
Identification of the tyrosine nitration sites in human endothelial
nitric oxide synthase by liquid chromatography-mass
spectrometry

Michael A. Zickusa, Fabio Fonsecab, Monorama Tummalaa,c, Stephen M. Blackb,*, and Victor
Ryzhova,*

a Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA

b Vascular Biology Center, Medical College of Georgia, 1459 Laney Walker Blvd, CB-3210B, Augusta, GA
30912, USA

Abstract
The formation of nitric oxide (NO) in biological systems has led to the discovery of a number of
post-translational protein modifications that can affect biological conditions such as vasodilation.
Studies both from our laboratory and others have shown that beside its effect on cGMP generation
from soluble guanylate cylcase, NO can produce protein modifications through both S-nitrosylation
of cysteine residues. Previously, we have identified the potential S-nitrosylation sites on endothelial
NO synthase (eNOS). Thus, the goal of this study was to further increase our understanding of
reactive nitrogen protein modifications of eNOS by identifing tyrosine residues within eNOS that
are susceptible to nitration in vitro. To accomplish this, nitration was carried out using
tetranitromethane followed by tryptic digest of the protein. The resulting tryptic peptides were
analyzed by liquid chromatography/mass spectrometry (LC/MS) and the position of nitrated
tyrosines in eNOS were identified. The eNOS sequence contains 30 tyrosine residues and our data
indicate that multiple tyrosine residues are capable of being nitrated. We could identify 25 of the 30
residues in our tryptic digests and 19 of these were susceptible to nitration. Interstingly, our data
identified four tyrosine residues that can be modified by nitration that are located in the region of
eNOS responsible for the binding to heat shock protein 90 (Hsp90), which is responsible for ensuring
efficient coupling of eNOS.

Introduction
The nitric oxide synthase (NOS) family of enzymes is responsible for NO production in vivo.
NOS is a multigene family of at least three isoforms: inducible (iNOS), neuronal (nNOS), and
endothelial (eNOS), of which eNOS is responsible for the production of endothelium-derived
NO, an important mediator of pulmonary vascular tone and vascular reactivity.1,2 Endothelial
NOS localizes in the Golgi complex of cultured bovine aortic endothelial cells, in human
umbilical vein endothelial cells and in intact human blood vessels.3–6 Activation of eNOS
occurs when endothelial cells are exposed to certain stimuli such as shear stress, resulting in
increased NO production.2 The endothelial-targeted enhancement of eNOS activity appears
particularly promising because it induces vasorelaxation, inhibits platelet aggregation and
antagonizes microcirculatory disturbances which helps maintain vascular homeostasis.7 NO
synthases have been characterized as cytochrome P450-like hemeproteins that require
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tetrahydrobiopterin (BH4), FMN and FAD as cofactors, and catalyze the NADPH-dependent
oxidation of L-arginine to form NO and L-citrulline.8–10

The formation of reactive nitrogen species from •NO requires the presence of oxidants such as
superoxide radicals (O2

•−), hydrogen peroxide (H2O2) and transition metal centers, the
concentration of which can be increased either by •NO itself or by the same mediators that up-
regulate •NO production.11–14 These reactive nitrogen species (such as peroxynitrite
ONOO−) are known to modify methionine, tryptophan, cysteine and tyrosine residues in
proteins and peptides.12,14 One of the molecular footprints left by the reactions of reactive
nitrogen species with biomolecules is the nitration itself (i.e., the substitution of a hydrogen
atom for a nitro group, −NO2) of protein tyrosine residues to produce 3-nitrotyrosine.11 The
formation of protein 3-nitrotyrosine was originally addressed in early protein chemistry studies
with tetranitromethane (TNM) aimed at establishing the function of tyrosine residues in
proteins.11,15 This now-established post-translational modification attracts considerable
interest to biomedical research, because it can alter protein function, is associated with acute
and chronic disease states and can be a predictor of disease risk.11

