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Abstract
Assessing the potential health risks of environmental chemical compounds is an expensive
undertaking which has motivated the development of new alternatives to traditional in vivo
toxicological testing. One approach is to stage the evaluation, beginning with less expensive and
higher throughput in vitro testing before progressing to more definitive trials. In vitro testing can be
used to generate a hypothesis about a compound's mechanism of action, which can then be used to
design an appropriate in vivo experiment. Here we begin to address the question of how to design
such a battery of in vitro cell-based assays by combining data from two different types of assays, cell
viability and caspase activation, with the aim of elucidating mechanism of action. Because caspase
activation is a transient event during apoptosis, it is not possible to design a single end-point assay
protocol that would identify all instances of compound-induced caspase activation. Nevertheless,
useful information about compound mechanism of action can be obtained from these assays in
combination with cell viability data. Unsupervised clustering in combination with Dunn's cluster
validity index is a robust method for identifying mechanisms of action without requiring any a
priori knowledge about mechanisms of toxicity. The performance of this clustering method is
evaluated by comparing the clustering results against literature annotations of compound
mechanisms.
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Introduction
Of late, there has been increased effort in toxicology to develop and validate new approaches
to risk assessment. The cost of performing traditional testing combined with the large increase
in requests for such testing through initiatives like the REACH (1) have forced the field to
consider alternative approaches to risk identification and the prioritization of testing. As part
of the NTP Roadmap (2), the NTP is developing high-throughput screening (HTS) as a means
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to set testing priorities. The EPA, through its TOXCAST program, is developing methods for
the use of computational chemistry, HTS and other new technologies to prioritize the use of
limited testing resources (3). A recently published report from the National Research Council
supports and gives momentum to these efforts (4). These initiatives build upon recent advances
in assay technology as well as specific assays for the detection of toxicities (5-7). Here we
address one aspect of this work: how best to design a battery of assays such that the integration
of the results provides maximal information.

The immediate goal is to develop a science-based system that is capable of prioritizing
chemicals for animal testing. These in vitro screens must be robust and decisional. Over-
screening, especially with marginal screens, can lead to large opportunity costs. Quantitative
HTS (qHTS) (8) as a new platform for in vitro screening can better satisfy the rigorous
requirements of toxicological evaluation by providing better data quality, a measure of internal
reproducibility, and immediate access to compound potency and efficacy information as
compared to single-concentration screening. In particular, qHTS generates concentration-
response profiles for each tested compound, reflecting the central mission/need of toxicology:
to determine a compound's dose-response relationship.

New methods of compound prioritization must be validated against sets of compounds whose
risks are well known. This is known as a “supervised” approach to machine learning; regression
models to training data are built to help make predictions on new compounds' mechanisms of
action. However, it will also be necessary to identify toxicants with potentially novel
mechanisms of toxicity for further characterization. This task will require the development of
unsupervised methods to identify such compounds. Here we propose one unsupervised
clustering method to complement supervised methods in distinguishing known mechanisms
of toxicity and identifying new ones. Moreover, we aim to quantify model confidence using
Dunn's Index (9). Such an approach has previously been used in microarray research to qualify
cluster quality and aid in data interpretation (10-12); here it is applied to the interpretation of
HTS screening data.

Our preliminary approach to identifying mechanisms of toxicity is to characterize how
compounds induce in vitro cytotoxicity across a variety of cell types. We explore combining
data from an assay that measures cell viability with one that measures caspase activation to
address whether compounds kill cells by caspase-induced apoptosis. Apart from this specific
question, we can integrate the results of the different cytotoxicity assays to generate patterns/
signatures for compounds of interest, and use these to classify these compounds into different
toxicity mechanisms. Rabow et al. (13) demonstrated the utility of a similar approach using
growth inhibition data; here we explore an application of clustering to data with multiple
endpoints. This can help to address the question of how assays with different endpoints can be
integrated to elucidate mechanism of action and how many assays need to be screened in order
to uncover the maximum number of mechanisms embedded in a given set of compounds. The
answers to these questions would form the basis for designing a battery of assays for in vitro
toxicity screening and compound prioritization. As the reliability of any hypotheses generating
model is limited by the data used to build the model, we also assess the biological relevance
of these results by examining the effect of data quality on the convergence of the clustering
and compare the results against literature annotations of compound mechanism of action.

