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Abstract

The effect of an increment of exposure on disease risk may vary with time since exposure. If the
pattern of temporal variation is simple (e.g., a peak then decline in excess risk of disease) then this
may be modeled efficiently via a parametric latency function. Estimation of the parameters for such
amodel can be difficult because the parameters are not a function of a simple summary of the exposure
history. Typically such parameters are estimated via an iterative search that requires calculating a
different time-weighted exposure for each combination of the latency function parameters. This paper
describes a simple approach to fitting logistic regression models that include a parametric latency
function. This approach is illustrated using data from a study of the association between radon
exposure and lung cancer mortality among underground uranium miners. This approach should
facilitate fitting models to assess variation with time since exposure in the effect of a protracted
environmental or occupational exposure.

INTRODUCTION

In occupational and environmental research a common approach to summarizing information
about a protracted exposure history is to calculate a cumulative metric of exposure. Implicit in
the use of a cumulative exposure metric is the assumption that the effects of exposures are
additive and the impact of a unit of exposure on disease risk is the same regardless of when it
occurred. Recognizing that there is often an induction period (a period of time between
exposure and resultant induction of disease) and latent period (a period of time between the
induction of disease and its detection by the investigator), data analysts will often lag a
cumulative metric of exposure by a fixed interval.1~4 For simplicity in this paper | will use
the term latency to refer to the interval between an increment of exposure and a subsequent
change in disease risk.

The variation over time in the excess risk of disease following an increment of exposure can
be described by a latency function. The approach of lagging a cumulative metric of exposure
implies a stepwise latency function; it does not allow a data analyst to evaluate whether the
effect of exposure on disease risk persists, increases over time, or eventually diminishes. An
assessment of whether the effect of exposure increases or diminishes over time is relatively
straightforward in a setting of a population exposed to a single, acute exposure. A data analyst
can quantify risks or relative risks at various intervals following the acute exposure. In contrast,
in a setting of repeated or protracted exposure different analytical methods are needed to
investigate variation over time in the impact of an increment of exposure on disease risk.
Exposure time-window analyses offer one method for describing variation in the relative risk
of disease as a function of time—since—exposure.ll4 An exposure history is partitioned into
intervals; the data analyst then examines separate estimates of the association between disease
risk and exposures received in a series of time intervals prior to the current age. The exposure
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time-window approach provides a piecewise constant model of variation in an exposure’s effect
with time since exposure. However, in occupational and environmental studies of low level
protracted exposures, reliable estimation of exposure effects may be difficult when exposure
is partitioned into multiple time-windows; and, evidence of a temporal pattern may be sensitive
to decisions about the number of time-windows and the boundary points between them.

If the exposure effect follows a simple temporal pattern (e.g., a peak then decline in excess risk
of disease) then a piecewise constant latency model may be less plausible (and less
parsimonious) than a simple parametric model of latency effects. While methods exist for
fitting parametric latency models to protracted exgosure data, these are seldom employed by
occupational and environmental epidemiologists. 6 One possible reason for the limited use
of these methods is that there have been difficulties in fitting such models. Typically, the
approach to estimate the parameters for such exposure-time-response models has involved an
iterative search. 1./

In this paper | describe an approach to incorporate estimation of model parameters to describe
variation in exposure effects with time-since-exposure into a logistic regression model fitting.
I illustrate some simple parametric models for exposure-time-response functions and apply
these methods to analyses of mortality in a study of radon-exposed uranium miners. The
methods are described in the context of a nested case-control study in which density sampling
has been used and a large number of controls have been sampled for each case.

Consider a nested case-control study with density sampling of controls. Let’s say that y; denotes
the case status of individual j in a risk set that is matched on attained age A. The exposure
history for each person is recorded as an exposure estimate for each increment (e.g., year) of
age, a. Let’s say that xj(a) represents the exposure history for individual j as a function of age,
a.

