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Abstract
Noninvasive recording of fast optical signals presumably reflecting neuronal activity is a challenging
task because of a relatively low signal-to-noise ratio. To improve detection of those signals in rapid
object recognition tasks, we used the Independent Component Analysis (ICA) to reduce “global
interference” (heartbeat and contribution of superficial layers). We recorded optical signals from the
left prefrontal cortex in 10 right-handed participants with a continuous-wave instrument (DYNOT,
NIRx, Brooklyn, NY). Visual stimuli were pictures of urban, landscape and seashore scenes with
various vehicles as targets (target-to-non-target ratio 1:6) presented at ISI = 166 ms or 250 ms.
Subjects mentally counted targets. Data were filtered at 2–30 Hz and artifactual components were
identified visually (for heartbeat) and using the ICA weight matrix (for superficial layers). Optical
signals were restored from the ICA components with artifactual components removed and then
averaged over target and non-target epochs. After ICA processing, the event-related response was
detected in 70–100% of subjects. The refined signal showed a significant decrease from baseline
within 200–300 ms after targets and a slight increase after non-targets. The temporal profile of the
optical signal corresponded well to the profile of a “differential ERP response”, the difference
between targets and non-targets which peaks at 200 ms in similar object detection tasks. These results
demonstrate that the detection of fast optical responses with continuous-wave instruments can be
improved through the ICA method capable to remove noise, global interference and the activity of
superficial layers. Fast optical signals may provide further information on brain processing during
higher-order cognitive tasks such as rapid categorization of objects.
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1. Introduction
There are many instances where the complexity of biological phenomenology can only be
studied in intact organisms. Since the 1970’s, a growing number of methods have been
developed that explore intact tissues at various spatial and temporal scales (Baert, 2008). One
technique that has proven especially versatile is magnetic resonance (MR) imaging. While
often used for its ability to define the anatomy in exquisite detail, the MR method has also been
developed as an effective tool to explore neuronal activation. This is possible because the
hemodynamic response associated with activation alters the T2* MR relaxation time. This has
lead to a wide array of reports whose focus has been the spatial and temporal relationships
between neuronal activation and complex behaviors involving sensory (Ogawa et al., 1992),
motor (Richter et al., 1997; Wildgruber et al., 1997), learning (Vaina et al., 1998), memory
(Reber et al., 2002) and other higher order functions.

The MR method, however, does have clear drawbacks. For one, the instrumentation and facility
costs are high. Additionally, the need to restrict gross movement in the magnet prevents the
examination of subjects in natural settings or undergoing complex tasks. Also, the relatively
weak signal associated with the hemoglobin response limits the temporal resolution of the
method to a few seconds.

An alternative technique that has been developed over the past twenty years to study brain
function is near infrared spectroscopy (NIRS) (for review, see (Pereira et al., 2007; Taillefer
and Denault, 2005; Wolf et al., 2007). The attraction of this technique is the considerable
flexibility by which the instrumentation can be deployed and its fast temporal response. Also,
its low cost and portability add to its utility. Further extending its utility is the wide array of
physical phenomena that can be studied by optical methods. These include absorption (Aronson
et al., 1991; Barbour et al., 1990), light scatter (Pogue et al., 2004), birefringence and optical
activity (Baba et al., 2002; de Boer and Milner, 2002), fluorescence (Chang et al., 1995a;
Chang et al., 1995b; Chang et al., 1996; Chang et al., 1997), bioluminescence (Welsh and Kay,
2005) and the Raman effect (Qu et al., 1999; Vinegoni et al., 2004). In recent years, a particular
focus of the NIRS technique has been to employ array sensing methods to provide for
topographic (Koizumi et al., 2003; Toronov et al., 2007; Wolf et al., 2007) and tomographic
(Aronson et al., 1991; Barbour et al., 1990; Barbour et al., 1991; Barbour et al., 2001; Graber
et al., 1993b) imaging studies. A key focus here has been examination of the event related
hemodynamic response (Gratton et al., 1997; Gratton and Fabiani, 2003; Toronov et al.,
2001) as a surrogate of neural activity. Compared to the MR method, the NIRS technique
provides information about the complete hemoglobin response (i.e., oxygenation and volume
changes). Also of interest is evidence of that the NIRS method can be employed to directly
measure neuronal activation. This is believed to result from light scatter changes that are
associated with ion currents across the neural membrane and occurs on a time scale
considerably fast than the hemodynamic response. This dual sensing capability makes the
NIRS technique the only imaging method that is sensitive to changes in both neuronal activity
(fast signal) and hemodynamics.

During the last 10 years, there have been several attempts to record the evoked fast optical
signal noninvasively through the scalp and skull in human subjects (Franceschini and Boas,
2004; Gratton et al., 1997; Gratton and Fabiani, 2003; Morren et al., 2004; Rinne et al.,
1999; Steinbrink et al., 2000; Steinbrink et al., 2005; Syre et al., 2003; Wolf et al., 2002; Wolf
et al., 2003). The results of these studies, however, have been controversial. In a series of
reports, Gratton and colleagues have documented the fast signal as being associated with a
variety of event related tasks involving the primary sensory (Gratton and Fabiani, 1998) and
motor cortex (Gratton et al., 1995). The ‘event related optical signal’ (EROS) showed spatial
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agreement with fMRI and temporal agreement with a visual evoked potential (Gratton et al.,
1997).