Our previous studies have shown that the presence of exogenous NO inhibits the activity of
eNOS both in cultured cells,16 the purified eNOS protein17 and in lambs exposed to inhaled
NO.16,18 We have also shown that the inhibitory effect of NO is mediated, at least in part,
through the disruption of the eNOS dimer and that is associated with the release of zinc due to
destruction of the zinc tetrathiolate cluster.19,20

Although there are a number of analytical techniques available for studying proteins, mass
spectrometry (MS) is the premier tool in proteomics.21,22 Unique features of MS include good
mass accuracy, excellent sensitivity and unparalleled specificity.23 Our group has successfully
used mass spectrometry to investigate the S-nitrosylation both in short eNOS peptides24 and
in the eNOS protein itself.25 Unlike the labile S-nitrosylation which requires several steps in
MS-based analysis,25–27 tyrosine nitration is a stable, covalent modification. A single tyrosine
nitration results in the mass increase of 45 Da in the tyrosine residue. In the presence of excess
nitrating agent a double nitration (mass increase of 90 Da) is possible. Both singly and doubly
nitrated tyrosine residues are stable under conventional MS/MS conditions (collision-induced
dissociation and especially electron transfer dissociation). Thus, tyrosine-nitrated proteins can
be studied by conventional proteomic techniques directly and there have been numerous mass
spectrometry-based studies of this post-translational modification.28–32

The aim of this work was to identify the sites of tyrosine nitration in vitro using recombinant
human eNOS protein.

Materials and methods
Materials

Trypsin was purchased from Promega (Madison, WI, USA). Ammonium bicarbonate,
dithiothreitol, tetranitromethane, and iodoacetamide were all obtained from Sigma-Aldrich (St
Louis, MO, USA). C18 Zip-Tips were obtained from Millipore (Bedford, MA, USA). BioSpin
P-30 Tris columns were obtained from BioRad (Hercules, CA, USA). All solvents were of
HPLC grade and purchased from Fisher Scientific (Fairborn, NJ, USA).

Expression and purification of human eNOS
The poly-His-pCWeNOS plasmid was transformed into the protease-deficient E. coli strain
BL21 (DE3) pLysS (Novagen). Cells were grown in Luria broth with 1% glycerol containing
200 μg mL−1 ampicillin and 40 μg mL−1 chloramphenicol. Cultures were grown at 28°C until
an OD600 of 0.8 was reached. Approximately one hour before that heme precursor δ-
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aminolevulinic acid (0.5 mM final concentration) was added. Cells were then induced by
adding IPTG (0.8 mM final concentration), 0.5 mM ATP and 3 μM riboflavin were also added
and the cells were then grown at 22°C for a further 48 h in the dark. Cells were then harvested
by centrifugation (15 min at 4000 × g at 4°C). The cell pellet was resuspended in lysis buffer
[40 mM N- (2-hydroxyethyl) piperazine-N- (3-Propane sulfonic acid) (EPPS), pH 7.6
containing 1 mg mL−1 lysozyme, 150 mM NaCl, 0.5 mM L-arginine, 4 μM H4B, 2 μM FAD,
10% glycerol and protease inhibitor cocktail (Sigma) were added according to the
manufacturer’s recommendation. The bacterial suspension was incubated with mild shaking
at 4°C for 30 min to ensure complete cell lysis. Cells were broken by sonication using three
25 s pulses followed by three cycles of freezing and thawing. Cell debris was removed by
centrifugation at 30,000 × g for 30 min at 4°C. The supernatant was then applied to a Ni-NTA
His-Bind Superflow (Novagen) column pre-equilibrated with Buffer A (40 mM EPPS, pH 7.6,
containing 150 mM NaCl, 10% glycerol, and 0.5 mM L-Arginine. The column was washed
with five bed volumes of buffer A followed by Buffer B (Buffer A with 25 mM imidazole).
The bound protein was then eluted with Buffer C (Buffer A + 200 mM imidazole). The heme-
containing fractions were pooled and concentrated using centriprep-100 YM-10 (Millipore).
The concentrated protein was dialyzed against three changes of Buffer A containing 4 μM
H4B and 1 mM DTT. The protein were further purified by using a 2′5′-ADP-sepharose column
equilibrated with 40 mM tris-buffer pH 7.6, containing 1 mM L-arginine, 3 mM DTT, 4 μM
H4B, 4 μM FAD, 10% glycerol and 150 mM NaCl (Buffer D) and washed with buffer D
containing 400 mM NaCl to prevent non specific binding. eNOS was then eluted with Buffer
E (Buffer D with 5 mM 2′AMP). The heme containing fractions were pooled, concentrated
and dialyzed at 4°C against buffer D containing 1 mM DTT, 4 μM BH4, 4 μM FAD and 10%
glycerol and stored at −80°C until used. The DTT, BH4 and FAD were removed by repeated
buffer exchange using a centricon filter when required.

