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Abstract Anemia is a common feature of chronic kidney
disease, but the management of anemia in children is
complex. Erythropoietin and supplemental iron are used to
maintain hemoglobin levels. The National Kidney Founda-
tion-Kidney Disease Outcomes Quality Initiative (NKF-
KDOQI) clinical practice guidelines for the management of
anemia specifically in children were recently published.
Pediatric nephrologists are encouraged to use current
clinical practice guidelines and best evidence in conjunction
with their clinical experience to optimally manage patients
with anemia.
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Introduction

Anemia is a universal problem among children with chronic
kidney disease (CKD). Lower levels of glomerular filtration
rate (GFR) are associated with lower levels of hemoglobin,
and in adults the latter is most pronounced when the GFR falls
below 60 mL/min per 1.73 m? [1]. In children, the
relationship between GFR and anemia is less clear. However,
treatment of anemia in both adults and children has
improved dramatically with the advent of regular erythro-
poietin (EPO) and iron therapy, and it has become possible
to avoid routine transfusions to maintain a patient’s
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hemoglobin. As well, the many studies performed in adults
and relatively fewer studies carried out in children have
demonstrated that improved hemoglobin levels are associat-
ed with benefits in quality of life, cognitive function,
exercise capacity and cardiovascular function [2—4].

Despite the wide availability of erythropoietic stimulat-
ing agents and supplemental iron preparations, anemia
remains highly prevalent in the pediatric CKD population.
Using data from the United States Renal Data System,
Chavers et al. demonstrated that the hemoglobin values in
pediatric chronic hemodialysis (HD) and peritoneal dialysis
(PD) patients treated with recombinant human EPO were
still lower than those of adult patients. These researchers
found that mean annual hemoglobin values of less than
11 g/dL were present in 54.1% patient years among
pediatric HD patients compared to 39.8% patient years in
their adult counterparts. For PD patients, anemia was
present in 69.5% patient years among pediatric patients
and 55.1% among adult patients [5]. A recent Canadian
study investigated the prevalence of complications accord-
ing to stage of CKD in children. Overall, anemia was
present in 36.6% of all patients with kidney disease.
Anemia was defined as all those who were treated with
iron or darbepoetin and those with a hemoglobin count of
<120 g/L. The prevalence of anemia increased from 31% in
those with stage 1 CKD to 93.3% among those with CKD
stages 4 plus 5 [6].

Management guidelines for anemia in pediatric CKD
patients have been developed from reported studies in both
adults and children, from clinical experience and from
expert opinion. The revised National Kidney Foundation-
Kidney Disease Outcomes Quality Initiative (NKF-
KDOQI) clinical practice guidelines for the management
of anemia specifically for children have been recently
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published [7]. The objective of this article is to provide a
review of the diagnosis, etiology, investigations, patient
outcomes and treatment of anemia in children with CKD.

Diagnosis

According to the classical definition of anemia in Nelson’s
Textbook of Pediatrics, ‘anemia is defined as a reduction of
the red blood cell volume or hemoglobin below the range
of values for healthy persons’ [8]. However, a great deal of
controversy surrounds the definition of normal values of
hemoglobin in children with CKD. Normal values adopted
for children with CKD are based on observations of values
in healthy children, the ranges of which are 120 g/L (range:
95-145 g/L) in 3-month-old children, 120 g/L (range: 105—
140 g/L) in 6-month-old to 6-year-old children and 130 g/L
(range: 110-160 g/L) in children aged 7—-12 years [8]. Some
studies also cite the World Health Organization definition
of anemia where children aged 6 months to 6 years are
anemic if the hemoglobin count is less than 110 g/L and
children aged 6-14 years are considered anemic if it is less
than 120 g/L [9]. The new NKF-KDOQI clinical practice
guidelines use NHANES-III reference data to cite norma-
tive values in children [7]. NHANES-III is the third U.S.
National Health and Nutrition Examination Survey data-
base, and the report on hematological and iron-related
indices provides means, standard errors and percentile
distributions for laboratory values of hematological and
iron indices for the United States population in 1988—1994
[10] (Tables 1, 2). The NKF-KDOQI guidelines recom-
mend the initiation of a work-up for anemia if the
hemoglobin value is less than the fifth percentile for age
and sex [7].

