution of heteroplasmy

that develops through random ge-

netic drift in a population of cells or

individuals who all are descended by

an equal number of generations from a single heteroplas-

mic progenitor cell or individual. To compare the Kimura

distribution to experimental data, we need data sets that

satisfy this condition and also contain a large number of

individual heteroplasmy measurements so that the proba-

bility distribution of the heteroplasmy measurements can

be determined. From a search of the literature, we identi-

fied four publications19–22 containing a total of 16 data

sets to analyze. For each data set, we used the mean and

variance of the heteroplasmy measurements to set the p0

and b parameters in the Kimura distribution as described

in the Material and Methods. Then histograms of the

measured heteroplasmy distributions were compared to

histograms of the fit Kimura distributions. Finally, a KS

test comparing the cumulative probability distributions

of the experimental data with the theoretical Kimura

probability distributions was carried out. The 16 data sets

analyzed consisted of one human data set, eight mouse

data sets, and seven Drosophila data sets.
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Human Data

No human pedigree data set is large enough to make a good

test of the Kimura distribution. However, there is one

human data set that is large enough. Brown et al.19 pub-

lished a study of the heteroplasmy distribution of 82 single

primary oocytes derived from an ovary of a female with the

pathogenic 3243A>G mtDNA point mutation. This tissue

sample was available because this woman underwent a

hysterectomy for reasons unrelated to any mitochondrial

disease. This woman was asymptomatic and had a muta-

tion level of 18.11% determined from a quadriceps biopsy

and of 7.24% of the mutant type in her leukocytes.19 We

note here that the mutation level of the 3243A > G muta-

tion decreases with age in blood samples.25

Figure 1 presents the comparison of the measured heter-

oplasmy distribution in the human primary oocytes and

the Kimura distribution fit to the data. The Kimura distri-

bution is a very good fit to the measured heteroplasmy

distribution, and this is confirmed by the KS test, which

Figure 3. The Measured Heteroplasmy
Distribution from Offspring and Mature
Oocytes in the Heteroplasmic Mouse
Line 517 Is Compared to the Kimura
Distribution
(A) The heteroplasmy frequency histogram
from the offspring.
(B) KS test comparing the offspring heter-
oplasmy data to the Kimura distribution fit
to the data.
(C) The heteroplasmy frequency histogram
of the mature oocytes in the 517 line.
(D) KS test for the data from line 517
mature oocytes.

gives a p value of 0.827 for the null

hypothesis that the experimental

data are consistent with the Kimura

distribution (Table 1). The limited

amount of human heteroplasmy

data currently available indicates

that the theoretical Kimura probabil-

ity distribution is a good tool for cal-

culating the distribution of mtDNA

heteroplasmy in a population derived

from a single founder.

Mouse Data

Given the limited amount of human

data available, it is important to

extend this analysis to the existing

animal models for the inheritance of

mtDNA heteroplasmy. Jenuth et al.21

published a seminal paper on a mouse

model of mtDNA heteroplasmy inher-

itance. In this study, they used mice

that were heteroplasmic for two

mtDNA haplogroups, NZB and BALB. These heteroplasmic

mice were produced by an electrofusing cytoplast tech-

nique. The data in this study included heteroplasmy mea-

surements on sets of primary oocytes (as in the human

data analyzed above), mature oocytes, and tail samples

from offspring; each data set was derived from a single

founder female.

Figures 2–5 present the comparisons of the Kimura

distributions to the heteroplasmy distributions in eight

data sets from the mouse model. In six of the eight data

sets, the null hypothesis is not rejected, indicating that

the Kimura distribution is a good representation of the

distribution of the heteroplasmy values in these data sets

(Table 1). The null hypothesis was rejected in two of the

data sets: the mature oocytes from line 515 (Figures 2C–2D,

p¼ 0.049) and the primary oocytes from line 603A (Figures

4C and 4D, p ¼ 0.037). For the data set consisting of line

515 mature oocytes, the difference between the observed

heteroplasmy distribution and the fit Kimura distribution
586 The American Journal of Human Genetics 83, 582–593, November 7, 2008