Nitration of eNOS
The eNOS samples were prepared in an ammonium bicarbonate buffer (pH 7.8) and nitrated
using tetranitromethane (TNM). A 150 μL aliquot of eNOS protein (1 mg mL−1) was mixed
with 15 μL of 50 mM TNM solution and incubated for 15 min at 37°C. Excess nitrating agent
was removed by running the reaction mixture through a BioSpin column. Nitrated eNOS was
then dried using Ar gas and reconstituted in the buffer of choice for the tryptic digest.

Tryptic digest
The sample was digested using a typical tryptic digest protocol described in the literature.22
The digested protein was dissolved in water (1 mg mL−1) and a 150 μL aliquot was used. First,
200 μL of 8 M urea in 0.4 M ammonium bicarbonate (pH 7.5–8.5) was added to the digestion
buffer. Next, 50 μL of 45 mM dithiothreitol (DTT) was added and incubated at 50°C for 15
min to reduce the disulfide bonds. The reaction mixture was cooled to room temperature, then
50 μL of 100 mM iodoacetamide (IAA) was added and left in the dark for 15 min. The digestion
buffer was then diluted to 2 M urea and 0.1 M ammonium bicarbonate by adding 350 μL of
water, water:acetonitrile (80:20, v:v) or water:methanol (80:20, v:v). Finally, 20 μg of
sequence-grade modified trypsin was added to 200 μL of 50 mM acetic acid. Then, 50 μL of
that trypsin solution was added to the digestion buffer and incubated at 37°C overnight (times
between 8 h to 24 h were used). The digestion was stopped by either freezing or acidifying the
sample with TFA (100 μL of 3% TFA solution). Five eNOS digests were performed, varying
the time and solvent composition.

LC/MS/MS analysis
Peptide samples were desalted and concentrated by Zip-Tip, and then analyzed by on-line
reverse-phase LC-MS/MS or nano-LC-MS/MS on a ThermoElectron (San Jose, CA, USA)
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LCQ Advantage quadrupole ion trap mass spectrometer. For capillary LC, about 100 pmoles
of the eNOS digest were injected onto a 15 cm × 0.3 mm C18 column (Phenomenex). For
nano-LC, approximately 4 pmoles of the modified eNOS digest was injected onto a 10 cm ×
75 μm, C18-packed nanospray tip (particle size 3 μm). The flow rate was 4 μL min−1 (200 nL
min−1 for nanospray) with a gradient of 3% to 80% B for 40 min. Solvent A was 0.1% formic
acid in water (v/v) and solvent B was 100% Acetonitrile/0.1% (v/v) formic acid. Peptide ions
were fragmented by collision-induced dissociation.

This raw data was then searched against a database of human nitric-oxide synthase with no
enzyme assumptions but with possible modifications of single and double nitration on tyrosine
(+45 Da for single nitration and +90 Da for double nitration) as well as alkylation of cysteines
by IAA (+57 Da) and oxidation of cysteine and methionine (+1 Da) using ThermoElectron
TurboSequest software according to published procedures.21–23

Analysis of 3D structure of eNOS
A three-dimensional structure of the oxygenase domain of eNOS was obtained from the
Swissprot protein database (http://www.swissprot.ch) and inspected in the open-source
software package, Pymol version 0.97 (DeLano Scientific LLC;
http://pymol.sourceforge.net).