Earlier NKF-KDOQI guidelines suggested threshold
values for hematocrit as well as hemoglobin to guide the
initiation of work-up for anemia. However, a patient’s
hematocrit is highly vulnerable to volume status, hypergly-
cemia and the timing of sampling and, therefore, it has

Table 1 Hemoglobin levels from NHANES-III for boys of all race/
ethnic groups according to age [10]

Age range Mean hemolobin Standard Sth
(years) level (g/L) deviation Percentile
1 and over 146.7 13.9 121.0
1-2 120.1 8.2 107.0
3-5 123.5 7.7 111.5

6-8 128.8 8.0 115.1
9-11 132.8 8.4 119.6
12-14 141.4 10.8 124.1
15-19 150.7 10.3 134.6
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Table 2 Hemoglobin levels from NHANES-III for girls of all race/
ethnic groups according to age [10]

Age range Mean hemolobin Standard Sth
(years) level (g/L) deviation Percentile
1 and over 131.9 11.0 114.0
1-2 120.2 8.0 108.0
3-5 1239 7.7 111.1

6-8 128.2 7.7 115.0
9-11 131.0 7.8 118.5
12-14 132.9 10.0 117.0
15-19 131.5 10.0 114.6

become a less useful measure of anemia. It is also affected
by the technological approach used at different laboratories.

Etiology

There are several causes of anemia in patients with CKD.
EPO deficiency and iron deficiency are the leading causes
regardless of dialysis status. Other causes contributing to
anemia in CKD patients are inflammation, chronic blood
loss, hyperparathyroidism, aluminum toxicity, hemoglobin-
opathies, vitamin deficiencies (B12 and folate), hemolysis
and adverse effects of cytotoxic or immunosuppressive
drugs and angiotensin converting enzyme inhibitors.

Lack of erythropoietin

The major cause of anemia in patients with CKD is lack of
EPO synthesis in the diseased kidneys [11, 12]. EPO is a
30.4-kDa glycoprotein containing 40% carbohydrate that is
encoded by a gene identified and cloned in 1985 [13, 14].
The liver is the primary source of EPO production in the
fetus, but after birth, a group of peritubular interstitial cells
in the kidney take over this function, becoming the major
sites of EPO production [15, 16]. In response to reduced
oxygen supply, EPO production is increased by a hypoxia-
inducible factor transcription factor that controls the EPO
gene [15]. A reduced GFR may cause decreased sodium re-
absorption in the tubules and because sodium re-absorption
is the main determinant of energy consumption in the
nephron, this may lead to a relative excess of oxygen,
signaling a decrease in EPO production [17]. The protein
portion of EPO binds to an erythroid progenitor cell surface
receptor to regulate bone marrow erythroid cell prolifera-
tion, differentiation and survival [15]. As might be
expected, in renal failure the control of EPO is deranged,
becoming the single largest factor contributing to the
anemia of chronic renal disease. In 1987, therapy with
recombinant human EPO was shown to correct the anemia
resulting from chronic renal failure in dialysis patients [12].
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Iron deficiency

The second major cause of anemia in kidney disease is iron
deficiency. There is an ‘absolute’ and ‘functional’ iron
deficiency that can be corrected with aggressive iron
replacement therapy in CKD. Absolute iron deficiency
occurs when iron stores are depleted as a result of loss or
decreased intake; however, functional deficiency occurs
when there is a need for a greater amount of iron to support
hemoglobin synthesis than can be released from iron stores
[18].

Iron deficiency is common in HD patients due to chronic
blood loss from repeated blood sampling, surgical inter-
ventions, blood loss through the use of dialyzers and tubing
and shortened red blood cell lifespan [19]. Daily blood loss
in pre-dialysis pediatric CKD patients is approximately
6 mL/m> In contrast, HD patients have gastrointestinal
blood losses estimated to be 11 mL/m? daily, and there is a
further HD-associated blood loss of 8 mL/m? per treatment
[20]. Treatment with EPO also demands more iron for
hemoglobin synthesis, and iron supplementation can de-
crease the required dose of EPO in both adults and children
[21, 22].

Iron is absorbed mainly in the duodenum, but it is also
recycled from old red blood cells. It circulates in the plasma
bound to transferrin. In the body, iron is mostly bound to
hemoglobin and cells of the reticuloendothelial system and
hepatocytes. A small amount is also stored in muscle fibers
and other tissues. Transferrin with iron binds to erythroid
cells and is endocytosed into the red cells for the production
of heme. In non-red blood cells iron is stored as ferritin or
hemosiderin [23]. Patients with CKD present with dis-
turbances in the iron metabolic pathway. As transferrin
levels are reduced to one half or one third that of normal
levels in patients with kidney disease, iron transport to the
bone marrow for the production of red cells is decreased
[18]. In addition, there is an impaired release of stored iron
from macrophages and hepatocytes to transferrin in patients
with kidney disease. This will manifest clinically as high
ferritin levels due to the impaired release of stored iron
[18].