is largest for the number of cells with zero heteroplasmy for

the BALB mtDNA haplotype, and fewer of these cells were

observed in the experiment than were predicted by the

Kimura distribution. For the data set of primary oocytes

from the 603A mouse line (Figures 4C and 4D), the largest

difference between the observed heteroplasmy distribu-

tion and the Kimura distribution is the lack of observation

of any cells with NZB haplotype heteroplasmy in the range

0.1%–0.5%, despite the large number of cells with levels of

0% and 0.5%–1.0% in the neighboring bins. Jenuth et al.

remarked on this odd result of the missing heteroplasmy

values.21 For the other six mouse data sets, the Kimura

distributions do provide a good representation of the

observed mtDNA heteroplasmy distributions (Figures 2–5).

Drosophila Data

The Drosophila data sets consist of data from two species,

D.mauritiana andD.simulans. Inbothcases theheteroplasmy

measurements were made in a sample of unfertilized eggs.

Figure 4. The Measured Heteroplasmy
Distribution from Mature Oocytes and
Primary Oocytes in the Heteroplasmic
Mouse Line 603A Is Compared to the
Kimura Distribution
(A) The heteroplasmy frequency histogram
of the mature oocytes in the 603A line.
(B) KS test for the data from line 603A
mature oocytes.
(C) The heteroplasmy frequency histogram
of the primary oocytes in the 603A line.
(D) KS test for the data from line 603A
primary oocytes. There is a significant dif-
ference between the two distributions for
the primary oocyte data.

For D. mauritiana we had six data

sets for which the mtDNA hetero-

plasmy was defined by the difference

in the length of an AþT-rich region

of the mitochondrial genome.22 Fig-

ures 6 and 7 present the comparisons

of the fit Kimura distributions to the

measured Drosophila heteroplasmy

distributions. For five of the six data

sets, the null hypothesis is not re-

jected (Table 1), and the fit Kimura

heteroplasmy distributions show

a very good correspondence to the

observed heteroplasmy distributions.

For one data set (Figures 6A and 6B,

p ¼ 0.004), the differences between

the Kimura distribution and the mea-

sured heteroplasmy distribution are

quite large. This is interesting because

this data set is unique in another way:

The number of generations from the

founder in this data set is very large at 30 generations,

about ten times larger than the number of generations in

the other five data sets.

The D. simulans data consist of a single data set where

the mtDNA heteroplasmy was generated by cytoplasmic

injection forming a mixture of the siIII and siII mtDNA

genomes,20 two naturally occurring mtDNA sequences in

this species. The comparison of the data to the Kimura

distribution is given in Figure 8. Here the null hypothesis is

not rejected, and the Kimura distribution is a good represen-

tation of the observed mtDNA heteroplasmy distribution.

Discussion

In the field of mitochondrial genetics, the Sewall-Wright

variance formula has been generally used as the primary

data analysis method for determining the effect of random

genetic drift on mtDNA heteroplasmy values. Researchers
The American Journal of Human Genetics 83, 582–593, November 7, 2008 587



have used this simple function both to examine the ability

of random genetic drift to explain mtDNA segregation

and to predict the rate of mtDNA segregation from

assumptions about the size of the mtDNA segregating

unit.19,21,22 The advantage of the Sewall-Wright variance

formula is its simplicity and ability to estimate most

parameters from experimental data (although estimating

the effective population size Neff in Equation 1 has always

been a problem).