Results
To determine the tyrosine nitration sites in eNOS, a standard protein nitration procedure
followed by a tryptic digest and mass spectrometry analysis was employed, as shown in Figure
1. The eNOS peptides were desalted with C18 ZipTips and analyzed by LC-MS/MS or nanoLC-
MS/MS. A typical analysis of the tryptic digest of nitrated eNOS gave a sequence coverage of
35–50%. A sample nano-LC total ion chromatogram is shown in Figure 2. A total of 33 eNOS
peptides were identified from this chromatogram. By combining the results of five digests, a
sequence coverage of almost 80% was achieved.

To determine which tyrosine residue had undergone nitration, MS/MS spectra of the eluting
peptides were compared to the theoretical eNOS digest allowing for no nitration, single-or
double nitration of each tyrosine residue. TNM has been shown to be selective in nitration of
Tyr residues only.33–35 Figure 3 shows the fragmentation (MS/MS) of the ion with m/z 607.1
identified as the +2 ion of the eNOS peptide 520–530 (ATILY*GSETGR) showing nitration
of Tyr 524. The tyrosine nitration was confirmed by the unmodified b4 and y6 ions and modified
(addition of 45 Da) b5

* and y7
* ions. Another example of this approach is shown in Figure 4.

There one can see the MS/MS spectrum of the ion with m/z 1028.7. This ion was matched to
the eNOS peptide 960–977 (LAY*RTQDGLGPLHY*GVCS) in which both tyrosines, 962
and 973 were nitrated. The nitration of Tyr 962 is confirmed by the nitric oxide synthase (NOS)
b6

* ion while the nitration at Tyr 973 is indicated by the series of y9
*–y15

* ions.

A total of 30 tyrosine residues can be found in eNOS whose sequence is shown in Figure 5.
Out of 30 tyrosine residues, 25 were located in the sequenced portion shown in grey in Figure
5. There are a total of six tyrosines that were sequenced, however, found not to be modified
by nitration. They are Tyr 134, 135, 217, 597, 735 and 1057. (Numbering includes the N-
terminal methionine that is shown in parenthesis in Figure 5.) The other 19 of the 25 sequenced
tyrosines had the addition of one or two NO2 groups. Tyrosines 210, 357, 556, 609, 793, 973,
1087 and 1155 were found to be singly nitrated. The remaining 11 tyrosine residues, Tyr 81,
163, 331, 373, 410, 524, 534, 657, 939, 940, and 964, were found to be doubly nitrated in at
least one experiment (some of them were found to be singly nitrated in one experiment and
doubly nitrated in another).
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Discussion
Nitrating reagents such as tetranitromethane (TNM) or peroxynitrite (ONOO−) have the
potential to induce tyrosine nitration in proteins (along with other modifications).12
Peroxynitrite is known to be an excellent nitrating reagent in vivo and also has been used for
in vitro nitrations.36,37 The effect of ONOO− on proteins does, however, involve very complex
chemistry that is very sensitive to the experimental conditions used (temperature, light, etc.).
Because of these complications and the multiple reaction pathways possible,38 ONOO− itself
was not chosen as nitrating reagent in our experiments. Rather, we utilized tetranitromethane
(TNM). TNM shows very good nitration efficiency and is also chemically more stable than
ONOO−. TNM is also a specific reagent for nitration of tyrosine residues,34,35 which
eliminates unwanted side processes. Thus, for these reasons, TNM was used as the nitrating
reagent in our experiments.