Suppose that we postulate that after an instantaneous exposure increment at age a the observed
disease risk at attained age A is proportional to the baseline disease risk at age A (i.e., the risk
in the absence of exposure) multiplied by a relative risk that is dependent upon the intensity
of the exposure increment and a time-dependent exposure weighting function, w(t), that
describe the variation in the exposure’s effect with time-since-exposure, t, where t = (A — a).

A

. . . i(a)d
Now suppose that the exposure is protracted or repeated over time. The integral, {x’ @ a,

represents person j’s cumulative exposure accrued through attained age A. The integral of the

A
. . w(t)xi(a)da . .
time-weighted exposures, { (@) , represents the cumulative effective exposure accrued

by individual j at attained age A. Under the standard approach of lagging exposure assignment
by a fixed interval, |, an exposure lag might be expressed as a latency function of the form w
() = I[I <t], where I[“logical expression”] equals 1 if “logical expression” is true and O if it is
false.

For studies in which it is appropriate to posit a latency function in which the impact of exposure
increases then diminishes with time since exposure, one simple latency function that conforms
to this pattern is a bilinear model, consisting of two attached lines that form a triangular
function.® For the first o1 years after exposure, the relative effect of exposure increases linearly
to its maximum value; then, the effect diminishes linearly with additional time since exposure,
obtaining a weight of zero (no effect) a, years in the past. This bilinear model may be expressed
as a weighting function of the form
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A lognormal probability density function (pdf) for the latent period also can describe a rise and
subsequent fall in the effect of exposure with time-since-exposure.ev8 This implies a weighting
function, w(t) = pdf (Lognormal, t,6,1), where @ and 4 are the location and scale parameters for
this distribution and the modal value of the latency function is given by exp(d — 12).

Fitting Latency Models

A
odds=¢Po P17t +-+Ba) (l+5ij(a) X
0

Consider an analysis of the association between cumulative effective exposure and odds of
disease, odds, conducted via fitting of a logistic regression model of the form

A
Bo+B1Z1j+...+BnZnj+06 | W(DXj(a)da . .
pdds=e J J { "), where zy;..z, represent covariates (and could include

indicator variables for risk sets), and the parameter J provides an estimate of the change in the
log odds of disease per unit weighted cumulative exposure. Alternatively, a linear odds ratio

A
. odds=ePotPrrit-ABuzn) | 1 45 f w(t)xj(a)da
model could be fitted, of the form 0 , where 6

represents the excess odds ratio (EOR) per unit weighted cumulative exposure.

In the above regression models, a person’s weighted exposure is the product of the observed
exposure xj(a) and the latency function, w(t), which itself may involve unknown parameter(s).
For example, a linear odds ratio model where latency effects are described via a bilinear latency
function, corresponding to a regression model of the form:

t —t
(—)I[OSt<(n]+( % )I[m St<a/2]]da),
(03] ) — A

would imply that the model parameters to be estimated include Sy — S, 9, and a1 and ay.
Maximum likelihood estimates for each of these parameters, along with their associated
standard errors, can be obtained via SAS PROC NLMIXED.10 In this way, in a single
regression model fitting, the data analyst obtains estimates of the parameters specifying the
latency function. The appendix provides a simple SAS macro that may be used to fit a variety
of such models.

Pointwise 95% credible intervals may be derived via Monte Carlo methods in order to illustrate
the statistical uncertainty in the estimated relative risk per unit dose as a function of time since
exposure. This can be done with a slight modification of the SAS code shown in the appendix,
invoking the SAS MCMC procedure.10 Parameter estimates are generated via each of a large
number (e.g., 10,000) of Monte Carlo iterations, specifying non-informative priors. For each
set of parameter estimates, the risk ratio is calculated for each time point over the interval for
which one wishes to derive confidence intervals, and the 2.5 and 97.5 percentiles of the
distribution of these values for each time point serve as the lower and upper bounds of the
credible interval.

