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Abstract
The CXC chemokine, CXCL1 (melanoma growth-stimulatory activity/growth-regulated protein α),
plays a major role in inflammation, angiogenesis, tumorigenesis, and wound healing. Recently,
chemokines have been extensively related to cellular transformation, tumor growth, homing, and
metastasis. CXCL1 and its mouse homologue MIP-2 have been shown to be involved in the process
of tumor formation. When chemokines such as CXCL1 and CXCL8 (IL-8) become disregulated so
that they are chronically expressed, tissue damage, angiogenesis, and tumorigenesis can follow. This
up-regulation of chemokines has been attributed to constitutive activation of NF-κB. The constitutive
NF-κB activation is an emerging hallmark in various types of tumors including breast, colon,
pancreatic, ovarian, as well as melanoma. Previous findings from our laboratory and other
laboratories have demonstrated the role of endogenous activation of NF-κB in association with
enhanced metastatic potential of malignant melanoma cells and suggest that targeting NF-κB may
have potential therapeutic effects in clinical trials. An important step in this direction would be to
delineate the important intracellular pathways and upstream kinases involved in up-regulation of NF-
κB in melanoma cells. In this review, the signaling pathways involved in the disregulation of NF-
κB and chemokine expression are discussed.
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INTRODUCTION
Chemokines (chemotactic cytokines) are small peptides that are potent activators and
chemoattractants for leukocyte sub-populations and some nonhematopoietic cells [1,2]. They
play a crucial role in immune and inflammatory reactions such as allergic disorders,
autoimmune diseases, and in viral infections. Most chemokines cause chemotactic migration
of leukocytes and affect angiogenesis, hematopoiesis, tumorigenesis, metastasis, and tumor
rejection [3–6].

Chemokines and their receptors
The chemokines consist of two major families, CXC or α chemokines and CC or β chemokines,
and two minor families, C or γ chemokines and CX3C or δ chemokine [7,8]. The CXC family
has an amino acid (aa) positioned between the first and second cysteine, whereas the CC family
has two cysteines positioned side by side. The CXC chemokine family has been subdivided
into two categories depending on presence of an ELR motif (glutamic acid-leucine-arginine)
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preceding the first cysteine residue in the protein. The C chemokine family is represented
mainly by lymphotactin, and the CX3C family exhibits 3 amino acid between the first two
cysteines and is represented by fractalkine or neurotactin.

Chemokines regulate angiogenesis, a process upon which tumors depend for growth, survival,
invasion, and metastasis. CXC chemokines can regulate angiogenesis both positively and
negatively depending on the presence or absence of ELR in their NH2 terminus [9–11].
Members of the CXC family that behave as angiogenic factors include CXCL8 [interleukin-8
(IL-8)], CXCL1-3 [melanoma growth-stimulating activity (MGSA) α, β, and γ], CXCL5
(epithelial-derived neutrophil-activating factor-78), CXCL6 [ (granulocyte chemotactic
protein-2)], and CXCL7 (neutrophil-activating polypeptide-2). The overexpression of (ELR−)
chemokines, such as CXCL9 [also known as monokine induced by interferon-γ (IFN-γ)] or
CXCL10 (IFN-inducible protein 10) in human lymphomas, grown in nude mice or human non-
small cell lung cancer grown in severe combined immunodeficiency (SCID) mice, leads to
spontaneous regression that is directly related to impaired angiogenesis [12].

The specific effects of chemokines on their target cells are mediated by a family of 7-
transmembrane (7TM) G-protein-coupled receptors (GPCR). These chemokine receptors are
part of a much bigger superfamily of GPCR that include receptors for hormones,
neurotransmitters, paracrine substances, and inflammatory mediators [13]. Chemokine
receptors vary significantly in their expression, binding, and response to specific chemokines
on different cell types. Chemokine receptors have also recently been implicated in several
disease states including allergy, psoriasis, atherosclerosis, malaria, and AIDS [14–18]. Six
receptors have been characterized for CXC chemokines (CXCR1–CXCR6), and 10 receptors
for CC chemokines (CCR1–CCR10). XCR1 is the receptor for XCL1 (lymphotactin) and
CX3CR1 for CX3CL1 (fractalkine) (see ref [19] for review). A chemokine-binding protein,
also known as the Duffy antigen receptor for chemokines, has been shown to bind
promiscuously to CXC and CC chemokines [20]. In addition, other 7TM GPCR, encoded by
herpes- and poxviruses, have been identified [21,22]. Significant advances have been made in
understanding the regulation of chemokine receptor expression and the intracellular signaling
mechanisms used in bringing about cell activation.