Materials and Methods
Compound collection

A collection of 1353 compounds was provided by NTP (14). The compounds were dissolved
in DMSO as 10 mM stock solution. There were 55 compounds represented twice in the
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collection, giving a total of 1408 samples for testing. The structures of these compounds are
available at PubChem (15).

Compound plates with 14 concentrations ranging from 0.5 nM to 92 μM were prepared in
1536-well plate format (14). During screening, the 1536-well compound plates were stored at
room temperature and sealed when not in use. The other copies of 1536-well compound plates
were maintained at -80°C for long-term storage.

Cell lines and culture conditions
Human embryonic kidney cells (HEK293), human hepatocellular carcinoma cells (HepG2),
human neuroblastoma cells (SH-SY5Y and SK-N-SH), human leukemia T cells (Jurkat, clone
E6-1), normal human foreskin fibroblasts (BJ) from a single donor (newborn male), normal
human lung fibroblasts (MRC-5) from a single donor (male; 14 weeks gestation), normal
human vascular endothelial cells (HUV-EC-C), rat hepatoma cells (H4-II-E), mouse
neuroblastoma cells (N2a), and mouse fibroblast cells (NIH 3T3) were purchased from the
American Type Culture Collection (ATCC; Manassas, VA). Human renal mesangial cells,
obtained from adult kidney tissue, were kindly provided by Dr. Jeffrey Kopp (NIDDK/NIH,
Bethesda, MD). Rat renal proximal tubule cells were freshly isolated from the kidneys of six
male Harlan Sprague-Dawley rats at age of 56-60 days and weight of 220-250 grams by In
Vitro ADMET Laboratories, LLC (Rockville, MD). Briefly, the cortex of the rat kidneys were
dissected out and minced into small (approximately 1 mm diameter) pieces. The pieces were
then subjected to collagenase digestion for approximately 30 minutes, after which the digested
fragments were screened with 100 μm and 50 μm mesh sieves to obtain the single cells. The
cells were cultured in DMEM/F12 medium supplemented with 10% fetal calf serum and ready
for use. Most of these were transformed cell lines, but some were non-transformed; the rat
tubule cells were primary cells (14). The passage number for each cell line was listed in
Supplementary Table 1.

Cells were cultured in ATCC complete Eagle's Minimal Essential medium (N2a, H4-II-E, SK-
N-SH, MRC-5, BJ, HepG2, and HEK293), ATCC complete Dulbecco's Minimal Essential
Medium (DMEM) (NIH 3T3), RPMI 1640 (Jurkat and human renal mesangial cells), or ATCC
complete DMEM/F-12 (SH-SY5Y and rat renal proximal tubule cells). These media were
supplemented with 10% fetal bovine serum (Invitrogen, CA), 50 U/mL penicillin and 50 μg/
mL streptomycin (Invitrogen, CA). Human HUV-EC-C cells were cultured in ATCC Kaighn's
F12K medium supplemented with 0.1 mg/mL heparin (Sigma, MO) and 0.04 mg/mL
endothelial cell growth supplement (Sigma, MO). The cells were maintained at 37°C under a
humidified atmosphere and 5% CO2.

Quantitative high-throughput screening (qHTS)
Two different types of assays are described: a cell viability assay which measures the cellular
ATP concentrations after incubation with compound for 40 hours, and a caspase activity assay
which measures the activation of cellular caspase 3 and caspase 7 enzymes after incubation
with compound for 16 hours. Generation of the cell viability data was previously reported (Xia
et al. 2007). Additional data were generated for this paper using the previous cell viability
protocol but reducing compound incubation time to the 16 hours used for the caspase 3/7 assay.

Caspase-3/7 activity was measured using a homogeneous luminescent method (Caspase-Glo®
3/7 Assay, Promega, Madison, WI). In this assay, caspase-3/7 induced by cells cleaves
luminogenic substrate containing thetetrapeptide sequence asp-glu-val-asp. This reaction
liberates free aminoluciferin which can be used as a substrate by luciferase to generate light.
The luminescent signal is proportional to the amount of caspase activity present in the cells
(Riss and Moravec, 2004). Cells were dispensed at 1000-2000 cells/5μL/well in tissue culture
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treated 1536-well white/solid bottom assay plates (Greiner Bio-One North America, NC) using
a Flying Reagent Dispenser (Aurora Discovery, CA). All but Jurkat cells (which are grown in
suspension) were incubated at 37°C for 5-6 hours to allow for cell attachment, followed by
addition of compounds via pin tool (Kalypsys). After compound addition, plates were
incubated for 16 hours at 37°C; incubation duration was based on the results of assay
optimization experiments demonstrating that the total number of active compounds from the
set of 1353 tested was larger at this incubation time than at other time points (data not shown).
At the end of the incubation period, 5 μL of Caspase-Glo® 3/7 reagent was added, plates were
incubated at room temperature for 1 hr, and luminescence intensity determined using a
ViewLux plate reader (PerkinElmer; Shelton, CT).