Reports by Steinbrink and colleagues have been less consistent (Steinbrink et al., 2000;
Steinbrink et al., 2005; Syre et al., 2003). Steinbrink et al. (2000) were first to measure the fast
optical signal during electrical median nerve stimulation using a continuous-wave NIRS system
and intensity measurements (ΔI/I), rather than photon delay. The reported signal changes were,
however, much smaller (~0.05%) than reports by Gratton’s group. In another study, the same
group failed to reproduce the results obtained by Gratton’s group using an almost identical
instrumentation (phase measurement with a frequency-domain system) and experimental
protocol (Syre et al., 2003). A recent study by the same group yielded limited results as the
authors detected a significant change in activity in only one subject during finger tapping task
and a lack of signal in all 12 subjects during visual stimulation with a reversing checkerboard
(Steinbrink et al., 2005).

Another research group recorded the fast optical signal using intensity measurements in 10
healthy volunteers during finger-tapping, tactile stimulation, and electrical median nerve
stimulation (Franceschini and Boas, 2004). The fast signal was detected in 43% of the
measurements during finger-tapping, 60% of those during tactile stimulation, and 23% of those
during electrical median nerve stimulation. The relative changes in intensity associated with
brain activation were ~0.07% with latencies ~100 ms.

There is evidence that the method used for signal analysis could be important. Morren et al.
(2004) have employed an adaptive filter and Independent Component Analysis (ICA) for better
separation of a signal component containing the fast signal. In 9 of 14 subjects, a significant
fast neuronal signal related to the finger tapping was found in the intensity signals. In the phase
signals,indications of the fast signal were found in only two subjects (Morren et al., 2004).

To summarize, it can be said that the feasibility of detecting fast optical signal noninvasively
remains controversial because of the low signal-to-noise ratio, and the signal is not detected
in all subjects. In these studies, the detected signal had a latency of 50–100 ms which
corresponds well to electrophysiological correlates of early sensory processing.

It remains an open question, as to whether other types of event-related neural activity can be
recorded using NIRS methods. One well-established example is the event-related potential
(ERP) P300 recorded in response to infrequent stimuli in the conventional oddball task. We
are aware of only one study where the fast optical signal was recorded in the dorsal frontal
cortex during an auditory oddball task and its temporal dynamic was similar to the P300
potential (Low et al., 2006). This study used a frequency-domain instrument and phase-based
measurements of the fast signal. Event-related cognitive potentials recorded by
electrophysiological methods may have a wider distribution over the scalp, which include
frontal-temporal, central and parietal locations depending on the task in question.

To extend the published data and to further explore the feasibility of detection of the fast optical
signal from the human scalp, here we have explored our ability to detect the event-related fast
optical signal using an intensity-based continuous-wave imager (Schmitz et al., 2002; Schmitz
et al.,2005a; Schmitz et al., 2005b) while employing a visual oddball task protocol.
Specifically, we have searched for optical analogs of cognitive potentials during a target
detection task using Rapid Serial Visual Presentation (RSVP) of complex pictures, a variation
of the object detection task initially introduced by Thorpe et al. (Thorpe et al., 1996). A key
methodology employed has been use of Independent Component Analysis (ICA) to detect and
remove technical and physiological artifacts from the signal including non-specific activity of
the superficial layers (scalp and skull). The results show that the temporal dynamics of the
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optical signal matches the known dynamics of the ERP recorded in similar conditions, which
allows us to relate the observed optical signal to neuronal activity.

2. Results
2.1. Independent Component Analysis

A representative 5-second segment of the raw optical data from subject #39 is shown in Fig
2A. All 15 channels (1 source × 15 detectors) are numbered starting from the leftmost top
location (subject’s view, see Fig 1) and first going down (column-wise) and then to the right
(row-wise). In this scheme, the ‘co-located’ channel has #2 (for description of the ‘co-located’
channel, see section 4.2. Optical Data Collection below). The most distinctive feature of the
raw optical data is the presence of regular high amplitude waves with a period of approximately
one per second, which represent a heartbeat artifact. Heartbeat artifact is the most common
physiological artifact found within the optical signal. It represents periodic changes in blood
oxygenation related to heartbeat and therefore belongs to the family of hemodynamic (slow)
optical signals. Highpass filtering >2 Hz used in this study did not remove it completely and
the main rhythm of heartbeat at ~1 Hz along with higher harmonics was usually present in the
optical signal after filtering. This artifact is seen in all channels in Fig 2A but less evident in
channel #1, which is closest to the source, and in the co-located channel #2.

The ICA components of the data presented in Fig 2A are shown in Fig 2B. It can be seen that
the heartbeat artifact is present only in several components (#2, here the heartbeat waves are
marked by asterisks; ## 6, 10, 12 and 15). This illustrates the ability of ICA to identify artifacts
based on their statistical independence from other signals and its potential usefulness for signal
de-noising.

The weight matrix A for the data of Fig 2A is shown in Fig 3A as a grayscale-coded plot.
Matrix A was an important tool guiding our selection of components which would have to be
removed from the raw signal. In this matrix, each cell with indexes (i,j) represents the weight
relating the j-th component to the i-th data channel. Analysis of all available data revealed a
certain structure in matrices A, which was common in all subjects (Fig 3). This structure is
exemplified in Fig 3A by ovals “a” and “b” depicting two clusters of relatively large weights.
Oval “a” represents the cluster related to the activity at detectors which are close to the source.
The second cluster (oval “b”) was usually found at the most distant detectors separated from
the source by 3–4 cm. In the first cluster in Fig 3A, components ## 1, 4, 7, 8, 11, 13 and 14
have large weights along the second row of matrix A and this means that these components
represent most of the activity of the co-located channel #2 and,therefore, they should be
removed from the signal. The distant cluster “b” is likely to represent the activity of deeper
(presumably cortical) layers and it is in this cluster where the signal reflecting neuronal activity
is expected to be found. A possible and undesirable influence of the superficial layers on the
activity recorded at distant detectors can be also revealed using matrix A. For
example,components ## 4, 5 and 8 in Fig 3A contribute to the co-located (superficial) channel
#2 as well as distant channels ## 13–14. This illustrates the fact that, indeed, the brain activity
recorded at distant detectors can be contaminated to various extents by the activity of superficial
layers.