Chemokine and chemokine receptor expression in association with transformation
For more than a decade, chemokines have been recognized as important molecules for the
homing of a population of leukocytes under conditions of homeostasis and inflammatory and/
or immunological responses. However, recent studies are providing an equally important role
for these chemotactic cytokines in tumor biology [23]. Chemokines display autocrine,
paracrine, and hormonal roles in promoting tumorigenesis, invasion, homing, and metastasis
to distant, preferential target organs (Fig. 1). An understanding of this expanded role in
promoting tumor biology should open new doors to therapeutic intervention.

Molecules that regulate the metastatic spread of tumors to specific organs should be expressed
constitutively at principal sites of metastasis and must be capable of mediating the invasion of
cells into tissues. In addition, the distinct receptor repertoire should be expressed by the target
cells. As chemokines play an important role in leukocyte trafficking and homeostasis, they are
important molecules for the above process.

KSHV-GPCR (the human GPCR encoded by the Kaposi’s sarcoma herpesvirus) signals
constitutively, and signaling is further augmented by the binding of CXC chemokine ligands
such as CXCL1 [24]. Expression of this receptor is associated with transformation [25]. A
point mutation of CXCR2, but not CXCR1, results in constitutive signaling of the receptor and
transformation of transfected cells in a similar manner to the KSHV-GPCR [26]. Thus, CXC
chemokine receptor CXCR2 is thought to participate in cellular transformation. This and
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several other studies support the hypothesis that expression of CXCR2 on certain cells in the
presence of persistent autocrine and paracrine stimulation with specific CXC chemokine
ligands can promote preneoplasticto-neoplastic cellular transformation.

Recently, Müller et al. [27] have shown that expression of specific chemokine receptors is an
essential event that leads to the homing and metastasis of breast cancer. This occurs in a
chemokine ligand and receptor-dependent manner. In breast cancer cells, signaling through
CXCR4 or CCR7 was found to mediate actin polymerization and pseudopodia formation and
subsequently, induce local chemotactic and invasive responses. Thus, it appears that
chemokine ligands and their receptors dictate the precise destination of metastatic tumor cells
to specific organs. Furthermore, the association of expression of CCR10 and its ligand CCL27/
CTACK7 in malignant melanoma cells and the high incidence of skin metastases in this
malignant disease support the involvement of chemokine receptors in metastasis [28]. In
addition, other cancers of haematopoietic and nonhaematopoietic origin, including acute
myeloid leukaemia, chronic lymphoblastic leukemia, chronic lymphocytic leukemia, non-
Hodgkin’s B-cell lymphoma, ovarian cancer, and pancreatic cancer, express functionally active
chemokine receptors that mediate tumor cell migration in vitro [29–32].

The CXC chemokines containing an ELR motif include CXCL1, 2, 3, 5, 6, 7, and 8 [33–35].
These chemotactic cytokines act through CXCR1 and/or CXCR2 receptors. Our laboratory
focuses mainly on the role of chemokines in melanoma. CXCL1 and CXCL8 are members of
the CXC chemokine subfamily and are associated with metastatic melanoma. The mouse
CXCL1 homologues are keratinocytes and macrophage-inflammatory protein-2 (MIP-2).
CXCL1 (MGSA) was first purified in our laboratory from human melanoma-conditioned
medium [36]. CXCL1 is shown to be up-regulated in melanoma cells, and it is involved in
pathogenesis of melanoma. We have shown previously that human-cultured nevi and
melanoma continue to express CXCL1 mRNA in the absence of serum or exogenous growth
factors, but cultured normal melanocytes express little CXCL1 [37–40]. In addition, studies
by Norgauer et al. [41] have demonstrated that secretion of MGSA in melanoma cell lines was
6- to 16-fold higher than normal melanocytes. Norgauer et al. [41] also showed enhanced
expression of CXCR2 in melanoma tumor cells as compared with normal melanocytes. The
biological functions of CXCL1 are mediated through 7TM GPCR. CXCL1 binds and activates
CXCR2. The biological functions include regulation of cell growth/cell viability and cell
motility. CXCL1 modulates inflammation, angiogenesis, wound healing, and tumorigenesis
[42–44]. In this review, we will focus mainly on chemokines as modulators of tumorigenesis.