Examples—To illustrate this approach to estimating the parameters of a latency function, |
use data from a study of underground uranium miners.>11 The Colorado Plateau cohort

includes male workers employed in underground uranium mining operations between January
1, 1950 and December 31, 1960. Vital status was ascertained through December 31, 1990. The
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outcome of interest, lung cancer mortality, was defined based upon underlying cause of death,
coded according to the revision of the International Classification of Diseases (ICD). The
primary exposure of interest was defined as cumulative radon exposure, expressed in working
level months (WLM), and was computed for each worker as the product of the length of
employment in each job in a year by the estimated radon exposure rate for that job. For each
lung cancer death, a risk set was formed that included all workers who were alive and eligible
to be in the study at the attained age of the index case; controls were also matched to cases on
calendar year at risk (defined in five-year categories from <1960 to 1990+). | used the nested
case-control data described by Langholz et al.; this data set included 263 lung cancer deaths.
5 Up to forty controls were selected for each lung cancer death by random sampling without
replacement from all members of the risk set (excluding the index case itself).

In order to account for the matched design of the study, the regression model included 262
binary indicator variables for the 263 strata defined by the risk sets. A linear odds ratio model
was fitted, as in previous analyses of these data.®9 | first estimated the association between
cumulative radon dose and lung cancer mortality assuming a time-constant model (i.e., w(t)
=1). Next, | fitted logistic regression models that incorporated a bilinear latency function. The
results are compared with those previously obtained by Langholz et al. In addition, the results
of fitting a model in which cumulative exposure was partitioned into six time-intervals are
reported in order to provide a simple description of the shape of the latency function. Lastly,
| fitted a logistic regression model that incorporated a lognormal latency function. Plots were
generated in order to compare the results of obtained in fitting the bilinear and lognormal
latency functions.

Fitting a linear odds ratio model for lifetime cumulative exposure under a time-constant model
(i.e., w(t)=1), led an estimated EOR/100 WLM=0.33 (se=0.10). This time-constant model was
compared to a regression model that incorporated a bilinear latency function. The fitted bilinear
function obtains a maximal value 8.58 (se=3.72) years after exposure and then declines linearly
to a null value 33.55 (se=2.66) years after exposure. Figure 1 illustrates the variation of the
EOR/100 WLM with time since exposure as described by the fitted bilinear latency function;
also shown for comparison is the excess relative risk as a function of time since exposure as
estimated from a fitted piecewise constant model.

A lognormal latency function also was fitted to the Colorado Plateau data. Figure 2 illustrates
the variation of the EOR/100 WLM with time since exposure as described by the fitted
lognormal latency function. The fitted lognormal latency model obtains a modal value about
10 years after exposure.

The bilinear latency function provided the best fit to these data (Table 1). While not nested
models, the improvement in fit when applying the bilinear latency model is substantial relative
to the time-constant model.

DISCUSSION

This paper describes an approach for estimation of latency model parameters. While | have
focused on two simple latency models, the bilinear and the lognormal latency models, both of
which allow a data analyst to describe exposure effects that rise and subsequently diminish
with time-since-exposure, other latency models could be developed along similar lines. There
are a number of reasons to favor relatively simple latency models such as the bilinear and
lognormal models. These include ease of interpretation and communication. The bilinear and
lognormal latency models are weighting functions that are bounded by 0 and 1, which facilitates
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interpretation of the model coefficients. The bilinear model is attractive as the estimated model
parameters address questions of public health concern regarding the timing of the maximal
effect of exposure and its persistence.5 The lognormal latency model implies that the sum of
the weights integrate to unity; and, one potential appeal of the lognormal latency function is
that the effects of exposure gradually diminish over time but remain non-zero with protracted
time-since-exposure.6 However, the choice of model form for a latency function should not
be dictated by these considerations alone, but should follow from examination of the data. As
in any modeling exercise, the aim is smoothing, pattern recognition, and summarization.
Exposure time-window analyses, such as those reported previously for the analyses of these
Colorado Plateau miners, can provide a useful, flexible, piecewise constant description of the
exposure-time-response association, guiding the choice of other plausible parametric latency
functions that may facilitate summarization of the temporal effects. Spline functions offer
another flexible approach to modeling exposure-time-response associations.12:13 Hauptmann
et al. proposed the use of cubic B-splines to describe latency functions; this approach is
attractive although the modeled association may be sensitive to the choice of the number and
location of knots, and there is a tendency for instability in the tails of the fitted function.