Compound formatting and qHTS were performed as described previously (14). Staurosporine
and tamoxifen were used as a positive control in the caspase-3/7 assays and compounds were
dispensed on each plate: tamoxifen in concentration series from 0.23 to 100 μM in DMSO in
column 1, and staurosporine in concentration series from1.4 pM to 20 μM in DMSO in column
2. Also, DMSO was present in column 3, and tamoxifen at 100 μM or staurosporine at 20 μM
was present in column 4. The final concentration of DMSO in the assay was 0.45% (or 0.90%
in wells where compound was transferred twice).

After the cells were dispensed into 1536-well plate and incubated for 5-6 hr, 23 nL of
compounds was transferred into the wells using pin tool, resulting in final concentrations of
0.5 nM to 46 μM of compound, and 0.45% DMSO. To achieve the highest final compound
concentration of 92 μM (DMSO concentration 0.9%), 23 nL of compounds was transferred
twice from the highest concentration mother plate into each well of the assay plate; control
plates using DMSO only at this highest concentration were also included.

Data analysis
Analysis of compound concentration-response data was performed as previously described
(8). Briefly, raw plate reads for each titration point were first normalized relative to the positive
control compound (100%) (Supplementary Table 1) and DMSO-only wells (basal, 0%), and
then corrected by applying a pattern correction algorithm using compound-free control plates
(i.e., DMSO-only plates) at the beginning and end of the compound plate stack. Concentration-
response titration points for each compound were fitted to the Hill equation (16). Compounds
were designated as Class 1-4 according to the type of concentration-response curve observed
(8). Curve classes are heuristic measures of data confidence, classifying concentration-
responses based on efficacy, number of data points showing above background activity, and
the quality of fit. Fitting of experimental data to the Hill equation was amended for the caspase
assay; concentrations greater than the concentration of maximal response where masked for
regression purposes. Efficacies in the caspase assay were calculated relative to control, which
was observed to vary between cell types and experimental replicates, likely due to the bell-
shaped nature of the concentration-response curve. It is possible then that compound efficacies
relative to the maximal caspase activation induced by staurosporine or tamoxifen were
overestimated; however, only EC50 values (i.e. the concentration that induces one-half
maximal response) are used in the subsequent analyses and this effect should not affect the
clustering results. Hierarchical clustering of compound activity patterns across different assays
was performed within Spotfire DecisionSite 8.2 (Spotfire Inc., Cambridge, MA, USA) using
the correlation of LogEC50 or LogIC50 values as the similarity metric. All the normalized
caspase data obtained for the 1408 compounds tested in the 13 cell types have been deposited
into PubChem (search term “NCGC [sourcename] AND caspase [AssayName]”) (15).

Compounds were clustered by activity profile to identify common modes of action (MOA)
(17). It was assumed that different clusters represent different MOAs, and that compounds
which cluster together elicit similar responses across the assays because they operate through
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a mode of action that affects the same sequence of key cellular and biochemical events. In
general, the more diverse the compound responses are across assays, the more MOAs are
potentially embedded in the data. While the goal of the clustering is to generate a hypothesis
about a compound's specific mechanism of action, the broad nature of these cytotoxicity assays
likely prevents any detailed understanding of the molecular basis of the toxic effect; the
inclusion of or confirmation of activity in other, more mechanistic assays would obviously
improve this aspect of the current study. Data vectors of length 26 were formed using the
LogEC50 or LogIC50 values of compounds in all the caspase and viability assays. The
maximum concentration (92 μM) was used as a substitute value for every compound that was
class 4 in an assay. Data vectors were then Z-score normalized and filtered such that only
compounds that were class 1-3 in at least three assays were included in the final data matrix.
Compound response patterns were clustered using the K-means algorithm, and the total cluster
number was varied to maximize Dunn's Index (νD) (9). Dunn's Index assesses cluster quality
by quantifying a type of internal consistency, comparing the variation in response within a
cluster to variations between clusters. Dunn's Index was calculated according to Equation (1),
where C denotes a data vector, δ(Ci, Cj) is the distance (Euclidean distance in this study)
between a vector in cluster i and a vector in cluster j, Δ(Ck) is the distance between two data
vectors in cluster k, and K is the total number of clusters. Dunn's Index (νD) is then the ratio
of the minimum distance between two vectors from two different clusters over the maximum
distance between two vectors within the same cluster. Larger values of νD correspond to good
clusters, and the number of clusters that maximizes νD is taken as the optimal number of
clusters. Together, K-means and Dunn's Index can be used to generate an activity clustering
without any prior assumptions about types of activities expected to be observed, and this
approach should be useful for the preliminary assessments of toxicity where the mode of
toxicity is not known in advance and may even be novel.