Our laboratory and others have shown previously that over-expression of CXCL1 or CXCL8
in melanocytes is associated with enhanced growth, ability to form tumors in nude and SCID
mice, and enhanced metastatic capacity in melanoma tumors [45–48]. Antibodies to these
ligands or their receptor, CXCR2, can block these processes [41,48]. Overexpression of
CXCL1 in immortalized melanocytes transformed these cells such that they developed the
capability to form tumors in nude and SCID mice [44]. Furthermore, antiserum to CXCL1
inhibits tumor growth by melan-a cells expressing CXCL1 proteins [43]. Thus it is clear that
this chemokine has strong tumorigenic potential for melanocytes.

Malignant melanoma is the most dangerous skin cancer, which, if not detected early, may
metastasize with fatal consequences. The prevalence of skin cancer and melanoma is increasing
at an alarming rate. About 80,000 cases of melanoma are diagnosed each year [49]. A key event
in development of melanoma is mutation of key cell regulatory genes resulting in loss of tumor
suppressors combined with constitutive expression of oncogenes, chemotactic cytokines
(chemokines), and other growth factors. Many laboratories, including our own, have shown
disregulation of nuclear factor-κB (NF-κB)-dependent angiogenic chemokines such as CXCL1
and CXCL8 in human melanoma [50–53]. It is interesting that the NF-κB site is present not
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only in the promoter of angiogenic chemokines, but also in angiostatic chemokines such as the
IFN-γ-inducible chemokine CXCL10. While NF-κB might potentially be involved in
promoting transcription of angiogenic and angiostatic chemokines, NF-κB does not act alone
in modulating chemokine expression. Its transcriptional activity is modulated by coactivators
and repressors, which constitute the functional enhanceosome. For example, IFN-γ is the major
activator of CXCL10 transcription [54], and NF-κB may further modify that IFN-γ-induced
transcription. Thus, constitutive expression of NF-κB in tumor cells has the potential for
facilitating immortalization of these tumors and escape from apoptosis, but this facilitation
would be dependent in the context of other coactivators or repressors of transcription.

MECHANISM OF DISREGULATION OF CXCL1 EXPRESSION IN MELANOMA
CXCL1 is not expressed constitutively in normal retinal pigment epithelial (RPE) cells or
normal human epidermal melanocytes (NHEM), but it can be induced by IL-1,
lipopolysaccharide (LPS), and tumor necrosis factor α(TNF-α) [55]. In contrast, malignant
melanoma cells exhibit high constitutive levels of CXCL1 mRNA and proteins (Fig. 2). IL-1
treatment does not significantly increase the elevated levels of the gene, although it does appear
to stabilize CXCL1 mRNA [51]. Transcription of the CXCL1 gene is regulated largely through
a 306-bp minimal promoter situated immediately upstream of the transcription start site. The
four cisacting elements comprising the minimal promoter include a TATA box (25–30 nt), a
NF-κB-binding site (67–77 nt), an AT-rich high mobility group protein I (HMGI) (Y)-binding
element nested within the NF-κB site, an immediate upstream region (IUR; 78–93 nt), and a
GC-rich SP1-binding site (117–128 nt) [56]. The IUR is an ~20-bp sequence that is located
immediately upstream of the NF-κB element in the CXCL1 promoter.

NF-κB constitutes a family of proteins, which are regulated at the level of transcription,
translation, or post-translational processing. Disregulation of NF-κB transcription machinery
and constitutive expression of chemotactic cytokines are factors thought to be early events in
malignant tumor progression. Rel/NF-κB, a family of structurally related DNA-binding
proteins, has been implicated in the regulation of cell growth and oncogenesis based on its
induction of proliferative and anti-apoptotic gene products. In nonstimulated, nontransformed
cells, NF-κB is sequestered in the cytoplasm and is complexed with IκB, a family of inhibitory
proteins, which bind to NF-κB and mask its nuclear localization signal, thereby preventing
nuclear transport of NF-κB [57]. On activation, IκB becomes phosphorylated, ubiquitinated,
and degraded, freeing the NF-κB p65/p50 or p65/p52 complex to move to nucleus and bind
specific DNA promoter sequences. The cytokine-induced IκB phosphorylation and subsequent
degradation are regulated by activation of a recently described macromolecular complex, the
“signalosome” called IκB kinase or IKK (700–900 kDa) [58–63]. The IKK complex consists
of two catalytic units, IKK-α and IKK-β (also referred to as IKK-1 and IKK-2), which can
directly phosphorylate IκB, as well as a regulatory subunit IKKγ or NF-κB essential modulator
(NEMO) [64]. IKK-1 and -2 can phosphorylate IκB-α at serine 32 and 36 in vitro. Furthermore,
recent studies of transient overexpression have suggested that some mitogen-activated protein
kinase kinase kinases (MAPKKKs), including NF-κB-inducing kinase (NIK) and MEKK1–3,
are involved in the activation of the IKK complex [65–68]. NF-κB is also regulated by other
kinases, including phosphatidylinositol 3 kinase (PI3K) and Akt [69,70] (Fig. 3).