Other causes

There are numerous other causes of anemia among CKD
patients, some of which may cause hyporesponsiveness to
EPO and iron. For example, the presence of inflammation
contributes to anemia [24] also, ferritin levels tend to be
increased in the presence of inflammation, thereby compli-
cating the diagnosis of iron deficiency. Inflammatory
mediators such as interleukin-6, interleukin-1 and tumor
necrosis factor-o interfere with the maturation of red cell
precursors in patients with CKD [25]. In addition, severe

secondary hyperparathyroidism is known to cause myelo-
fibrosis that may obliterate bone marrow, leading to anemia
[26]. In addition, aluminum toxicity due to chronic
hemodialysis is associated with a microcytic anemia in
HD patients [27]. One must also look for coexisting
hemoglobinopathies, such as sickle cell disease and (-
thalassemia, depending on the ethnic background of the
patient as these microcytic anemias can also complicate the
diagnosis of iron deficiency [28, 29]. Furthermore, poor
nutritional intake will lead to vitamin B12 and folate
deficiencies. Finally, the use of cytotoxic and immunosup-
pressive drugs, such as cyclophosphamide and mycophe-
nolate mofetil as well as angiotensin converting enzyme
inhibitors, especially prior to initiation of dialysis, can also
contribute to anemia [30].

Investigations for anemia

The diagnosis of anemia and the determination of etiology
should be made using a systematic approach utilizing both
clinical and laboratory investigations (Table 3). A detailed
history and physical examination including a family history,
is invaluable for all patients. In terms of laboratory
investigations, the NKF-DOQI guidelines recommend the
following tests: complete blood count, including serum
hemoglobin, mean corpuscular hemoglobin, mean corpus-
cular volume, mean corpuscular hemoglobin concentration,
white blood cell count, differential count and platelet count
[7]. Red blood cell indices on peripheral blood smears,
especially mean corpuscular volume, can be useful in
determining the etiology of anemia. Hypochromic micro-
cytic erthryocytes with pencil cells is the classic presenta-
tion of iron deficiency anemia on a blood smear. However,
CKD patients may have a normochromic and normocytic
anemia [31]. NKF-KDOQI guidelines also recommend that
reticulocyte counts should be obtained to measure the bone
marrow response to anemia [7]. Furthermore, hemoglobin
electrophoresis can detect the presence of concomitant
hemoglobinopathies. A bone marrow examination is indi-
cated when the etiology of the anemia cannot be deter-
mined after the clinician has performed a careful history,
physical examination and a thorough analytical investiga-
tion of a peripheral blood sample. In HD patients,
additional tests, including stool occult blood, serum
aluminum and investigations for hemolysis, may be useful
for delineating the cause of the anemia [19, 27].
Hematocrit is less reliable clinically, and this measure is
affected by body temperature, body water, hyperglycemia
and storage time prior to analysis [32, 33]. For hemoglobin
measurements, the timing of measurements is also impor-
tant. For example, in HD patients, although pre-dialysis
hemoglobin levels are commonly used, it is not certain
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Table 3 The clinical and laboratory investigations recommended for
evaluating anemia in pediatric patients with chronic kidney disease
(CKD)

Investigations

Clinical
Review of medical history, including family history
Physical examination
Review of medication list
Determination of compliance with treatment
Initial investigations
Hemoglobin
Hematocrit
White blood cell count
-Differential count
Platelet count
Red blood cell indices
-Mean corpuscular hemoglobin
-Mean corpuscular volume
-Mean corpuscular hemoglobin concentration
Absolute reticulocyte count
Serum iron, ferritin and transferrin
Additional Investigations as indicated:
Hemoglobin electrophoresis
Assessment of occult blood loss
Serum folate, vitamin B12
Serum parathyroid hormone
Assessment of hemolysis
Serum aluminum
Bone marrow examination

whether a pre-dialysis sample is appropriate when the
patients have relative water excess. Post-dialysis samples
usually demonstrate higher hemoglobin values that may be
exaggerated if an inadequate time interval has been allotted
for equilibration of fluid compartments post-dialysis.

The assessment of iron stores is essential to an
evaluation of anemia. A number of laboratory measures
are used to assess absolute and functional iron deficiency,
including serum iron, ferritin and transferrin. NKF-KDOQI
guidelines for the evaluation of anemia in children with
CKD recommend measurements of serum ferritin and
serum transferrin saturation (TSAT) [7].