However, the weakness of this simple approach is that

it concentrates on just the two lowest-order statistics,

the mean and the variance, and it ignores the rest of the

information that is present in the total heteroplasmy

distribution. This is of particular importance when the

heteroplasmy distribution is not symmetric (not a normal

distribution), as it must be at the extremes of low and high

heteroplasmy. The shape of the heteroplasmy distribution

at high-mutation heteroplasmy values is important for

understanding the consequences of pathogenic effects,

which generally only appear in individuals with a high

level of the mtDNA mutation. The distribution at low

Figure 5. The Measured Heteroplasmy
Distribution from Mature Oocytes and
Primary Oocytes in the Heteroplasmic
Mouse Line 603B Is Compared to the
Kimura Distribution
(A) The heteroplasmy frequency histogram
of the mature oocytes in the 603B line.
(B) KS test for the data from line 603B
mature oocytes.
(C) The heteroplasmy frequency histogram
of the primary oocytes in the 603B line.
(D) KS test for the data from line 603B
primary oocytes.

heteroplasmy values is important

because this range is directly affected

by any de novo mutation rate. The

heteroplasmy distribution near zero

also is important for determining

the clearance of a pathogenic muta-

tion from a population. Because these

extremes are arguably the most im-

portant parts of the heteroplasmy

range, any approach that implicitly

assumes a normal distribution has

severe limitations. Using the Kimura

distribution as a model for the hetero-

plasmy distribution across its entire

range from 0%–100%, as well as the

fixation rate on the extremes, frees

us from those limitations and gives

us a significant new tool in our

analysis of mtDNA heteroplasmy

inheritance.

The additional information that we can get from using

the Kimura distribution comes at a cost: the increased math-

ematical complexity of Equations 2–5. These equations are

difficult to use, and the numerical computation must be

done carefully if accuracy problems are to be avoided.23

Two possible alternatives to the Kimura distribution are

the normal distribution and the binomial distribution.

Examples of the Kimura distribution, the normal distribu-

tion, and the binomial distribution with equal values for

the mean and the variance in all three distributions are

given in Figure 9. As discussed above, normal distributions

(Figure 9B) do not correctly describe heteroplasmy distribu-

tions over the finite range of 0%–100% and do not address

the important question of fixation. Although binomial

distributions are nonsymmetric, cover only a finite hetero-

plasmy range, and can deal with fixation, they assume that

heteroplasmy values come only in discrete steps (Figure 9C),

which is not consistent with the available heteroplasmy

distribution data. Despite its mathematical complexity,

the Kimura distribution is the best available tool for describ-

ing mtDNA heteroplasmy distributions.
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An alternative computational approach to determining

heteroplasmy distributions is the use of direct simulation

models. These include simulations of mtDNA replication

in individual cells,26,27 simulations of mtDNA dynamics

in embryogenesis,28 and relatively simple multiple sam-

pling models.29 We note that Poulton29 presented one

heteroplasmy distribution from a multiple-sampling

simulation model that at least qualitatively resembles the

Kimura distribution. Direct simulation models have the

advantage of flexibility in that additional mechanisms

such as selection effects and de-novo mutations can easily

be added to the simulation, but they have the limitation of

only presenting results for specific parameter values. The

equations of the Kimura distribution have the advantage

of explicit definition (something that is often not clear

in a simulation) and the presentation of results for all

possible parameter values. These two computational ap-

proaches are complimentary. Indeed, as discussed below,

the Kimura distributions can be used as a tool in develop-

ing population-level simulation models of mitochondrial

genetics.

Figure 6. The Measured Heteroplasmy
Distribution from Unfertilized Eggs in
the Heteroplasmic Drosophila mauriti-
ana Lines H1, G20-5, and G71-12 Is
Compared to the Kimura Distribution
(A) The heteroplasmy frequency histogram
of the Drosophila line H1 and the Kimura
distribution fit to the mean and variance
values from these data.
(B) The KS test comparing the data with
the Kimura distribution. There is a signifi-
cant difference between the two distribu-
tions for line H1.
(C) The heteroplasmy frequency histogram
for the Drosophila line G20-5 is compared
to the Kimura distribution.
(D) KS test comparing the data for Drosoph-
ila line G20-5 to the Kimura distribution.
(E) The heteroplasmy frequency histogram
from the Drosophila line G71-12 is
compared to the Kimura distribution.
(F) KS test comparing the data for Drosoph-
ila line G71-12 to the Kimura distribution.