(1)

To assess the redundancy of assays and select an optimal panel of assays from the 26 assays,
clustering was additionally performed on subsets containing 3 to 25 of the 26 assays. For each
subset, assays were randomly selected from the pool of all 26 assays, and compounds were
clustered using only data in the selected assays. The number of clusters was enumerated from
2 to 100 and the number that maximized the Dunn's Index was kept as the final cluster count.
This procedure was repeated 10,000 times for each assay count. To study whether clustering
produced biologically meaningful results, MeSH pharmacological action terms (18) were
tested using a Fisher's exact test to assess the enrichment of each term in a cluster. MeSH
pharmacological action terms use MeSH's standardized ontology for biology to annotate
compound entries. MeSH pharmacological actions are available for 541 of the 1355
compounds (Supplementary Table 2).

Results and Discussion
Assay validation and qHTS QC

Data quality is probably the most important factor influencing the accuracy of any
computational toxicity prediction. While every effort is made to ensure data quality, some assay
formats are inherently less robust than others. This does not mean that these assays cannot
provide useful information that complements other assays, but care must be taken when
interpreting data generated from them. This is especially true when comparing caspase
activation assays to the cell viability assays. The latter produces excellent data quality statistics
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(signal/background ratios, Z's, CVs) and works well even in single-concentration format
(14). The former requires qHTS - rigorous replication conditions and the elucidation of the full
concentration-response curve.

Caspase-3/7 plays an important role as an executioner in the apoptotic cascade (19).
Caspase-3/7 activation occurs in the terminal apoptosis cascade before cells die (20). The time
from initiation of apoptosis to its completion can be variable and sometimes as short as a few
hours. Caspase activity disappears after cell death occurs as proteins begin to degrade in the
milieu. Activation is therefore transient, which made selecting a compound incubation time
challenging because selecting the wrong incubation time can result in false negative findings
(20). Additionally, differences in compound concentration also affect the time course of
caspase activation. This can be seen with many compounds in these caspase-3/7 assays, where
caspase activation peaks over a small range of compound concentration (see Figure 1 for an
example compound curve). Most cell types demonstrated good Z' factors (10 of 13 had Z'>0.5),
and all the assays had reasonable S/B ratios (S/B≥2 for all 13 assays). Though Z' factors and/
or signal to background ratios for some assays were less than ideal for conventional screening
(see Supplementary Table 1), we were able to utilize the data on all assays, since qHTS
generates EC50 values on all compounds. Unlike efficacy calculations, EC50 values are
unaffected by these parameters, and only EC50 values were used in the subsequent analysis.

The percentage of compounds with a class 1a, 1b or 2a concentration-response (8) ranged from
0.4% to 3.5% (1.5% to 9.7% for class 1-3) for the 13 caspase assays, with HUV-EC-C showing
the lowest sensitivity and Jurkat the highest (Supplementary Figure 1(a)). The overall active
rate for the caspase assays is significantly lower than that of the cell viability assays, which
ranged from 4-11% for class 1a, 1b and 2a compounds (7-20% for class 1-3). Most cell types
displayed a wide range of compound potencies from <100 nM to >10 μM, except for HUV-
EC-C, which did not have any compounds with EC50 <10 μM (Supplementary Figure 1(b)).
Other cell types including the two human fibroblasts MRC-5 and BJ, and the human kidney
cells HEK293, also showed low sensitivity with no compound having an EC50 <1 μM. Overall,
the primary or normal cells (BJ, MRC-5, HUV-EC-C, mesangial cell, rat kidney proximal
tubules) appeared to be less sensitive in terms of caspase activation than the immortal (NIH
3T3) or transformed (Jurkat, SK-N-SH, SH-SY5Y, HEK293, HepG2, H-4-II-E, N2a) cells.