The ideal iron measures will ensure that the treatment
will provide consistent hemoglobin levels while avoiding
excessive doses of iron and EPO. Serum iron is used as a
measure of the amount of transferrin-bound iron in
circulation [10]. Serum transferrin, a protein-based receptor
for circulating iron, is an indicator of total iron binding
capacity, but there is a diurnal fluctuation in its level and it
is affected by nutritional status [34]. Serum ferritin
indicates the level of stored iron; however, ferritin is an
acute phase reactant and its level is less reliable in CKD
patients. Therefore, no single measure accurately measures
iron deficiency. Fishbane et al. studied 47 adult patients
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with baseline serum ferritin levels of less than 600 ng/mL
who were treated with intravenous (IV) iron dextran.
Patients whose hematocrit increased by 5% or who had a
10% decrease in their EPO dose over 2 months were
classified as having an iron deficiency. These researchers
found that serum ferritin levels of less than 150 ng/mL had
a sensitivity and specificity of 71 and 69%, respectively,
and that transferrin saturations of less than 21% had a
sensitivity and specificity of 81 and 63%, respectively [35].

The most accepted method of determining iron status in
pediatric patients is the TSAT, which is calculated by
dividing serum iron by total iron binding capacity and
multiplying by 100. Total iron binding capacity is an
indirect measure of the concentration of transferrin and is
derived by multiplying the serum transferrin value by 1.4
[36]. A pediatric study of 160 patients on HD suggested
that a TSAT of less than 20% is a significant predictor of
iron deficiency [37].

There are several new methods available for assessing
iron stores. These assays are important analytical tools in
the presence of a functional iron deficiency where there is
an adequate amount of stored iron but an impairment exists
in the release of iron from these body stores. The
percentage of circulating hypochromic red blood cells
(PHRC) and the reticulocyte hemoglobin content (CHr)
are two such measures [36]. Many institutions may lack the
necessary technology to measure PHRC. In terms of CHr,
there is no clear consensus on precisely what is the proper
cut-off, and this measure is not used routinely in clinical
practice. Additional tests described in the literature but not
recommended for use are the measurement of zinc
protoporphyrin (ZPP) and the serum soluble transferrin
receptor assays [36]. Zinc replaces iron in protoporphyrin
IX to form ZPP under conditions of iron deficiency [38].
ZPP is a measure of iron availability and stores; however, it
is considered to be an inferior measure. The soluble
transferrin receptor assay indicates the number of erythro-
blasts in the bone marrow and total erythroid activity. It has
not been shown to be useful in CKD patients and is more
costly [39, 40]. All of these tests have not been examined
fully in the pediatric CKD population and are limited to the
research realm.

Management of anemia
Prevention

Anemia can develop during any stage of CKD in children
and remains widely prevalent among the pediatric CKD
population [6]. Therefore, the key to managing CKD in
children may be to prevent anemia and to improve anemia
management during all stages of CKD. Primary prevention
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measures for the development of anemia in children
presenting with early stages of CKD need to be developed
by means of systematic research. The current NKF-KDOQI
guidelines recommend that hemoglobin be measured
annually — at a very minimum — to screen for anemia [7].
In both dialysis and non-dialysis CKD patients, judicious
use of blood tests and the early institution of therapy is
important to prevent the progression and prolongation of
anemia.

Erythropoietin

Soon after the development of recombinant human EPO,
clinical trials confirmed the short-term efficacy of EPO for
treating anemia associated with severe kidney disease pre-
dialysis and HD [41, 42]. These early studies used doses of
EPO which varied from as little as 3 U/kg three times per
week to as much as 150 U/kg three times per week. The
development or aggravation of hypertension was noted in
several patients, and Casati et al. reported the clotting of
arteriovenous fistulae in two patients and a cerebral
ischemic lesion in one patient from among the 14 patients
treated with EPO [43].

The first reports of EPO use in children described five
patients on continuous cycling peritoneal dialysis (CCPD)
who received 150 U/kg three times per week; this resulted
in the successful treatment of anemia, although hyperten-
sion was exacerbated in three of the patients [44]. Once the
target hemoglobin level was achieved, these researchers
reported that the treatment of anemia could be maintained
with a dosage once weekly [44]. A larger patient group of
14 children on CCPD were described in a subsequent study
in Germany. These patients received an initial EPO dose of
300 U/kg once weekly, which was adjusted downwards to a
maintenance dose of approximately 100 U/kg once per
week [45]. Again, the only side effect reported was
hypertension. Following publication of these studies, EPO
became the standard treatment for renal anemia in childhood
and was prescribed at a dose of approximately 150 U/kg
per week in clinical practice, divided into three doses per
week. More recently, Provenzano et al. reported that for
pre-dialysis adult patients, hemoglobin >110 g/L could be
maintained by 90% of patients dosed every 1 or 2 weeks,
and by three-quarters of patients dosed every 3 or 4 weeks
[46].