Only one human data set19 was

large enough to allow a useful com-

parison against the Kimura distribu-

tion. It would be extremely useful to

have further human data sets of this

type, covering a wide range of mean

heteroplasmy values, in order to

more thoroughly test the application

of the Kimura distribution to human

mtDNA heteroplasmy distributions.

Further human data sets would also

allow us to explore important ques-

tions such as how much the b parameter in this model

varies across the population (essentially, this corresponds

to how variable the inheritance bottleneck is in the human

population30–32). With the limited human data currently

available, and the data from the mouse and Drosophila

models, the Kimura distributions are consistent with the

experimental data in 13 of the 16 data sets analyzed.

Because the Kimura distribution only represents the

effects of random genetic drift, deviations from that distri-

bution may give us information about the other mecha-

nisms that are occurring, most importantly selection

effects and de novo mutation. Of the three data sets in

which the null hypothesis was rejected, the data in Fig-

ures 6A and 6B are of particular interest. These data are

from the 30th generation after the founder female, by far

the longest generational separation in any of these data

sets. It is reasonable to assume that this large number of

generations would accentuate effects such as selection or

de novo mutations, which might be negligible over shorter

time spans. With the very large variance in this data set

(Table 1), the theoretical distribution is relatively flat, and
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there are sharp peaks at the fixed points 0% and 100%,

which act as absorbing states in the random-drift model

(in other words, once a female individual fixes at either

extreme, all descendents remain at that fixed state). In

contrast, the observed heteroplasmy distribution has a

‘‘U’’ shape, such that the probability distribution rises

toward each end of the heteroplasmy extreme. It is difficult

to construct a mechanism whereby selection could form

such a distribution, unless one were to argue for a selection

mechanism that had maximum effect at around 50%

heteroplasmy and low effects at either heteroplasmy ex-

treme. A more plausible explanation would be that the

two fixed states in this case were not absolutely fixed and

that there was some production of heteroplasmic descen-

dents from homoplasmic females in both fixed states.

These de novo mutation mechanisms, acting over 30 gen-

erations, could form the U-shaped distribution seen in

Figure 6A. One could also speculate that the shape of the

observed heteroplasmy distribution in Figure 6A suggests

that the de novo mutation rate of the formation of the

longer genome from the shorter genome (i.e., away from

Figure 7. The Measured Heteroplasmy
Distribution from Unfertilized Eggs in
the Heteroplasmic Drosophila mauriti-
ana Lines H1-31M, H1-18D, and
H1-12B Is Compared to the Kimura Dis-
tribution
(A) The heteroplasmy frequency histogram
from the Drosophila line H1-31M and the
Kimura distribution.
(B) The KS test comparing the hetero-
plasmy data for Drosophila line H1-31M to
the Kimura distribution.
(C) The heteroplasmy frequency histogram
from the Drosophila line H1-18D is com-
pared to the Kimura distribution.
(D) KS test comparing the Drosophila line
H1-18D to the Kimura distribution.
(E) The heteroplasmy frequency histogram
from Drosophila line H1-12B is compared
to the Kimura distribution.
(F) KS test comparing data for Drosophila
line H1-12B and the Kimura distribution.

the fixed state at heteroplasmy 0%)

is the larger of the two mutation rates.

Finally, let us discuss the roles of

the parameters p0 and b. We defined

the parameter b (Equation 7) to re-

place a combination of the parameter

t, the number of generations, and the

parameter Neff, a statistical parameter

related to the number of segregating

units of mtDNA (though not neces-

sarily directly equal to it). In this

paper we have analyzed only a single

generation at a time, and we have not

applied this analysis to follow the heteroplasmy distribu-

tion over multiple generations. One could certainly use

the Kimura distribution to follow the distribution over

multiple generations, in which case the formulation of

Equations 2–5, which are written in terms of t and Neff,

should be used. The parameter p0 can be interpreted as ei-

ther the mean heteroplasmy in the data set or the hetero-

plasmy in the founder. In the case of pure random drift, the

two are the same, but other effects may cause a shift in

mean heteroplasmy over the generations. This distinction

in the definition of p0 may be important in some cases.