After finding components related to the activity of superficial layers, those components were
also excluded from further analysis along with the heartbeat components found through visual
inspection of data records as described above. At the next stage of data analysis, the signal for
all channels was restored using the remaining components. For the data from subject #39, the
restored signal is shown in Fig 2C where it is superimposed on the raw signal. The
corresponding power spectra of the raw and restored data are shown in Fig 4. In the raw spectra,
the heartbeat artifact is seen as two distinctive peaks at frequencies ~2.2 and 3.5 Hz which
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correspond to the 2nd and 3rd harmonics of the heartbeat signal. From Fig 2C and Fig 4, it can
be seen that the ICA method was very effective in removing physiological artifact as well as
noise generated in the superficial layers (note that the spectrum of the co-located channel # 2
in Fig 4 is flat which means that the signal in this channel contains mostly noise). The restored
signal was then used to calculate event-related responses for target and non-target conditions.

2.2. Event-related optical signal
To demonstrate the effect of artifact removal on the event-related optical signal, the signal from
the representative subject (# 37) is shown in Fig 5 before and after artifact removal. The top
panel shows the EROS calculated for one channel using the raw data (before ICA) while the
lower panel shows the same signal after the ICA procedure and artifact removal. The average
raw signal in this subject appeared to be insignificantly different from baseline and therefore
did not reveal any significant components related to the visual stimulus (Fig 5A). Contrary to
that, the signal after artifact removal showed deviations from baseline within 100–300 ms after
the stimulus. Most interestingly,the optical signal decreased from baseline in response to
targets while showing an increase in response to non-targets (Fig 5B). This pattern was
consistent in all participants.

The group average EROS is shown in Fig 6. It appeared to be similar in all four experimental
conditions. For each condition, a few subjects were excluded from the group average because
the response was not significantly demonstrated in them. Therefore, for all four conditions
presented in Fig 6, the numbers of subjects used to derive the group average were as follows:
NA = 8 (condition A:PR = 6 Hz, wavelength = 760 nm); NB = 10 (condition B: PR = 6 Hz,
wavelength = 830 nm); NC = 7 (condition C: PR = 4 Hz, wavelength = 760 nm); ND = 7
(condition D: PR = 4 Hz, wavelength = 830 nm). As in subject # 37, the major distinctive
feature of the group average response is that the optical signal (measured by changes in light
intensity) decreased significantly in response to targets and this decrease occurred within 200–
300 ms after the stimulus. After 300 ms, the signal returned to baseline with some tendency
for overshoot that is, developing a small positive wave at ~ 350 ms before the next negative
deviation from baseline after 400 ms. The later components (> 300 ms), however, were weak
and, as a rule, insignificant. The average response to non-targets was quite different showing
an increase at approximately the same time of 200–300 ms after the stimulus (Fig 6). However,
the non-target-related response was weaker and did not reach significance at wavelength = 760
nm and PR = 6 Hz (Fig 6A).

The differential response (targets minus non-targets) is shown in Fig 7. Its temporal pattern
is,understandably, similar to the target-related response also showing the largest deviation from
baseline around 200–300 ms. The differential response was somewhat more robust at
wavelength 830 nm compared to wavelength 760 nm (showing more temporal bins where
signal amplitude was significantly different from baseline; compare Fig 7B, D to Fig 7A, C).

2.3. Spatial distribution of the fast signal
To analyze the spatial distribution of event-related optical signal, we first identified an ICA
component best representing the optical response. This component was identified as having
the largest weight for a data channel (or a group of channels) where the response was maximal.
We then linearly interpolated the weights of the response-related component over the area
covered by the optical probe. Spatial maps for each participant were finally group-averaged
for each of four experimental conditions. The group average spatial maps are shown in Fig 8.
The cardinal points in these maps used for interpolation grids represent the midpoints for each
source-detector pair and therefore the maps show spatial distribution over the left half of the
area covered by the probe (the imaged area is depicted in the bottom panel of Fig 1). Spatial
maps demonstrate that optical response was best recorded in the data channels distant (3–4 cm)
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from the light source. Removal of the ICA components contributing to the co-located channel
resulted in that the activity of the channels near the source were also excluded (as illustrated
in the spatial maps by blue color near the source) and therefore, the signal became free of the
activity of superficial layers. Thus, the spatial maps also illustrate the effectiveness of ICA to
exclude nonspecific activity of superficial layers from the signal of interest (which in this
context is a signal related to neuronal activity).