Observational data from the North American Pediatric
Renal Transplant Cooperative Study (NAPRTCS) 2004
registry report shows that younger children tend to require
higher doses of EPO. Infants were shown to require the
highest dose, ranging from 275 to 350 U/kg per week,
while children older than 6 years of age required between
200 and 250 U/kg per week [47]. These apparent differ-
ences in the dosing of EPO among children of different age

groups may be related to an increased presence of non-
hematopoietic binding sites of EPO in younger children that
may lead to increased clearance [48]. The requirement for
EPO dosing also varies with modality of dialysis. PD
patients tend to require less EPO (200-250 U/kg per week)
than HD patients, who require 250-300 U/kg per week.
The differences between dosing according to dialysis
modality seem to dissipate at 30 months of follow-up.
Most PD patients are reported to have received subcutane-
ous administration, whereas most HD patients received
EPO via the IV route [47]. Dosing adjustments for EPO
should be made cautiously using best clinical experience,
always taking into consideration the duration of action of
the EPO product prescribed. A dose increase or decrease of
approximately 20% may be instituted in an attempt to
maintain the hemoglobin at the target recommendations.

Darbepoetin

In 1999, MacDougall described the pharmacokinetics of
darbepoetin alfa, a molecule with one amino acid substitu-
tion and two additional carbohydrate sites relative to EPO
[49]. It was hoped that the additional glycosylation would
extend the half-life of EPO. When tested in 11 stable PD
patients, the mean terminal half-life for IV darbepoetin was
threefold longer than for IV EPO (25.3 vs. 8.5 h) [49].
Studies in children similarly showed that the half-life of
darbepoetin alfa in children was 22.1 and 42.8 h following
IV or subcutaneous administration, which again was much
longer than that of EPO [50]. It was presumed that the
extended half-life of darbepoetin alfa would allow for an
extended period between individual doses. A subsequent
randomized controlled trial demonstrated that darbepoetin
alfa administered IV once weekly was equally effective for
controlling anemia in HD patients as IV EPO administered
three times per week [51]. Similarly, in a multicenter
randomized open label study of pre-dialysis patients,
darbepoetin, administered once weekly was again shown
to be as effective as EPO administered twice weekly [52].

The first report of darbepoetin use in pediatric end-stage
renal disease described seven children, aged 11.5+3 years
who received darbepoetin at a mean starting dose of 1.6 ng/kg
IVonce weekly [53]. The dose of darbepoetin reached a mean
steady state value of 0.5 pg/kg per week by 3 months, with
satisfactory hemoglobin values of 118 g/L. One patient had
persistent thrombocytosis, while hypertension was seen in
two patients when the hemoglobin was greater than130 g/L.
Our own subsequent experience in 33 children, including
pre-dialysis, HD, and PD populations, confirmed the efficacy
of darbepoetin [54]. A mean hemoglobin level of 114 g/L
was recorded between 20 and 28 weeks, and 91% of the
patients had a hemoglobin value of greater than 100 g/L
during the same time interval. We also found that an
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exacerbation of hypertension associated with hemoglobin
values greater than 130 g/l and an occasional thrombocy-
tosis were the only complications. Our study did not restrict
patients to once weekly dosing, and almost 90% of our
patients were prescribed darbepoetin less often than once
weekly by week 28 of the study. However, two problems
were noted with darbepoetin: (1) eight of the 14 patients who
were asked to describe the pain of darbepoetin injection
reported that it was worse than what they had previously
experienced with EPO; (2) because darbepoetin comes in
pre-filled unidose syringes at 10-pg increments, dosing is
not convenient for small infants, and the administration of a
partial syringe is not recommended because of potential
inconsistent mixing of the active ingredient within the
syringe. Based on these results, we reviewed our experience
in six infants weighing <8 kg. The drug was administered
after partial withdrawal of the pre-filled syringe into a
calibrated 1-ml syringe prior to injection. Three medically
stable infants responded very well to darbepoetin at a dose of
only 0.25 pg/kg per week. In three infants who were
medically unstable and continually hospitalized for various
invasive procedures, it was difficult to determine the efficacy
of darbepoetin [55].