The EC50 values for the 55 compounds represented in duplicate in the 1408 collection were
compared in all 13 caspase assays, yielding a satisfactory Pearson correlation coefficient (r2)
of 0.78. As another measure of assay reproducibility, qHTS on the 1408 compounds was
performed four times in H-4-II-E cells, with all four replicates performed on different days.
The correlation of EC50 values between the four experiments range from r2 = 0.87 to 0.52.

Comparison of viability and caspase-3/7 assays
When comparing the results from the two assay platforms, caspase and viability, one has to
keep in mind the difference in the measured time points. Cells were incubated with compound
for 40 hours in the viability assays, but for only 16 hours in the caspase-3/7 assays. For the
purpose of assessing the impact of time on assay outcome, one cell type, HEK293, was
additionally screened with the 1408 collection in the viability assay at 16 hr. The viability assay
of HEK293 cells at 40 hr. clearly produced more active compounds (5.8% class 1a, 1b, 2a;
11.9% class 1-3); however, the viability of HEK293 cells at 16 hr. still had more actives (2.6%
class 1a, 1b, 2a; 6.7% class 1-3) than its corresponding caspase assay (1.3% class 1a, 1b, 2a;
4.3% class 1-3). These results show that the caspase assays do not simply measure cell death,
but a particular aspect of cell death. To further determine if there are intrinsic differences
between the viability assays and the caspase assays, a heat map was generated hierarchically
clustering the 26 caspase and viability assays on the similarity of their EC50/IC50 response
patterns (Figure 2). The caspase assays tend to cluster together with themselves as do the
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viability assays, again indicating that the assays provide different types of information from
one another.

A notable exception to this was the Jurkat cell type, where both the caspase and viability assays
clustered together. In this experiment, Jurkat cells had the highest sensitivity in the caspase
assay, had the largest correlation coefficient (r2=0.68) among all the cell types between its
caspase activation EC50 and its viability IC50, and was the only cell type with its two different
assay readouts (caspase and viability) clustered together by hierarchical clustering. Unlike the
other cells types, Jurkat cells appear to uniformly go through caspase activation on the way to
cell death. The only exceptions to this rule were the thiol-containing purines, disulfides and
mercurial compounds; however, their inactivity in the caspase assay is likely due to their ability
to directly interfere with the caspase activation assay (21).

For each cell type, compounds were assigned one of five activity categories based on their
activity outcome in each caspase-3/7 assay compared to its viability counterpart: “active in
both” (class 1a, 1b or 2a in both caspase and viability assays), “caspase only” (class 1a, 1b or
2a in caspase and class 4 in the corresponding viability assay), “viability only” (class 1a, 1b
or 2a in viability and class 4 in the corresponding caspase assay), “inactive” (class 4 in both
caspase and viability assays), and “inconclusive” (all other possible outcomes). The
distribution of compounds in these five categories for each cell type is shown in Figure 3. Jurkat
showed by far the best consistency between its caspase and viability activity (49% active in
both), as compared to SK-N-SH, the second most consistent cell type, which had only 27% of
its actives active in both. The least consistent cell type was N2a, which had only 5% of its
actives active in both the caspase and viability assays. Strong consistency between assays
implies that cytotoxic compounds uniformly induce caspase activation, as is the case with
Jurkat cells. Conversely, a low consistency found for a cell type indicates that compounds cause
toxicity through other mechanisms in addition to caspase activation. These differential activity
patterns found across cell types form the basis for distinguishing different modes of action.