3. Discussion
3.1. Artifacts present in the optical signal

The optical signal measured exclusively as changes in light intensity without concurrent
measurements of phase delay, as is the case for all continuous-wave instruments, may be
contaminated by noise or nonspecific changes from many different sources. Because of the
positioning of light sources and detectors on the scalp, photons necessarily pass through
superficial tissue layers (scalp and skull) before reaching the cortex. These superficial layers
may provide noise as well as nonspecific hemodynamic variations which would unavoidably
contaminate the measured signal. In addition, hemodynamic oscillations inside the brain (e.g.,
related to heartbeat and respiration) also provide interference signals to the optical
measurements of brain activity. All these interferences either from superficial layers or from
inside the brain are often referred to as “global interference” or “systemic physiological
interference” (Zhang et al., 2007). The global interference is a common problem for intensity-
based measures of both the hemodynamic measurements of oxy-/deoxyhemoglobin
concentration changes and the fast (presumably neuronal) signal. Several studies have
addressed this problem through development of methods to suppress global interference
applying them mostly for hemodynamic measurements. Those methods include adaptive
filtering, average wave form subtraction and others (Franceschini et al., 2003; Gratton and
Corballis, 1995; Zhang et al., 2007). A recent study has successfully employed Independent
Component Analysis to remove the skin blood flow artifact from functional near-infrared
spectroscopic imaging data (Kohno et al., 2007). The ICA method has also been used to
improve the signal in optical imaging of intrinsic signals (Chen et al., 2007; Schiessl et al.,
2008) and we are aware of only one study where ICA was applied to detect fast optical signal
in frequency-domain measurements (Morren et al., 2004). Because intensity-based
measurements are more sensitive to noise from various sources such as superficial layers and
changes in environmental light intensity compared to phase-delay measurements (Gratton et
al., 2006), it is important to develop reliable methods for removal of global interference while
attempting to detect the fast optical signal using continuous-wave instruments. The major
finding of this study is that the feasibility to detect the fast optical signal in intensity-based
measurements can be significantly improved through the application of Independent
Component Analysis. As our data show, without removal of global interference, fast optical
signal may be completely undetectable (Fig 5) and this may explain the relatively poor results
of some previous studies demonstrating fast signal in only a relatively small percentage of
subjects. Our data show that the superficial layers are a powerful source not only of nonspecific
hemodynamic oscillations (such as heartbeat-related) but also of white noise as judged from
the flat power spectra of the co-located channel (Fig 4). Independent Component Analysis was
a significant part of data processing used for artifact removal from optical signal in the current
study and with application of ICA we were able to detect fast signal in 70–100% of our subjects.

3.2. Independent Component Analysis as a de-noising tool
The ICA as a mathematical and computational method belongs to a broad class of linear
representations of multivariate data. Principal component analysis (PCA), factor analysis and
projection pursuit are several examples of linear transformation methods commonly used in
various data processing techniques. Independent component analysis is a recently developed
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method belonging to the family of the blind source separation techniques (Bell and Sejnowski,
1995; Comon,1994; Jutten and Hérault, 1991; Nadal and Parga, 1994). The major goal of ICA
is to find a linear representation of non-gaussian data so that the components are as statistically
independent as possible given all the available data. It has been shown that such representation
seems to capture the essential structure of the data in many applications including feature
extraction and signal separation (see, e.g., (Hyvärinen et al., 2001)). While PCA considers
signals as random variables with Gaussian distribution and minimizes their second-order
statistics (i.e., decorrelates variables), ICA considers non-gaussian variables and minimizes
both second-order and higher-order dependencies in these variables (i.e., maximizes their
statistical independence). The assumption of non-gaussianity of input variables is essential for
ICA and it is more general compared to the assumption of gaussianity used in PCA because
non-gaussian distributions represent a broader class of variables. Moreover, PCA components
are orthogonal while ICA components may be non-orthogonal, which is again a more general
assumption because there is no reason to expect neurobiologically distinct sources of activity
to be orthogonal (Jung et al., 1998). A direct comparison between regression methods, PCA
and ICA in terms of their applicability for artifact removal from EEG while preserving spectral
properties of the EEG signal has revealed a higher effectiveness of ICA (Jung et al., 2000).
There have been suggested several algorithms realizing the Independent Component Analysis.
These algorithms include minimization of mutual information, maximum likelihood estimation
and the Infomax algorithm derived from the principles of the neural network theory (Bell and
Sejnowski, 1995; Nadal and Parga, 1994). Being similar from the theoretical viewpoint, these
algorithms differ in computational strategy and the assumptions on the nature of the data. One
of the most computationally effective methods of ICA is the FastICA algorithm (Hyvärinen
and Oja, 2000). The algorithm is based on maximization of non-gaussianity of the components
as an approach to increase their statistical independence.

We used the FastICA algorithm to perform ICA of optical data and the following steps to
identify those ICA components which were considered noise (and discarded) as well as those
which were considered signal (and kept). First, the major artifacts related to cardiac and
respiratory activity were identified from visual inspection of the records as illustrated in Fig
2. Second, we identified those ICA components which had a significant contribution to the co-
located channel (#2) using the weight matrix A as illustrated in Fig 3. Those components were
considered as representing the activity of the superficial layers and were also discarded. This
was confirmed through the spectral analysis showing the flat spectra of those ICA components.
After the removal of all artifactual components, we verified that the components with a
significant contribution to the distant optodes (depicted by ovals “b” in Fig 3) were kept in,
considering them as the best candidates for a neuronal signal.