The role of the CCAAT displacement protein (CDP) and poly(ADP-ribose) polymerase (PARP)
in cooperation with NF-κB in CXCL1 promoter activation

Previously, we demonstrated that in addition to the NF-κB element, the IUR element is essential
for basal as well as cytokine-induced expression of the CXCL1 gene. In particular, point
mutations within a putative TCGAT motif of the IUR element abolished basal and IL-1-induced
transcription in reporter gene assays with RPE and Hs294T cells. Furthermore, in
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electrophoretic mobility shift assays (EMSA), these mutations blocked the ability of this
element to compete with a constitutive, IUR-specific complex in RPE and Hs294T nuclear
extracts [54]. UV cross-linking and southwestern blot analyses revealed that at least one
protein, having a relative molecular size of 115 kDa, bound the IUR element in a sequence-
specific manner [71]. Purification of the 115-kDa IUR-specific protein by oligonucleotide-
affinity chromatography revealed its identity as the PARP and demonstrated that it plays a role
in the activation of the CXCL1 promoter [72]. PARP is a 114–115-kDa nuclear DNA-binding
protein, which catalyzes the transfer of long, branched ADP-ribose chains to itself or different
classes of target proteins involved in chromatin decondensation, DNA replication, DNA repair,
and gene expression [73,74]. ADP-ribosylated PARP can affect a cellular processes such as
apoptosis, necrosis, cellular differentiation, and malignant transformation [75]. To determine
whether the 20-bp IUR element is a binding site for known transcription factors, the CXCL1
promoter was also analyzed within a transcriptional element database (Transfac) using a Web-
based search engine, the Transcription Element String Search (TESS). The search identified
the CXCL1 IUR element as a putative binding site for the human CDP, which is highly
homologous to the Drosophila CCAAT displacement protein homologue (CUT) protein [76].
The human CDP is a homeodomain protein, which is composed of an N-terminal, coiled-coiled
domain, three highly homologous ~70-aa long CUT repeat domains, a C-terminal
homeodomain, and two transcription-repression domains [77,78]. CDP is an active repressor
of cell cycle-dependent or differentiation-specific genes including the gp91-phox,
p21WAF1/CIP1/SDI1, osteocalcin, thymidine kinase, cystic fibrosis-related transconductance
receptor, and c-myc [79–83]. CDP is a 170-kDa protein. In EMSAs, recombinant CDP
polypeptides bound the IUR element in a sequence-selective manner [76]. In cotransfection
experiments, overexpression of the CDP protein inhibited CXCL1 promoter activity, whereas
overexpression of antisense CDP mRNA induced CXCL1 promoter activity fivefold over the
control [76]. These results indicate that the transcription of the CXCL1 gene is negatively
regulated by the CDP. It is possible that CDP-mediated repression may also involve
displacement of other transactivating factors that bind to the CXCL1 promoter, such as NF-
κB, Sp1, HMGI (Y), PARP, or factors contributing to the stability of the CXCL1
enhanceosome. However, there is no direct evidence to support this hypothesis.

Enhanceosome models for cytokine gene expression, analogous to the CXCL1 paradigm, have
been proposed for the regulation of IL-6 and CXCL8 (IL-8) promoters [84]. Both promoters
have binding sequences for the NF-κB, CCAAT/enhancer binding protein, and TATA binding
protein. The strongest promoter activation relies on the p65 NF-κB subunit, which specifically
recruits cyclic AMP response element-binding (CREB) protein (CBP/p300) to the site.