There were 58 compounds that were classified as “viability only” in at least 5 cell types. In
addition to the possibility that these compounds simply do not induce apoptosis, this lack of
caspase activation by clearly cytotoxic compounds was further investigated to explore other
mechanistic possibilities. A functional group analysis of these compounds (Leadscope) showed
that some chemical groups were significantly enriched in this set. These include the three thiol
containing compounds (6-mercaptopurine monohydrate, Azathioprine, 6-thioguanine (6-TG)),
three mercuric compounds (phenyl mercuric acetate, mercuric chloride, methyl mercuric (II)
chloride), disulfides (tetramethylthiuram disulfide and 2-octyl-3-isothiazolone 6-Hydroxy-2-
naphthyl disulfide (DDD)) and other sulfur containing compounds such as zinc pyrithione,
methylene bis(thiocyanate), Captan and Captan 90-concentrate (solid). These compounds have
the potential to directly react with caspase active-site cysteine thus directly preventing caspase
activation. Tetramethylthiuram disulfide is known to inhibit apoptosis by directly inhibiting
the processing of the caspase-3 proenzyme (22). Analysis of the compounds that are “viability
only” in at least 3 cell types in terms of their pharmacological action (18) revealed that this set
of compounds is significantly enriched in cytostatic compounds. These include cancer agents
such as adriamycin hydrochloride, colchicine, 5-fluorouracil, etc. Digitonin was “viability
only” in 12 of the 13 cell types and is a detergent that is known to disrupt membranes (23).
Another example of a true “viability only” compound is α-Solanine, which had class 1a
(mostly) or 2a curves (IC50 >10 μM) in all viability assays and was class 4 in all caspase assays.
This compound is known to inhibit cholinesterases (24) and to disrupt membranes (25). Thus,
when interpreting these results, reasons for negative findings other than the compound not
activating the caspases, e.g. inducing apoptosis, must be kept in mind, and include: (1)
compounds that directly inhibit the caspase (e.g., tetramethylthiuram disulfide); (2) compounds

Huang et al. Page 7

Chem Res Toxicol. Author manuscript; available in PMC 2009 April 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



that are cytostatic (e.g., 5-fluorouracil); and (3) compounds that produce caspase activation
outside the time window of the assay (e.g., N,N'-Di-sec-butyl-p-phenylenediamine).

Diversity in compound response space and mode of action
The previous analysis demonstrates how compounds with different modes of action can be
identified based on comparisons of their activity in caspase activation and cell viability assays.
Next we generalize this approach by correlating mode of action with activity differences across
larger sets of assays and address the question of how best to design such a battery of in vitro
cell-based assays for this purpose. Unsupervised clustering in combination with Dunn's cluster
validity index is useful in identifying modes of action while avoiding spurious associations
suggested by noisy assay data and without requiring any a priori knowledge about mechanisms
of toxicity. The resulting clusters each suggest a different action, and the total number of
clusters can be taken as a measure of the combined information content of the assay battery.

It has previously been shown that clustering compounds by their activity across a panel of
cellular growth inhibition assays can provide hypotheses about mode of action, even though
the assays were never designed to provide such specific information (13). This example can
serve as a principle for toxicity testing, that the whole may be greater than the sum of the parts.
Here, we attempt such clustering with data from the set of 26 viability and caspase assays to
identify modes of action, but with the added advantage of quantifying the confidence of the
cluster hypotheses using K-means in combination with Dunn's Index (9), a measure of cluster
validity. With this approach we address whether additional assays always add information and
thus help reveal more mechanisms, and how many assays need to be screened to reveal the
maximum number of mechanisms embedded in a set of compounds.

Our assumption is that each distinct cluster of compound response patterns represents one class,
or a group of related MOAs; the more diverse the compound response patterns are, the more
MOA classes may be embedded or reflected by the data. For each possible panel of assays, the
K-means algorithm was used to cluster the compound response patterns in different assays and
the Dunn's Index was calculated to assess the cluster quality. For each panel size, a subset of
assays was randomly selected from the pool of all 26 assays, and compounds were clustered
using only data in the selected assays. The mean and standard deviation of cluster count is
plotted as a function of assay count in Figure 4(a) and the full distribution of the cluster count
as a function of assay count is plotted in Figure 4(b). As opposed to other clustering methods,
especially hierarchical clustering, this method identifies which grouping of compounds is the
most meaningful by maximizing a measure of cluster internal consistency. Other methods
require either the user to specify the expected number of clusters in advance or just leave it to
the end user to guess about the significance of distant relationships as in the case of hierarchical
clustering.