One example of this is the D. Simulans data set (Figure 8),

Even though the Kimura distribution fit to this data is a

good model of the heteroplasmy distribution (p ¼ 0.79),

in that experiment the mean heteroplasmy was observed

to shift from an initial value of 38.5% in the founder to

a value of 12.7% in the third generation.20 This was reason-

ably interpreted as indicating a selection effect in this

experiment. Despite the apparently strong selection effect,

the heteroplasmy distribution in the third generation is

still well described by a Kimura distribution with the value
590 The American Journal of Human Genetics 83, 582–593, November 7, 2008



p0 ¼ 0.127. The lesson here is that even if a Kimura distri-

bution, derived from neutral-drift theory, fits the observed

heteroplasmy distribution, this is not enough in itself to

allow us to determine that neutral drift alone has shaped

that heteroplasmy distribution. Instead, the old standard

method of measuring the changes in the mean hetero-

plasmy over a number of generations must continue to

be used. The use of the Kimura distribution adds valuable

information to our previous analysis techniques, but it

does not invalidate them.

What the Kimura-distribution theory presented here

allows us to do that we could not do before is to predict

the complete probability distribution, including the proba-

bility of fixing on the wild-type and on the mutant mtDNA,

for mtDNA heteroplasmy values in a group of offspring.

Although this predictive ability is under the assumption

of random genetic drift, this is a necessary first step to which

important complications such as selection effects and de-

novo mutations may then be added in further development

of this theoretical model. The comparisons of the Kimura

distributions to the experimental data sets presented in

this paper are one use of these equations, but these compar-

isons are primarily made here as a validation of the applica-

Figure 8. Comparison of Measured Heteroplasmy Distribution
from Drosophila simulans Unfertilized Eggs with the Kimura
Distribution
(A) Heteroplasmy frequency histogram and the Kimura distribution
fit to these data.
(B) KS test comparing the data to the Kimura distribution.
The America
tion of this theory to mitochondrial genetics. The Kimura

distribution equations give us a theoretical framework for

the field of mitochondrial heteroplasmy.

A recent study by Elliot et al.33 of the prevalence of a set

of ten pathogenic mtDNA point mutations has shown that

these pathogenic mutations are relatively common in the

general population, where it has been measured that 1 in

200 individuals carries one of these ten mtDNA mutations.

With this new appreciation of how widespread mtDNA

heteroplasmy actually is, the ability to calculate the com-

plete heteroplasmy distribution by using the Kimura distri-

bution as a model of random genetic drift is an important

tool for understanding the heteroplasmy distribution in

the general population.

One potential application of this new theoretical tool is

the calculation of simulated pedigrees. These simulated

pedigrees may be used as tools for analyzing clinical pedi-

grees, for example in a Monte-Carlo test to define a p value

for a particular clinical pedigree tested against the null

hypothesis of random genetic drift. One could also use

the theoretical heteroplasmy distribution to calculate

disease occurrence probabilities, based on a heteroplasmy

threshold for the disease phenotype, for use in genetic

counseling. Further testing of the theory, and in particular

more human data such as that in Figure 1, will be needed

before that becomes a practical application. Finally, the cal-

culation of simulated pedigrees based on this theoretical

heteroplasmy distribution could be extended to model

large-scale populations. That model could be tested against

recent33 and future measurements of the occurrence of

mtDNA heteroplasmy and will help us understand the

Figure 9. Comparison of a Kimura Distribution, Normal Distri-
bution, and Binomial Distribution with Mean ¼ 0.1 and Vari-
ance ¼ 0.01
(A) Kimura distribution. The probability density f(x) is plotted.
(B) Normal distribution.
(C) Binomial distribution. The mean and variance values require
a range of discrete states from zero to nine, giving discrete prob-
ability values of 0, 1/9, 2/9, etc.
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development and spread of pathogenic mtDNA mutations

in the human population.
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