A typical sequence coverage for the analysis of nitrated eNOS digest was in the range of 30–
50%. This is common for a protein of eNOS size (~260 kDa as a dimer). The variation between
digests is not uncommon39 especially since organic modifiers were used to aid in digestion as
proposed by Russell and co-workers40 and the time of digestion was varied. Five different
digests produced a total sequence coverage of almost 80%. Some of the tyrosine residues were
found to be doubly nitrated. These double nitration events are an indication of a higher time
of exposure to the nitrating reagent which suggests that these tyrosines are either located on
the protein surface or are otherwise more easily accessible to TNM. While the levels of tyrosine
nitration with TNM in vitro are much higher than those expected in vivo, numerous studies
suggest that the nitration of tyrosine residues does not affect the folding of the protein
significantly,13,30,41,42 including one example of an in vitro nitration by TNM.43 To
investigate the relationship of these tyrosine residues with the 3D structure of eNOS, we plotted
the protein X-ray structure available in the Swissprot protein database using Pymol44 software.
Figure 6 shows the X-ray structure of the eNOS dimer, oxygenase domain only (the only
domain of the human eNOS available in the database). Many of the surface tyrosines (Tyr 81,
Tyr 163, Tyr 210, Tyr 331, Tyr 357, Tyr 373 and Tyr 410) were identified as sites of nitration
in our studies except for Tyr 217 which was detected in the unmodified form. In the reductase
domain we identified nitration of tyrosine residues within regions which are known to be
responsible for binding FMN, FAD and NADPH (Tyr 657, 793, 1087 and 1155).45

Of particular interest was the identification of the nitration of Tyr 331, 357 and 373 which are
all located in the Hsp90-binding domain of eNOS. Hsp90, a 90-kDa, mostly cytosolic, heat
shock protein is expressed at high levels (accounting for up to 1% to 2% of total cellular protein
content), even in unstressed conditions and is a chaperone protein involved in the folding of a
number of specific protein substrates including signal transducing molecules such as the Src-
kinase family of non-receptor tyrosine kinases, Raf, other serine/threonine kinases,
transcription factors such as steroid hormone receptors, p53 and eNOS, among others.44,46
The Hsp90-binding domain of eNOS encompasses residues 300–400.44 Within this region
there are three tyrosine residues (331, 357 and 373). All three of these residues have been
detected in our experiments and identified as being nitrated. This may potentially indicate that
in vivo, eNOS nitration by RNS may affect the proper function of this domain with respect to
its interaction with HSP90. This could potentially have a negative influence on the activity of
the eNOS protein itself as we, and others, have demonstrated that the interaction of eNOS with
Hsp90 is critical for efficient NO generation.7,44,46

In conclusion, we have identified multiple tyrosine residues of recombinant human eNOS
protein that are capable of undergoing both single- and/or double nitration events in the
presence of an excess of the nitrating agent, TNM. Out of 30 Tyr residues present in eNOS,
we were able to detect 25 within the sequenced peptides. Nineteen of these were found to be
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capable of being nitrated. According to the crystal structure of the oxygenase domain of eNOS,
most of these tyrosine residues are located on the surface of the protein. Among the residues
found to undergo in vitro nitration are Tyr 331, 357 and 373, which are located in the Hsp90-
binding domain of eNOS.44

In conclusion, this study complements our previous work on the identification of the S-
nitrosylation sites in eNOS44,46 and lays a foundation for potential mutation experiments
which may shed light on the role of specific tyrosine residue nitration events on eNOS protein
function.
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Figure 1.
General procedure for identification of sites of nitration in eNOS protein.
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Figure 2.
Representative total ion chromatogram of an eNOS tryptic digest. A total of 33 peptides were
identified from this chromatogram.
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Figure 3.
MS/MS spectrum of an eNOS peptide identified as ATILY*GSETGR by the database search.
*Indicates the nitrated tyrosine residue identified as Tyr 524. Numbering includes the N-
terminal methionine that is shown in parenthesis in Figure 5.
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Figure 4.
MS/MS spectrum of an eNOS peptide identified as LAY*RTQDGLGPLHY*GVC§S by the
database search. *Indicates the nitrated tyrosine residue. Notice that this peptide has two
tyrosine residues that have been nitrated identified as Tyr 962 and 973. C§ denotes an oxidized
cysteine.
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Figure 5.
Total sequence of eNOS protein from SwissProt. The portions of sequence identified by LC/
MS analysis are highlighted in grey. Tyrosine residues found nitrated are in bold and underlined
(single nitration) or shaded in black (double nitration).
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Figure 6.
3-D crystal structure of the oxygenase domain of the eNOS dimer. All tyrosine residues that
have been identified as nitrated are shown in yellow with space filling and their positions
labeled. Numbering includes the N-terminal methionine that is shown in parenthesis in Figure
5.
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