The number of clusters increases when more assays are used in the clustering, which indicates
that more assays add to the data diversity or information content. To determine if the increase
in cluster number was due to true activity differences among assay cell types and endpoints
rather than chance experimental variances, three cell types (NIH 3T3, H-4-II-E and BJ) were
tested in the caspase-3/7 assay four times. The data generated from this set of 4×3=12 assays
was then used for cluster generation. The results are shown in Figure 5. No increase, but rather
a small decrease, in the number of clusters was observed when more assays were included in
the clustering. These results show that simply adding replicate datasets does not add to the
information content of the panel, and that the clustering results should be resistant to typical
experimental variances. That the number of clusters was not static, but decreased, was
unexpected and may reflect variability in the replicate experiments obscuring the real
differences between cell types when more replicate assay data were included in the analysis.
In contrast, the previous gain in information content was derived from the new activities
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provided by the additional assays and we have observed that for both viability and caspase
activation assays.

Clustering performance was also assessed by comparison with literature annotations of
mechanism of action. MeSH annotations were found for 541 compounds from the 1408
compound collection. The EC50/IC50 patterns for these compounds across all caspase and
viability assays were clustered (Supplementary Table 3) and the enrichment of the MeSH terms
associated with these compounds in each cluster was determined through a Fisher's exact test.
MeSH terms indicating specific pharmacological actions were found significantly enriched in
individual clusters. For example, antineoplastic antimetabolites were enriched in Cluster 22,
hormones and antagonists in Cluster 17, and cytostatics in Cluster 16; the latter included the
alkylating agents chlorambucil and melphalan, the DNA intercalator daunomycin, and
actinomycin D, which binds to DNA to prevent transcription. In addition, Cluster 16 was found
to be significantly enriched with compounds that scored positive in the NTP micronucleus
assay (26) based on a Fisher's exact test (p<0.05), or in micronucleus assays reported in the
literature (e.g., (27)). Interestingly, based on its being in Cluster 16, colchicine might
reasonably be expected to possess micronucleus activity even though no such activity was
reported in the NTP database. A search of the literature determined that colchicine, in fact, is
known to be a micronucleus inducer (28, 29). Another cluster, Cluster 4, was significantly
enriched in estrogens and estrogen mimetics, including ethinyl estradiol, diethylstilbestrol,
bisphenol A, methoxyclor, and aldrin (30). Supporting the biological relevance of this cluster,
as well as the general notion that caspase and viability assays may assess an aspect of estrogenic
activity, apoptotic and estrogenic activities have been reported to be related in Jurkat cells
(31, 32).

We next examined the clustering quality using fifteen assays selected randomly from the pool
of 26 assays to determine whether the same results can be obtained using a smaller panel of
assays. Each new clustering result was compared to the clustering using all 26 assays by
counting the number of compound pairs that continue to be clustered together in both cases.
The average co-cluster rate (defined as the sum of compound pairs that clustered together in
both cases and those that did not cluster together in either case, divided by the total number of
unique compound pairs) for the clustering result sets was 94-95%, indicating that the clustering
results were very stable, i.e. the same limited set of MOAs were identified. In fact, it is possible
to choose a set of six assays that have a co-cluster rate of 94%; that is, 94% of the time the
compounds clustered together by the 26 assays were clustered by these six assays as well
(Figure 6). To do this, Dunn's Index was used to select an optimal subset of assays, which
yields not only in the most internally consistent result, but also one that is most similar to the
clustering result using all 26 assays. Antineoplastic antimetabolite and cytostatic clusters were
still consistent; however, other mechanisms including the cluster of estrogen mimetics were
not. While reducing the panel of 26 assays to 6 is a drastic measure, it nevertheless demonstrates
the robustness of the clustering which Dunn's Index measures, and suggests that a relatively
small number of assay datasets may be used as a proxy for a larger panel.

An alternate question is whether the calculated information content is limited by the choice of
compounds tested. To test this, the same clustering exercise was carried out using a fixed
number of assays (all caspase and viability assays were used) and compounds randomly
selected from a pool of 293 compounds that were Class 1-3 in at least three of the 26 assays.
The number of clusters generated that gave the optimum Dunn's Index was plotted as a function
of the number of compounds employed in the clustering. Compound sets were randomly
selected and clustered 10,000 times for each compound set size. As shown in Figure 7, the
number of clusters seemed to plateau when the number of compounds used approached 250;
the maximum number of modes covered by those compounds was always less than 30. It is
important to note that screening additional compounds or a more diverse set of compounds
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would still likely reveal more modes, if the additional compounds act via modes that are distinct
from the existing set of compounds. Cluster integrity would also likely improve with any
increase in the number of compounds tested.