Engagement of CBP/p300 in the enhanceosome and its histone acetylase activity have been
proposed to stabilize the enhanceosome and stimulate transcription from these promoters. In
an independent study, CDP has been shown to interact physically with CBP/p300 and is a target
for acetylation at specific residues near the homeodomain [85]. These models strongly
implicate antagonistic roles for CBP/p300 and CDP in the regulation of IL-6 and CXCL8
transcription, although direct involvement of CDP in regulation of either promoter has not been
established. Transcription repression by CDP may also involve its ability to recruit a histone
deacetylase activity, HDAC1, leading to deacetylation of histones, a phenomenon consistent
with transcriptionally inert chromatin [86]. Similar interactions among NF-κB, CBP/p300, and
CDP may be involved in the regulation of CXCL1 gene regulation. The relevance of the IUR
binding factors, CDP and PARP, is of potential interest in disorders such as chronic
inflammatory conditions and malignancy, where constitutive overexpression of the CXCL1
gene contributes to disease etiology. Interactions of CDP with the IUR cis-acting element may
allow for tight repression of the CXCL1 gene. The loss or displacement of CDP may be an
important phenomenon in the short-term induction of the CXCL1 gene, usually associated with
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acute inflammatory responses, or in the constitutive, high-level expression of CXCL1 observed
in chronic inflammatory processes, tumorigenesis, and malignant melanoma.

Upstream signals that lead to endogenous activation of NF-κB in melanoma cells
Our laboratory has demonstrated that melanoma cells exhibit endogenous nuclear activation
of NF-κB through EMSAs and luciferase reporter assays. In addition, IκB is degraded more
rapidly in melanoma cells than in normal cells [87]. Transfection of melanoma cells with the
dominant negative inhibitor of NF-κB (IκB ΔN) reduced the tumor growth, reduced the
metastatic potential, reduced IL-8 production, and reduced growth of CD31-positive blood
vessel in the tumor. These data support the role for endogenous activation of NF-κB in
association with enhanced metastatic potential for malignant melanoma cells.

The level of IKK activity was assessed in eight melanoma cell lines by immunoprecipitating
IKK-α and -β using glutathione-S-transferase-IκBα (aa 1–54) as a substrate. The results showed
that, compared with NHEM, the activities of IκB kinases were 3- to 14-fold higher in melanoma
cells [88]. Thus, melanoma cells exhibit constitutively high IKK activity, persistent
overexpression of nuclear NF-κB p65/p50, and increased basal CXCL1 transcription.

NIK is up-regulated in melanoma cells
NIK was identified by means of its association with TNF receptor-associated factor 2 (TRAF2)
and has been shown to potently activate NF-κB when overexpressed [65]. Expression of kinase-
defective forms of NIK blocks NF-κB activation in response to most inducers. NIK has been
hypothesized to be involved directly in TNF-α-induced activation of NF-κB and has been
suggested to be involved in NF-κB activation in response to other stimuli, especially IL-1
[89]. However, NIK also interacts with other TRAF proteins, including TRAF3, which appears
not to be involved in NF-κB activation [90]. That NIK interacts strongly and preferentially
with IKKα and β and activates their phosphorylation has been confirmed using the yeast two-
hybrid system as well as protein interaction studies [91]. However, recent results from IKK
and NIK knockout studies demonstrate that IKKα and NIK are not required for IKK activation
by TNF-α [92]. The signaling pathways involved in regulation of cell proliferation, survival,
and oncogenesis are of prime interest in cancer biology. Since its discovery, Rel/NF-κB has
been the focus of intensive research, especially the mechanism(s) that control its activation.
More than 60% of the melanoma cells studied to date showed higher expression of CXCL1,
CXCL8, IL-1β, IL-6, basic fibroblast growth factor, IL-7, platelet-derived growth factor, IL-10,
granulocyte macrophage-colony stimulating factor, insulin-like growth factor-1, nerve growth
factor, vascular endothelial growth factor, epidermal growth factor, and transforming growth
factor-β at mRNA level [93]. The majority of these genes contain a NF-κB element in their
inducible promoter. As mentioned above, our laboratory has previously shown a higher level
of CXCL1 expression in malignant melanoma cells as compared with normal melanocytes
[88]. This increase in IKK activity is responsible for increased IκB phosphorylation and
degradation, thereby increasing NF-κB activation and nuclear localization, which finally leads
to increased expression of CXCL1. So far, proinflammatory cytokines have been shown to
activate NF-κB through an NIK/MEKK-IKK-IκB signaling pathway in many cell types.
However, the proteins responsible for regulating IKK activation in melanoma cells are not
known. Preliminary data suggest that NIK kinase is required for the up-regulation of NF-κB
activity in melanoma cells.