3.3. Technical and physiological factors affecting the detectability of fast optical signals
A comparative analysis of the fast optical signal using a frequency-domain instrument and
deriving the signal from three different metrics has been done in a recent study (Gratton et al.,
2006). Those metrics were: 1) continuous measurement of intensity (DC intensity), which is
similar to using a continuous-wave machine without frequency modulation; 2) measurement
of modulated intensity (AC intensity), which is similar to the continuous-wave measurement
with modulation of light intensity (low-frequency (a few kHz) modulation of light intensity is
used in the majority of continuous-wave imagers, including the DYNOT instrument used in
this study, to allow separation of different light sources through demodulation); 3) photon delay
measurement, which is specific for frequency-domain instruments. The effect of wavelength
(shorter and longer than the hemoglobin isosbestic point at 800 nm, the point at which the
absorption spectra of oxy- and deoxy-hemoglobin cross over) and the effect of source-detector
distance were also analyzed. It has been shown that the AC intensity and photon-delay
measurement of the fast signal are more robust and sensitive compared to the DC intensity
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measurement. A possible explanation is that the DC intensity measurements are more sensitive
to various sources of noise, e.g., contribution of superficial layers, while measures based on
photon delay may be exquisitely sensitive to differential effects occurring deep into the tissue
thus providing better control for external sources of noise (Gratton et al., 2006). Supportive of
this view, the current study demonstrates a significant effect of superficial layers and global
interference which may make the fast signal undetectable through intensity measurements.
This result along with other published findings emphasizes the need to employ de-noising
algorithms such as ICA or adaptive filtering, especially with intensity measurements, in order
to reduce artifacts present in the optical signal. Given the fact that the continuous-wave
instruments cost significantly less than the frequency-domain instruments, the demonstrated
successful application of de-noising algorithms in the current study encourages further
application of continuous-wave instruments for detection of the fast (presumably neuronal)
optical signal.

The current results are also consistent with the previous data considering the effect of the
source-detector distance and demonstrating the best fast optical effects for source-detector
distances exceeding 22.5 mm (Gratton et al., 2006). In our study the event-related fast signal
was also best recorded at the detectors distant from the source (3–4 cm source-detector
separation), which provides further support for the brain origin of this signal. Also, the signal
observed in the current study had the same sign for both wavelengths shorter (760 nm) and
longer (830 nm) than the isosbestic point of hemoglobin, which is also consistent with the
recent report (Gratton et al., 2006). The same-sign effect has been interpreted as pointing to
light scattering as a more likely mechanism for the observed fast signal rather than rapid
deoxygenated effects (Gratton et al., 2006). If the fast signal were due to rapid consumption
of oxygen (and therefore concurrent decrease/increase in oxy- and deoxy-hemoglobin,
respectively), then one should expect the opposite effects (e.g., decrease and increase) observed
at wavelengths on opposite sides of the hemoglobin isosbestic point. If the fast optical signal
is, instead,due to changes in light scattering, then the same effects should be observed at both
wavelengths, as was the case in the current study, thus supporting the light scattering
mechanism for the observed fast response.

3.4. Physiological correlates of the fast optical signal
The major signal observed in our study as a decrease in light intensity is consistent with a
similar decrease in intensity described by other groups who also used intensity measurements
(Franceschini and Boas, 2004; Steinbrink et al., 2000). We observed a decrease in light intensity
in response to target stimuli only, which is in line with the results of Low et al (2003) who also
recorded a decrease in light intensity in response to targets in a visual oddball paradigm. In our
experiments, the response to non-targets (frequent stimuli) had a tendency to be opposite to
the target-related response showing a slight increase in light intensity (Fig 5 and Fig 6).
However, at relatively high stimulation frequencies used in this study (4 Hz and 6 Hz), some
overlap between consecutive responses was unavoidable and a weak positive response to non-
targets might merely represent a return to the baseline of a preceding target response, which
occurred in approximately one fifth of all trials. At high presentation rates used in this study,
only the contrast between target and non-target stimuli (i.e., a differential response) is really
meaningful. A possible physiological interpretation of the observed differential optical effect
between targets and non-targets is as follows. Attendance to a target stimulus requires
mobilization of attentional resources; therefore it is reasonable to suggest that target detection
is accompanied by increased neuronal activation in the brain areas engaged in the response
generation. It is probably this neuronal activation what is recorded by an ERP (such as P300)
during similar tasks switching on the attentional mechanisms. If we assume that the fast optical
signal results from changes in light scattering, then target-related increased neuronal activation
in our experiments was accompanied by increased light scattering with a parallel decrease in
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light intensity. This supposition is in line with the evidence obtained from optical measurements
in cell culture that neuronal activity is associated with an increase in light scattering (Stepnoski
et al., 1991). It is likely that optical response depends on the level of activation and/or
engagement of the underlying neuronal substrates. How neuronal processes cause and shape
those optical effects and what their electrophysiological correlates are (e.g., specific ERP
components or spectral changes within physiologically relevant frequency bands) are open
questions requiring further studies. For example, combined EEG and optical recordings may
provide new insights on the largely unknown relationship between neural activity and fast
optical signal.