For regulatory decision-making, tools are required to be validated for performance against
known compounds, both toxic and non-toxic. However, tools that do not rely upon a priori
information, such as unsupervised clustering driven by Dunn's Index, complement formally
validated approaches, particularly during the hypothesis generation stage of toxicological
assessment, when the possibility of a novel mode of action must be considered.

Finally, it is important to stress that while this approach appears promising, data on many more
compounds, assays, and conditions are needed to explore fully the potential of this approach.
The inclusion of other assays and compounds will most likely expand the types of activities
that can be reliably detected. Certainly, stronger associations between in vivo toxicities and in
vitro patterns or signatures remain to be established. This is beyond the scope of the present
work, and is the goal of the larger NTP, EPA, and REACH initiatives. Nevertheless, the results
presented here suggest that computational methods using robust HTS data can provide useful
and biologically meaningful contributions to in vitro toxicological assessment. In particular, a
simple battery of cytotoxicity assays was shown useful to distinguish compounds with very
different activities, such as those inducing micronuclei formation and those behaving as
estrogen mimetics.

Conclusions
Caspase activation is a transient event during apoptosis, and as such, it is not possible to design
a single time-point assay protocol that would identify all instances of compound-induced
caspase activation. Nevertheless, useful information about compound mechanism of action can
be obtained from high-throughput screening of these assays in combination with viability data.
In particular, K-means clustering with Dunn's Index produces robust clusters that reflect
connections between compound mechanisms of action. The caspase assay data complements
the viability data, and this is shown both by the lack of concordance between the assays as well
as by clustering. Clusters are biologically meaningful as shown by comparing to MeSH and
current literature. Moreover, cluster number is robust to typical experimental variances as
shown using replicate data, and by varying the numbers of assays and compounds used to
generate the clusters. The information content of a panel of such assays is taken to be
proportional to the number of clusters identified, but this measure also depends on the set of
assays/compounds used to evaluate the method. This approach should be useful for generating
hypotheses about compound mechanism of action, which can then be used to initiate further
toxicological evaluation.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
A typical concentration-response for caspase activation (◊) and cell viability (□). Note the
decrease in caspase activation at higher concentrations. The data shown is for
hexachloropentadiene in the Jurkat human leukemia T cell line. Activity is shown as a
percentage of control: -100% connotes complete cell killing, +100% connotes caspase
activation equivalent to tamoxifen. Solid diamonds indicate that this data was not used for
curve fitting purposes.
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Figure 2.
Hierarchical clustering of all caspase and viability assays based on similarity in the compound
EC50/IC50 patterns. Caspase assay data and cell viability data generally cluster by assay type.
The exception is the Jurkat cell line, where both assay types cluster together.
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Figure 3.
Activity distributions of the set of 1408 compounds in the 13 different cell types in terms of
their caspase activity as compared to their activity in the corresponding viability assays. The
number of compounds active in both caspase activation and cell viability is a small subset of
the total number of active compounds. Many compounds exhibit activity only in the cell
viability assay.
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Figure 4.
Number of compound mechanisms (clusters) revealed as a function of number of assays
screened. Assays were selected from the pool of all caspase and viability assays. (a) As more
assays are utilized for clustering, the average number of clusters identified increases. (b) A plot
of the distribution of cluster number as a function of the number of assays shows the gradual
convergence near 24 clusters as the number of assays increases (line color becomes darker).
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Figure 5.
Number of compound mechanisms revealed as a function of number of assays screened: effect
of noise in data. Assays were selected from the pool of three caspase assays, NIH 3T3, H-4-
II-E and BJ, each run in quadruplets. Merely providing more replicates of the same experiment
does not increase the number of clusters identified.
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Figure 6.
Co-cluster rate of clusters generated using various number of assays with clusters generated
using all 26 caspase activation and viability assays as a function of number of assays screened.
The clusters generated using ≥6 assays are ~95% similar to clusters generated using all 26
assays.
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Figure 7.
Number of compound mechanisms covered as a function of number of compounds screened.
All caspase and viability assays were used in the clustering. Compounds were selected from a
pool of 293 compounds that were class 1-3 in at least three of the 26 assays. It appears that the
identification of compound mechanisms is limited by the number of compounds in the present
experiment; more compounds would likely help differentiate additional mechanisms.
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