Overall, therefore, it appears that darbepoetin and EPO
are equally efficacious for treating anemia associated with
CKD, and the extended half-life of darbepoetin does provide
an advantage by allowing less frequent dosing. Nonetheless,
provision of the drug in pre-filled unidose syringes does not
allow for small incremental dosing and is therefore not child-
friendly. The issue of pain at the injection site may not be a
feature of darbepoetin outside Canada, where the product
may be manufactured differently.

Pure red cell aplasia and erythropoietic agents

Approximately one half of all cases of pure red cell
aplasia (PRCA) are idiopathic, and this disorder has
also been associated with cases of systemic lupus
erythematosus and with infection due to Parvovirus
B19. In 2002, a report was published on the occurrence
of pure red cell aplasia and anti-EPO antibodies in
patients treated with EPO [56]. Most of these patients
received Eprex, an epoetin alfa product marketed outside
of the United States [57]. In a review of 170 of 200
patients for whom there was follow-up information on
PRCA for at least 3 months, 37% recovered hematolog-
ically, although the vast majority of these patients
required immunosuppressive therapy [53]. The epidemi-
ologic data confirmed that PRCA was much more likely
with subcutaneous administration of EPO than with IV
administration, with the majority of cases occurring with
EPO alfa produced by Ortho Biotech, although 11 cases
were also reported following the use of EPO-Beta,
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manufactured by Roche and ecight cases following the
use of EPO Alfa produced by Amgen and marketed in the
United States [58]. Finally, two cases of antibody-
mediated PRCA have also been reported with darbepoetin
use. The overall incidence of PRCA following the
administration of Eprex has dropped greatly since 2004,
when the method by which Eprex is stored and recon-
stituted was changed.

Iron

Iron repletion and maintenance is the second pillar of
anemia management in kidney disease. Iron-deficient
patients are also known to require higher doses of EPO to
maintain target hemoglobin levels [59]. The current NKF-
KDOQI recommendation for targets of iron therapy is to
maintain serum ferritin at >100 ng/mL and TSAT at >20%
in pediatric HD, PD and non-dialysis CKD patients. It is
important to use these targets conscientiously and to be
aware of ‘functional’ iron deficiency.

Oral iron supplements, though cheap, are often insufficient
to maintain iron stores, especially in HD patients, due to
excessive blood loss, poor absorption, poor compliance with
medications and gastrointestinal side effects. In addition,
timing of the oral iron dose may be difficult, as it needs to be
separated from phosphate binders and antacids [60]. Never-
theless, non-dialysis CKD patients or PD patients can be
managed with oral iron. The current NKF-KDOQI guide-
lines recommend oral iron therapy to be given in doses
ranging from 2-3 mg/kg up to 6 mg/kg of elemental iron per
day in two to three divided doses per day [7]. Oral iron
should be taken 2 h before or 1 h after all calcium-containing
binders and food in order to maximize gastrointestinal
absorption. Absorption may also be reduced in patients on
proton pump inhibitors (e.g. omeprazole) [61].

HD patients have many opportunities to experience iron
loss, including excessive blood sampling, loss of blood
through the dialyzer and tubing. IV doses of iron can be
easily given to CKD patients who are on HD through the
central venous access. Maintenance therapy aims to provide
1-2 mg/kg of elemental iron per week to achieve a TSAT
between 20 and 50% and serum ferritin levels of 100—
800 ng/mL [7]. Higher doses of intermittent IV iron are
usually given less frequently to non-dialysis CKD patients
or PD patients. The risks of short-term and long-term
toxicities of higher doses of IV iron need to be studied.

Several clinical trials have recently examined the role of
IV iron supplementation in pediatric patients. One study in
2003 included 40 pediatric HD patients who had anemia
with a serum ferritin of <100 pg/L and a TSAT of <20%.
Laboratory tests, including those for hemoglobin, TSAT
and ferritin, were performed monthly over a 6-month
period. Patients were randomized into two groups, with
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the first group having iron dosed according to ferritin levels
and the control group receiving ten dose courses according
to body weight (<10 kg, 25 mg/dose; 10-20 kg, 50 mg/
dose; >20 kg, 100 mg/dose). There were a large number of
drop-outs due to iron overload in this study, and only few
patients actually completed the intended protocol. However,
both treatment arms were able to raise hemoglobin levels to
10 g/dL after 3 months [62].