Tumor expression of oncogenes is associated with the hyperactivation of growth and survival
pathways. This causes constitutive activation of these signaling pathways without requirement
of exogenously derived signals. In spite of the numerous tropic factors and receptors that govern
the survival of specific cells, many of these receptors use common intracellular signaling
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molecules and pathways to mediate their signals. Of these, the two pathways that have a central
role in the survival signaling are the PI3K/Akt, the Ras/MAPK pathways.

Ras activates NF-κB and protects cells from apoptosis
Ras family members play important roles in cell growth, differentiation, transformation, and
apoptosis. It has been demonstrated that overexpression of any of three normal Ras genes, N-
Ras, H-Ras, or K-Ras, leads to in vitro transformation [94]. In vivo overexpression of normal
N-Ras is associated with development of hyperplasia and tumors in transgenic mice [95]. A
newly described form of ras, called M-Ras, is closely related to R-Ras, Tc21, H-Ras, K-Ras,
and N-Ras [96]. Overexpression of activated Ras in melanocytes null for p16 INK4a/ARF p19
induces overexpression of mutant-activated M-Ras and induces transforming foci in NIH3T3
cells, although the ability of M-Ras to induce transforming foci is weaker than that of Ha-Ras
[97]. Activation of the PI3K/Ras/Raf/Soc/MEK/ERK pathway is common for GPCR [98].
Enhanced Ras activity results in increased myc expression, G1/S phase transition, and
enhanced NF-κB and AP1 activity. Thus, Ras might be activating NF-κB and hence chemokine
expression. The up-regulation of chemokine expression has potential for tumor progression.
Activating mutations of Ras are also prevalent in 90% of pancreatic adenocarcinomas and in
50% of colon and thyroid tumors.

Unpublished data from our laboratory has shown that N-Ras is up-regulated in most melanoma
cells, and H-, K-, and R-Ras expression is not altered substantially. In an attempt to identify
CXCL1/GRO-regulated genes, which may be involved in CXCL1/GRO-induced melanocyte
transformation, we found, using differential display, that continuous expression of CXCL1 or
CXCL3 up-regulates the expression of M-Ras at the mRNA and protein levels. The ELR motif
is required for receptor activation by CXCL1. The melan-a clones expressing the ELR motif
mutant forms of CXCL1 failed to exhibit increased Ras protein expression. An in vitro
transformation assay demonstrated that M-Ras could induce cellular transformation in a
manner similar to CXCL1 in control melan-a cells [99]. Overexpression of dominant-negative
M-Ras in CXCL1 expressing melan-a cells blocked transformation. Thus, CXCL1-mediated
transformation requires Ras activation in melanocytes. CXCL1 expressing melan-a clones
exhibited enhanced NF-κB and AP-1 activity. In vitro transformation assays demonstrated that
M-Ras overexpression induced cellular transformation in a manner similar to CXCL1 in control
melan-a cells. Conversely, overexpression of dominant-negative M-Ras in CXCL1 expressing
melan-a s cells blocked transformation. Thus, CXCL1-mediated transformation requires Ras
activation in melanocytes. Previous studies have shown that NF-κB activation suppresses
apoptosis [100]. To test whether CXCL1-induced NF-κB was facilitating transformation by
allowing melanocytes to escape from apoptosis, the super repressor of NF-κB (IκB-α ΔN) was
overexpressed in immortalized murine melanocyte clones. These cells exhibited a fivefold loss
in cell viability and a fivefold increase in apoptosis, compared with cells transfected with
control vector. Thus overall, the data suggest that NF-κB activation protects against Ras-
mediated apoptosis.