In an object detection task initially introduced by Thorpe et al (Thorpe et al., 1996), the target
stimuli were detected within complex natural scenes and they were defined by higher-order
category information (presence of different animals within those scenes; the target/non-target
ratio was 1:1).Several studies have explored this task in detail using the conventional ERP
approach and described an early difference between targets and non-targets in the ERP starting
at 150 ms after the stimulus and peaking at 200 ms, a response termed “differential ERP
activity”. It was observed as negative potential over temporal-occipital and positive deflection
over frontal regions (Delorme et al., 2000; Fabre-Thorpe et al., 2001; Thorpe et al., 1996).
Using source localization techniques, a more recent study has found the sources of activity
related to this object detection task within the posterior visual-associative brain regions and,
although less pronounced, additional anterior sources in the prefrontal cortex (Codispoti et al.,
2006). We utilized a modified version of this object detection paradigm using different stimuli
(various types of vehicles within natural scenes rather than animals) and a lower target/non-
target ratio (1:6). Despite the differences, we expected a similar response in the prefrontal
cortex related to the early target detection and the optical correlate of this response was a focus
of the current study. Although accurate localization of the optode positions with respect to
cortical structures has not been performed in this study (which requires co-registration of
optode positions with anatomical MRI and will be implemented in the future studies), our data
demonstrating the differential optical response (targets minus non-targets) in the left prefrontal
cortex at 200–300 ms after the stimulus are consistent with the object recognition-related
“differential ERP activity” recorded electrophysiologically.

In conclusion, the current results demonstrate that fast optical response can be detected using
continuous-wave instruments provided some advanced methods of artifact removal such as
Independent Component Analysis are implemented. Similarly to the EEG data, when applied
to the optical signal, the ICA method appears to be a powerful tool capable to reveal and remove
components related to artifacts (such as global physiological interference), noise and
nonspecific activity of superficial layers. The refined optical signal has a potential to contribute
to the spatial and temporal characterization of various types of brain responses including those
related to higher-order cognitive processes such as rapid object recognition.

4. Experimental procedures
4.1. Participants

Ten right-handed young adults (six females, age 18–36, mean age 26.6) participated in the
study. All participants signed a consent form approved by the Georgetown University
Institutional Review Board and reported as being in good health and without medications. All
subjects had normal (or corrected to normal) vision and undertook a battery of behavioral tests
which included measures of IQ (Weschler Abbreviated Scale of Intelligence; the average IQ
score 118.3) and handedness before one experimental session lasting 2 hours during which
they performed a target detection task with simultaneous optical recording of brain activity.
All subjects were compensated for their participation in these experiments.
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4.2. Optical Data Collection
Optical signals were recorded using a two wavelength (760, 830 nm) continuous-wave
DYNOT (DYnamic Near-infrared Optical Tomography) imaging system from NIRx Medical
Technologies, Brooklyn, NY. The system can be operated in two modes. Recording of the
hemodynamic response is accomplished using a time multiplexed illumination scheme,
adaptive gain control and frequency encoding techniques (Schmitz et al., 2002). The image
framing rate achieved is roughly proportional to the number of illumination sites employed.
In the case of the maximum number for the particular system, (i.e., 32 source locations, Model
264), the framing rate is approximately 2 Hz. The core technology is scalable, allowing for use
of a greater number of illuminating wavelengths, source and detector locations. Another
important element of the system is its optode design. In the current study, we used optical fiber
cables designed to support “two-way” traffic of optical signals. Each cable contains micro-
fibers transmitting light from the source to the tissue as well as micro-fibers transmitting light
from the tissue to the detector. In this fashion, optical signals that are ‘co-located’ with the
source (i.e., light reflected by a tissue volume in close proximity to the source) can also be
captured. This has the advantage of isolating signals that have penetrated only the most
superficial layers of tissue (< mm). In fact, we took advantage of this when applying the ICA
method for data analysis and using the ‘co-located’ channel (i.e., the output optical signal
spatially co-located with the source) as a channel representing mostly the activity of the
superficial layers (channel #2 in the current design, which is co-located with the source marked
by asterisk in Fig 1). Optodes positioned at greater distances capture signals that have
propagated along a banana shaped path that has successively greater maximum depths (Graber
et al., 1993a). It deserves emphasis that because this system functions as a tomographic imager,
a greater sensing density can be achieved than that utilized with NIRS systems designed for
surface topography studies (Koizumi et al., 2003; Taga et al., 2003). In the limit, data from
every source and detector is collected (32 × 64, 2048 channels/wavelength/image frame). In
practice, the maximum value achieved is reduced depending on the particular source-detector
separations employed. Secure optode positioning is achieved using a helmet that employs an
open scaffolding design (Fig 1). At maximum density, the optodes (3 mm diameter) have a
center-to-center separation distance of 1 cm.

Recording of the fast optical signal requires a broader bandwidth which is achieved by limiting
the optical switch to a single location thus allowing higher sampling rate of the signal. In this
mode, the imager captures a time series at nearly 75 Hz. For the current study, probe geometry
was designed so that to target the prefrontal cortex. A total of 15 optical fibers were placed on
the left side of subject’s forehead and arranged as a grid with 3 horizontal rows and 5 optodes
in each row separated by 1 cm (Fig 1). Here we use the term “data channel” to refer to the
signal recorded by the corresponding detector. Because only one source was employed, 3-D
image reconstruction was not done and instead was restricted to presentations of 2-D spatial
maps based on the ICA weight matrices. During reconstruction, for simplicity, data channels
were assumed to be “located” at spatial coordinates (x,y) defined at midpoints between the
corresponding source and detector.