Warady et al. examined the efficacy and safety of
maintenance IV iron versus oral iron in HD patients in
2004 [63]. This study was a multicenter, prospective,
randomized controlled trial of 35 iron-replete pediatric
HD patients with end stage renal disease. The patients were
randomized to receive 12 weeks of maintenance IV iron
dextran or daily oral iron therapy (4—6 mg/kg per day). The
study showed that the IV iron group had statistically
significant increased ferritin and also used less EPO.
Overall, the results of this study suggest that intermittent
IV or daily oral dosing of iron maintains iron stores in HD
patients. Warady et al. also studied iron therapy using an IV
sodium ferric gluconate complex (SFGC) in pediatric HD
patients. Efficacy and safety profiles were similar for the
two dose regimens tested (1.5 mg/kg and 3.0 mg/kg
administered sequentially in eight HD sessions). Sustained
significant increases were noted in hemoglobin in both
treatment doses compared to baseline at 2 and 4 weeks after
cessation of treatment [64].

The IV iron formulations currently available include iron
dextran, iron sucrose and sodium ferric gluconate. All IV
iron formulations may be associated with adverse events,
including immune-mediated reactions that may lead to
anaphylaxis and the release of bioactive and partially
unbound iron into the circulation by the iron agent, causing
oxidative stress and hypotension. Anaphylaxis is more
common in iron dextran formulations, while non-dextran
forms of iron tend to have reactions associated with free
iron release [65—68]. The IV SFGC formulation of iron has
a better safety profile when compared to IV iron dextran: IV
SFGC had an allergy reporting rate of 3.3 allergy episodes
per million doses per year compared to 8.7 allergy episodes
per million doses per year for iron dextran in the United
States. The mortality rate is also significantly lower with
SFGC use [69]. Warady et al. evaluated the safety of SFGC
therapy among pediatric HD patients and reported four
treatment-related adverse events, including mild nausea,
diarrhea, vomiting and worsening of anemia in one patient.
No anaphylactic reactions were reported in this study [64].
Morgan et al. evaluated iron sucrose maintenance therapy
in a small observational study of pediatric HD patients.
They did not find any adverse events among the patients
treated with iron sucrose, although these results should
be interpreted with caution due to the small sample size
[22].

Adjunctive treatments for anemia

L-Carnitine Adjunctive treatment for anemia with L-carni-
tine is not routinely recommended. Only a very few small
trials in children have examined the role of carnitine in
improving anemia or effecting a change in the dose of EPO,
and these did not demonstrate a clear benefit [70, 71].

Vitamin C The role of supplemental vitamin C has been
examined in adult HD patients with anemia, iron overload
and elevated serum ferritin, and some studies have shown
reduction in hyporesponsiveness to EPO or functional iron
deficiency [72-74]. However, the long-term safety of
administering IV vitamin C to HD patients is still
undefined, with secondary oxalosis being the primary
concern. The revised NKF-KDOQI guidelines do not
recommend the use of vitamin C in children [7].

Folate The role of folate deficiency on chronic HD was
examined in 15 subjects aged 820 years. In a 12-month
crossover study where patients received no folate for
6 months and then 5 mg of folate for the next 6 months,
the researchers found that after folate use mean hemoglobin
increased by 11.4% [75]. There is no specific recommen-
dation regarding the routine use of folate in treatment of
anemia in the new NKF-KDOQI guidelines for children.

Clinical outcomes and benefits of therapy

Anemia is associated with significant morbidity and
mortality in patients with CKD. Complications related to
anemia include kidney disease progression, cardiovascular
disease, hospitalization, mortality, and an impaired quality
of life.

Progression of kidney disease Irrespective of the underly-
ing cause, the progression of kidney disease leads to
obsolete or sclerotic glomeruli, tubular atrophy and inter-
stitial fibrosis. Anemia and subsequent tissue hypoxia may
contribute to this progression to end stage kidney disease.
Hypoxia of tubular cells may lead to interstitial fibrosis,
tubular damage and an increase in the extracellular matrix.
Hypoxia also stimulates the release of cytokines promoting
fibrosis. Therefore, the correction of anemia may lead to
increased oxygen delivery to tubular cells, decrease tubular
damage and protect against nephron loss induced by tubular
injury [76].

Cardiovascular disease Ongoing chronic anemia will man-

ifest clinically as tachycardia and shortness of breath on
exertion, possibly progressing over time to cardiac dilata-
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tion, left ventricular hypertrophy or congestive heart failure.
Mitsnefes et al. reported that pediatric patients with left
ventricular hypertrophy had significantly lower hemoglobin
values than those without left ventricular hypertrophy
(hemoglobin: 9.5+1.8 vs. 10.9+£2.3 g/dL) [77].