Akt is activated constitutively in some melanoma cells leading to activation of NF-κB
As ras-activating factors are secreted by melanoma cells, ras activation might lead to enhanced
PI3K activity in melanoma cell lines, which would result in constitutive activation of protein
kinase B (PKB) or Akt. PKB/Akt is the cellular homologue of the transforming viral oncogene
v-Akt and bears significant homology to PKA and PKC [101]. Akt is a serine/threonine protein
kinase involved in regulation of cell survival signals. The three mammalian isoforms all contain
an N-terminal PH domain, a central kinase domain with an activation loop, and a C-terminal
domain. Akt function is controlled by localization to the membrane, which is dependent on
available phosphotidylinositol phosphates (PIPs), and by the level of its phosphorylation. Akt
is phosphorylated at two sites, the Thr-308 phosphorylation site in the kinase domain and a
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conserved, regulatory serine phosphorylation site, Ser-473, near the C terminus [102]. Receptor
protein tyrosine kinase activation leads to production of PtdIns(3,4,5)P3 and PtdIns(3,4)P2 at
the inner leaflet of the membrane. Subsequently, these membrane lipids recruit Akt to the inner
leaflet of plasma membrane, where PDK-1 is located. With lipid/membrane association, there
is a conformational change in Akt, exposing Ser-473 and Thr-308. Subsequently, PDK-1
phosphorylates Thr-308 in Akt, stabilizing the activation loop. Phosphorylation of Thr-308 is
a prerequisite for kinase activation, but phosphorylation of Ser473 in the C-terminal
hydrophobic residue is required for full activation of Akt kinase. The identity of the kinase
responsible for phosphorylating the Ser-473 site (putatively termed PDK-2) remains elusive
[103]. In a later phase through unknown mechanisms, activated Akt is translocated to the
nucleus, where several of its substrates reside [104]. Thus far, at least 13 Akt substrates have
been identified in mammalian cells, and they fall into two main classes: regulators of apoptosis
and regulators of cell growth, including protein synthesis and glycogen metabolism, and cell-
cycle regulation on the other. All identified substrates are phosphorylated within the same basic
motif, R-X-R-X-X-S/T. The Akt substrates involved in cell-death regulation include members
of the forkhead family of transcription factors, the proapoptotic factor, BAD, the nuclear factor
CREB, the pro-apoptotic protease caspase 9, and IKK linking to transcription factor NF-κB
[105]. Akt is activated in several different carcinomas such as ovarian, breast, and pancreatic
cancers. It has been suggested previously that Akt/PKB might be involved in NF-κB activation
by a pathway dependent/independent of IKK activation [106–108].

The tumor suppressor phosphatase and tensin homologue deleted from chromosome 10
(PTEN), also referred to as mutated in multiple advanced cancers, has specificity for 3′-
phosphorylated PIPs [109]. PTEN is an important lipid phosphatase that plays a role in
deactivation of Akt. This phosphatase regulates the PI3K/Akt signaling pathway, and loss of
PTEN in tumor cells correlates with activation and phosphorylation of Akt. Although
inactivating mutations of PTEN render cells resistant to apoptosis, overexpression of wild-type
PTEN sensitizes cells to death following detachment from its extracellular matrix [110]. This
potentially explains the frequency of PTEN mutations in late-stage, invasive tumors. PTEN
mutations have been previously described in melanoma [111]. These findings suggest the
importance of the PI3K/Akt pathway in tumor progression. Preliminary findings from our work
implicate the PI3K/Akt/PTEN pathway in melanoma cells.

Thus, different melanoma cell lines have disturbance in one or more than one upstream
signaling pathway, but the common thread on which they all finally converge is NF-κB, which
is involved in regulation of chemokines such as CXCL1, as well as escape from apoptosis for
the cancerous cells.

CXCL1 overexpression in normal melanocytes is associated with tumor formation in vivo
INK4a/p16 is a tumor suppressor gene that is often inactivated in families with hereditary
melanoma. P16INK4a associates with cyclin-dependent kinase CDK4 and inhibits the CDK4
and -6 kinases, which are responsible for phosphorylation of the retinoblastoma protein (RB)
[112,113]. Overexpression of p16INK4a inhibits the phosphorylation of RB by CDK4/cyclin
D and facilitates cell cycle arrest in G1 [114,115]. In addition to p16INK4a, this locus encodes
a growth inhibitor protein, termed p19ARF, through alternate reading frames of the first exon.
p19ARF also functions as a negative regulator of cell cycle progression [116]. Many tumor
suppressor genes have been associated with predisposition to develop melanoma, but only
INK4a/ARF has been identified as a true melanoma susceptibility gene after almost two
decades of effort. Several other oncogenes such as ras, c-Met, SV40, and CXCL1 have been
related to genesis and progression of human melanoma. CXCL1 is overexpressed in human
malignant melanoma cells and is linked to transformation of immortalized murine melanocytes.
To study the direct role of CXCL1 on the genesis of primary melanoma lesions, transgenic
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mouse lines were established. These cell lines express the murine homologue of CXCL1,
MIP-2, under the transcriptional control of tyrosinase promoter/enhancer in mice that were
deficient or not deficient for INK4a/ARF (Fig. 4). After treatment with 7,12-dimethylbenz(a)
anthracene, cutaneous melanoma formed in 12% of Tyr-MIP-2 transgene-positive mice, while
only 2% of the Tyr-MIP-2 transgene-negative mice developed melanoma. In addition, when
melanocytes cultured from MIP-2 transgenic mice null for INK-4a/ARF were transplanted to
the nude mice, melanoma formation occurred in 83% of the cases, with the latency period of
3 months. However, no melanoma lesions arose in nude mice injected with INK4a/ARF −/−
melanocytes not expressing the MIP-2 transgene. Thus, it appears that the loss of INK-4a/ARF
coupled with MIP-2 transgene expression in melanocytes results in melanoma tumor formation
in the nude mice xenograft model. Based on these observations, we suggest that enhanced
MIP-2 expression in cooperation with loss of INK-4a/ARF may play a potent role in induction
of melanoma in vivo [117].