4.3. Experimental paradigms
To investigate the feasibility of utilizing optical methods to measure neuronal activity, we used
a target detection task within a RSVP stream of pictures. The paradigm was based on an
Animal-No Animal task modified from the original task introduced by Thorpe et al (Thorpe
et al., 1996) to study fast object recognition using the ERP technique. In this paradigm, we
used picture chips with size of 500 × 500 pixels cut from several broad view images of
landscapes and some of those chips contained vehicles such as planes, helicopters, cars and
boats. All these vehicles were designated as targets while picture chips without vehicles served
as non-targets. All pictures were shown to the subjects at the center of a computer LCD monitor
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at a viewing distance of 75 cm in blocks each containing 13 chips. The presentation rate (PR)
within each block was 6 or 4 pictures per second and there was a 1.5-second break between
successive blocks. For each PR, 160 blocks were presented with 2080 pictures in total selected
randomly from the same picture set. As both presentation rates were too fast to allow manual
response on each trial, the task was to mentally count picture chips containing targets and then
verbally report the number of targets immediately after each block during the inter-block
breaks. Counting targets served to engage the subject’s attention and provided a measure of
behavioral performance. Use of mental counting of targets instead of requiring a motor
response (such as button pressing) was advantageous because this allowed us to achieve a
relatively high PR while being able to assess the behavioral performance of subjects based on
their verbal reports between blocks. Each picture was shown for about 60% of time between
successive presentations and the baseline crosshair at the center of the screen was shown for
the rest of time (40%). This translates into 100 ms for each chip exposure at PR = 6 Hz (inter-
stimulus interval (ISI) = 166 ms) and 150 ms at PR = 4 Hz (ISI = 250 ms). Infrequent targets
(total number = 280 for each PR) were distributed randomly between frequent non-targets (total
number = 1800) and the target/non-target ratio was 15.5%. The overall structure of the
experiments included two sessions (for PR = 6 Hz and PR = 4 Hz) with a couple of minutes
break between sessions and the order of sessions was counterbalanced between participants.
Each experiment also included a short practice followed by several blocks of chip presentation.

Data Synchronization—Synchronization of picture presentation and optical data
acquisition was achieved using a TTL pulse generated by the imager and sent to the presentation
software (E-Prime) through a hardware interface (DYNOT data synchronizer).

4.4. Data analysis
Optical data were recorded at 75 Hz sampling rate continuously during presentation of pictures
and stored on acquisition PC computer for off-line analysis using original Matlab scripts. To
remove the slow (hemodynamic) and DC components from the optical signal, the data were
high-pass filtered at >2 Hz, normalized (the signal at each channel was divided by its standard
deviation calculated over the whole record) and then subjected to the Independent Component
Analysis.

4.4.1. Independent Component Analysis—The ICA decomposes signal into statistically
independent components which are linearly related to the original data (Hyvärinen et al.,
2001). If x is a vector of n observed variables (data channels) and s is a vector of n independent
components, then a linear relationship between x and s can be written in matrix notation as:

(1)

Here A is a transform matrix. The goal of ICA is to find vector s such as its components are
statistically independent. This can be done if components of vector x have non-gaussian
distributions and thus assumption of non-gaussianity is essential for the ICA method. After
estimation of matrix A,its inverse W can be computed and therefore the independent
components can be found:

(2)

Note that matrix A is also a weight matrix because its elements aij show relative contributions
of the j-th component to the i-th original variable (data channel). We used the FastICA
algorithm available as a package of Matlab scripts at
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http://www.cis.hut.fi/projects/ica/fastica/. The algorithm is based on maximization of non-
gaussianity of the components s as an algorithm to increase their statistical independence.

As it has been shown in many EEG stdies, each of the common artifacts present in the EEG
signal, such as eye blink-related artifact, heartbeat and motion-related artifacts, is usually
identified by the ICA method as one or several individual components. By definition, those
artifactual components are statistically independent from other components and therefore all
other components including those representing physiological activity of interest become
(statistically) separated from the artifacts. At the next step, the original signals are linearly
‘restored’ back from the components and if all artifactual components are excluded during
restoration, the restored signal becomes artifact-free. The method therefore is capable of
removing artifacts from the original signal while preserving physiological signal in question
(see, e.g., (Vigário, 1997) (Jung et al., 2001; Vigário et al., 2000)). Optical data were therefore
processed using ICA with the goal to remove physiological artifacts (mostly related to
heartbeat) and the contribution of superficial layers from original records.

4.4.2. Event-related averaging—After ICA procedure, the signal in each data channel was
recalculated as relative change in light intensity (ΔI/I0). The event-related optical signal was
calculated for each source-detector pair in each subject as follows. Continuously recorded
optical data were segmented into stimulus-related epochs lasting from 100 ms before (baseline)
to 500 ms after the picture onset. Signals within each epoch were baseline-corrected and then
averaged across all targets. Because the number of non-targets significantly exceeded the
number of targets, in order to statistically balance target and non-target epochs, the non-target-
related response was calculated over the same number of epochs (280) randomly selected from
the total number of non-target epochs. Target (T)- and non-target (NT)-related responses as
well as the T->NT difference were statistically evaluated within each subject using
nonparametric Mann-Whitney test with the 5%-significance level. The test was applied for
each time point within the trial epoch for all data channels, as suggested by Thorpe et al
(1996) for the ERP analysis. Event-related signals were analyzed within each subject and
channels were determined where the signal showed significant difference from baseline within
the time window 0–500ms after the stimulus in at least two time bins. Those channels were
then averaged within each subject giving an average signal representative of that subject. Those
representative signals were finally averaged across subjects giving a group average signal,
which was statistically assessed against baseline for each time point using t-test (p = 0.05). The
group average responses were calculated separately for two presentation rates (6 Hz and 4 Hz)
and two wavelengths (760 nm and 830 nm) giving four conditions in total. If in a given subject
no channel showed significant deviation from baseline within 0–500 ms after the stimulus in
a particular condition, this subject was excluded from the group average for that condition.