Hospitalization and mortality Warady and Ho studied the
NAPRTCS database to assess the association between
anemia at 30 days post-initiation of dialysis and patient
mortality. They demonstrated that anemia 30 days post-
initiation of dialysis was associated with a relative risk of
death of 1.52 (95% confidence interval: 1.03-2.26) and that
the presence of anemia was also related to an increased risk
of hospitalization [78].

Quality of life In children with CKD, the correction of
anemia has been associated with an improvement in
exercise capacity and quality of life. Morris et al. completed
a single blind, placebo controlled crossover study in 11
children with end stage kidney disease to assess the clinical
benefits of anemia correction. An increase in hemoglobin
level was associated with an improvement in exercise
tolerance, physical performance and school attendance [3].
The quality of life and its relationship to anemia have been
examined in children with kidney disease, although many
of the studies used non-validated instruments to measure
this parameter. Nevertheless, Gerson et al. published a
study on health-related quality of life in adolescent dialysis
patients in which they had used a generic quality-of-life
questionnaire completed by caregivers of 105 adolescents
with NKF-KDOQI stages 1 to 5 CKD. These researchers
found that anemic patients had a lower quality of life across
all stages of CKD and that there was a strong dose response
relationship between hemoglobin level and quality of life as
measured using this particular questionnaire [79].

Higher hemoglobin targets for therapy NKF-KDOQI clin-
ical practice guidelines for anemia in children with CKD
recommend that the target hemoglobin level should be
11.0 g/dL or greater. In contrast to the benefits achieved by
maintaining hemoglobin above a minimum target level, there
is insufficient evidence to support an upper limit of
hemoglobin for therapy in children. Higher hemoglobin
and hematocrit targets in adults have not shown any benefit
in terms of decreasing cardiovascular mortality or left
ventricular volume index. Besarab et al. published a
randomized prospective open-label trial in which they
compared the effects of normal (42%) and lower (30%)
hematocrit values in patients with clinically evident conges-
tive heart failure or ischemic heart disease on HD [80]. The
study was stopped prematurely due to higher incidence of
primary outcome rates (death or first non-fatal myocardial
infarction). Although the results were not statistically
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significant, the risk ratio for the normal hematocrit group
compared to lower hematocrit group was 1.3 (95% confi-
dence interval: 0.9-1.9). In addition, the incidence of
thrombosis of the vascular access sites was higher in the
higher hematocrit group. These results should be viewed
with caution in that they may not be generalizable to the
pediatric population, as many CKD patients may not have
clinically evident cardiovascular disease. A randomized
double blind study conducted by Parfrey et al. comparing
left ventricular volume index in early HD patients without
symptomatic heart disease who were assigned to either low
(9.5-11.5 g/dL) or to higher (13.5-14.5 g/dL) hemoglobin
targets showed no difference in the primary outcome.
Improvement in left ventricular dilatation was noted in some
patients [81], while cerebrovascular events were higher in
the higher hemoglobin target group. Improved SF-36 vitality
scores were noted in the higher versus the lower group,
suggesting an improvement in the quality of life. Therefore,
there is lack of clear benefit in maintaining higher targets of
hemoglobin among adult CKD patients. In children, the
benefits of higher hemoglobin targets are unclear, especially
the effects on quality of life and growth measurements.

Summary

In summary, the etiology and management of anemia is
complex in children with CKD, with current management
and therapeutic decisions guided by results of both adult
and pediatric studies. EPO and IV iron therapy have
revolutionized the treatment of anemia in children; howev-
er, anemia continues to be a very prevalent problem among
pediatric CKD patients. Pediatric nephrologists are encour-
aged to use current clinical practice guidelines and best
evidence in conjunction with their clinical experience to
optimally manage patients with anemia.

Questions: (answers will appear following the reference
list)

1. Reported side effects of erythropoietin therapy include:

a. Pure red cell aplasia
b. Hypertension
c. Thrombosis
d. All of the above
2. Iron supplements should not be taken together with:

a. Calcium containing binders
b. Vitamin C
c. ACE inhibitors
d. Vitamin D
3. Pure red cell aplasia is more common in what form of
erythropoietin administration:
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Intravenous

Subcutaneous

Intraperitoneal

. Oral

Correction of anemia in children with chronic kidney
disease has been associated with:

a0 os

Improved exercise tolerance

Physical performance

School attendance

All of the above

Severe hyperparathyroidism can cause anemia in
chronic kidney disease due to:

g o

Adynamic bone disease
Osteodystrophy
Myelofibrosis
Hypercalcemia

pao o
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Answers:

MY

d. All of the above

a. Calcium containing binders
b. Subcutaneous

d. All of the above

c. Myelofibrosis
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