SUMMARY
Chemokines play an important role in tumor biology. The disregulation of the transcription
factor NF-κB leads to constitutive expression of certain chemokines and cytokines. NF-κB is
involved in regulation of cell growth, oncogenesis, and escape from apoptosis. Several other
coactivators and repressors such as PARP, CDP, and NF-κB are involved in the regulation of
CXCL1. In addition, some signaling components such as NIK and Akt might be altered, leading
to activation of NF-κB in melanoma cells. Overall, our work has demonstrated the importance
of loss of tumor suppressor function, disregulation of NF-κB, and constitutive chemokine/
chemokine receptor expression in tumor progression. The next important step would be to test
the inhibitors of NF-κB, Akt, and/or chemokine receptors alone or in combination with
chematherapeutic agents in order to determine efficiency for treatment of melanoma. We are
examining the use of PS-341 [118], a proteasome inhibitor, and NEMO binding peptide
[119], an IKK inhibitor, to reduce constitutive NF-κB activity and the growth of melanoma.
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Fig. 1.
The pleiotropic role that chemokines play in promoting cellular transformation, tumor growth,
invasion and homing, and metastasis to distant preferential organs. CXC and CC chemokines
play multifunctional roles in facilitating tumor cell growth and invasion by augmenting their
local angiogenic environment and up-regulating the expression of local proteinases to aid tumor
cell invasion and entry into the circulation. Display of chemokine receptors on tumor cells may
facilitate homing and organs that produce the chemokine ligands for those receptors.
(Photocopied with permission from [23].)
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Fig. 2.
Transcription of CXCL1 is regulated through several cis elements including NF-κB, HMGI
(Y), Sp1, and IUR. The IUR contains a binding site for the negative regulator, CDP, and PARP,
an activator of transcription. In normal cells, CXCL1 is not induced, but it can be induced by
IL-1β, LPS, and TNF-α during inflammation. During IL-1 induction and tumorigenesis, there
is an increase in the nuclear levels of p65 and p50 subunits of NF-κB. In melanoma cells, NF-
κB is activated constitutively. PARP displaces CDP, and CBP is proposed to bind NF-κB and
Sp1 to stabilize the enhanceosome and keep the chromatin in an acetylated and active state.
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Fig. 3.
Model of potential components/upstream kinases involved in constitutive activation of NF-
κB and thus chronic expression of CXCL1 in melanoma. The activation of these kinases can
occur in an autocrine (by CXCL1) or paracrine (by cytokines and growth factors) manner. This
constitutive expression can be blocked with the IKK inhibitor, NEMO-binding peptide, or
PS341, a proteasome inhibitor and target tumor cells for apoptosis.
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Fig. 4.
Histological analysis of melanoma lesions that developed in association with overexpression
of MIP-2 and loss of p16. (A) Typical cutaneous-pigmented melanoma lesion arising
pigmented melanoma lesion arising in MIP-2-transgenic mice heterozygous for INK4a/ARF.
(B) Morphology of the melanoma. (C) H&E staining of tissue section from a typical pigmented
melanoma arising in MIP-2 transgenic mice. Melanoma formation in nude mice transplanted
with MIP-2-transgenic melanocytes that were null for INK4a/ARF. Two million epidermal
melanocytes derived from MIP-2-transgenic, newborn mouse completely deficient for INK4a/
ARF were injected in the subscapular region of nude mice. (D) After 101 days of latency, skin
melanoma lesions were observed. (E) H&E staining reveals the histological characteristics of
a melanocytic tumor lesion. S-100 immunostaining of tumor cells in lung. (Photocopied with
permission from ref. [117].)
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