4.4.3. Spatial localization—To analyze spatial distribution of the fast optical signal, we
used the weights of ICA components. Matrix A shows relative contributions of each component
to every channel of the raw data. Namely, the n-th column of matrix A represents contributions
of the n-th component to all data channels (Fig 3). If this component relates to the physiological
response, its weights show how the response is spatially distributed over all data channels and
therefore can be used to map the response. We represented the weights of the largest response-
related ICA component as a two-dimensional function of surface coordinates (x, y) defined at
mid-points of all source-detector pairs and did interpolation of that function over the area
covered by the optical sensor grid.
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Fig. 1.
Optical probe on the head of a subject (top) and schematic drawing of the probe position and
geometry (bottom). Position of the light source is marked by asterisk and the area used to
reconstruct the spatial distribution of the fast optical signal is depicted by rectangular. This
area is defined as to over midpoint locations for all source-detector pairs and the activity
recorded at each detector is assumed to be “located” at the midpoint of the corresponding
source-detector distance.

Medvedev et al. Page 17

Brain Res. Author manuscript; available in PMC 2009 October 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 2.
(A) Fifteen channels of raw optical data for wavelength = 830 nm recorded from a
representative subject (#39). Note the presence of regular waves with a period of slightly shorter
then 1 s in almost all channels (marked by asterisks in channel #12). Those waves are caused
by regular changes in blood oxygenation due to the heartbeat. (B) Independent components of
the same data. Note that the heartbeat rhythm is present mainly in components #2 (marked by
asterisks), #6, #10 and to a weaker extent in components #12 and #15. (C) First two seconds
of the same record are shown with a superposition of the raw data (thin line) and the restored
data with artifactual components removed (bold line). Note a significant reduction of heartbeat
waves in the restored signal. Signals are baseline corrected and normalized to standard
deviation.

Medvedev et al. Page 18

Brain Res. Author manuscript; available in PMC 2009 October 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 3.
(A)The grayscale-coded plot of weight matrix A for data shown in Fig 2. (B–E) Matrices
Aaveraged over all subjects for each of four experimental conditions: PR=6 Hz,
wavelength=760 nm (B); PR=6 Hz, wavelength=830 nm (C); PR=4 Hz, wavelength=760 nm
(D) and PR=4 Hz,wavelength=830 nm (E). Each cell in the plots represents coefficient aij of
matrix A. Oval “a” represents one cluster of relatively large weights describing the contribution
of several components into the activity of co-located channel (#2) and other channels located
close to the source. The activity within this cluster is largely contaminated by the activity of
superficial layers. Oval “b” represents the activity of channels distant from the source. These
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two clusters of activity were commonly found in all subjects and can be seen in group average
matrices (B–E).

Medvedev et al. Page 20

Brain Res. Author manuscript; available in PMC 2009 October 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 4.
Power spectra of the data presented in Fig 2 before (thin line) and after artifact removal (bold
line). Heartbeat-related artifact present in the raw data is seen as two high amplitude peaks at
low frequencies (2–3 Hz). Those peaks are the 2nd and the 3rd harmonics of the heartbeat
rhythm. Note a marked reduction in power of both the heartbeat and broadband noise after
ICA. Spectra for channels ## 10–12 are shown using logarithmic scale along y-axis to show
the spectra after ICA in more detail.
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Fig. 5.
Event-related signal (averaged over all target epochs (bold line) and the same number of
randomly chosen non-target epochs (dotted line)) calculated using the raw data (A) and the
ICA-processed data (B) in subject #37. Stimulus is presented at t = 0 (picture onset). Significant
deviations from baseline (100 ms pre-stimulus) are marked by asterisks. Note that averaging
of the raw data does not reveal any event-related signal while averaging of the ICA-processed
data reveals significant deviations from baseline for both target and non-target stimuli. Signal
amplitude scale is in units of ΔI/I0 (%).
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Fig. 6.
Group average event-related responses for presentation rate (PR) = 6 Hz and wavelength = 760
nm, N = 8 (A); PR = 6 Hz and wavelength = 830 nm, N = 10 (B); PR = 4 Hz and wavelength
= 760 nm, N = 7 (C); PR = 4 Hz and wavelength = 830 nm, N = 7 (D). N is the number of
subjects used in each of four conditions to derive the group average response. Only subjects
showing a significant response were used in group averaging. Stimulus is presented at t = 0
(picture onset). Blue line – response to targets; green line – response to non-targets; dotted
lines show standard errors for the corresponding signals at each time point; asterisks designate
time bins with significant deviation of responses from baseline (t-test, p < 0.05). Signal
amplitude scale is in units of ΔI/I0 (%).
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Fig. 7.
Group average differential responses (target minus non-target) for the data shown in Fig
6.Dotted lines show standard errors for the corresponding signals at each time point; asterisks
designate time bins with significant difference between targets and non-targets (t-test, p < 0.05).
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Fig. 8.
Group average spatial maps of the fast optical signal. Panels A–B correspond to the panels in
Fig 6 and Fig 7. Spatial maps were calculated for each subject using relative weights of the
ICA component contributing to the observed event-related response with the largest weight.
To calculate spatial distribution, those weights were interpolated over the area covering
midpoint locations for all source-detector pairs (see Fig 1). S is location of the light source.
Note that the observed event-related response is best seen at detectors distant from the source
(3–4 cm source-detector separation) while the contribution into the response of superficial
layers (activity of which is best seen at detectors close to the source) is minimized through the
ICA.
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