Estimation of the parameters for a parametric latency models can be difficult because the
parameters are not a function of a simple summary of the exposure history. Typically such
parameters have been estimated via an iterative search, which involves computing different
time-weighted exposure summaries for each combination of the parameters defining the
latency function. For example, for a latency function that involved 2 parameters, this requires
a grid-search over the parameter space defined by both parameters.5'14 The use of PROC
NLMIXED for estimation of latency model parameters avoids the iterative model searching
typically employed in epidemiological analyses of latency effects and provides the data analyst
with estimates of the standard error for each model parameter.

I have illustrated this approach using data from a study of mortality among Colorado Plateau
miners, a population that has been studied extensively. Consequently, the results obtained from
estimation of latency functions via PROC NLMIXED can be contrasted to prior findings.5'9'
13 The parameters for the bilinear latency function obtained via PROC NLMIXED are similar
to those obtained by Langholz et al. via a grid search over a range of values; Langholz et al.
reported a peak in the exposure effect at 8.5 years (se=3.57) and no effect after 34 years
(se=2.09). It should be noted, however, that the estimates reported by Langholz et al. were
obtained via the EPICURE software package, and required substantial programming to
implement the grid search for these model parameters. In the current paper, | obtained nearly
identical values for the parameters of the bilinear latency function. One notable difference is
that Langholz et al. used a conditional logistic regression model, while | have fitted an
unconditional logistic regression model with indicator variables for each stratum defined by
the risk sets. These methods should result in similar parameter estimates in scenarios in which
the data are not sparse within strata (permitting an unconditional logistic model fitting). Given
the need to explicitly model parameters for matching factors in the nested case-control study,
this suggests that the approach described in this paper is best suited to studies in which large
numbers of controls may be sampled for each case. One such setting is when data are available
for the entire study cohort; density sampling in such a setting provides a means of computational
reduction when fitting models that approximate a Cox proportional hazards regression. For
matched case-control studies in which the number of controls per case is small, an approach
employing conditional logistic regression would be necessary.

A similar approach to estimating the parameters of a latency function could be developed using
Poisson regression methods. While Poisson regression is often conducted on a grouped data
structure, such an approach does not lend itself to an evaluation of latency functions, since
person-time and events must be classified into categories of cumulative dose. However,
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Poisson regression analyses may also be conducted using a counting process formulation of
the data (i.e., an ungrouped data structure). In this approach each person is represented by a
series of records corresponding to time periods at risk with an indicator of failure status at each
interval. Each record has a vector of exposure variables (e.g., annual exposure estimates). Using
the latter analytical data structure, PROC NLMIXED could be used to estimate latency
parameters via Poisson regression methods in an approach that is directly analogous to that
presented in this paper (although much more computationally-intensive).

Extensions of these models may be developed that allow for evaluation of whether the joint
effects of exposures conform to a multiplicative model, or to allow for an assessment of whether
latency functions differ across categories of a potential effect modifier. Examples of such
investigations have been reported previously, although the estimates obtained from such model
fittings may be unstable unless there are substantial numbers of cases within each stratum of
the potential modifying factor.8:13

NLMIXED allows for a variety of optimization algorithms to be used. As indicated in the
appendix, | have used conjugate gradient methods for the optimization approach in these model
fittings, an approach well-suited to this sort of large problem. In fact, many large applications
of PROC NLMIXED can only be solved by this optimization approach.

This approach overcomes much of the difficulty previously encountered in latency analyses,

where models were often fitted in an iterative fashion and, for latency functions that involved
more than a single parameter this required large numbers of model fittings and a grid search

over the likelihood function. Latency analyses address an important question. This approach

should facilitate wider consideration of parametric latency functions.
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APPENDIX

Assume that we have data set, DS, which contains information derived from a case-control
study. Each record in the data set includes the following main variables: y, which denotes case-
control status (1=case, 0 otherwise); a vector of indicator variables z; (i=1...n) which take a
value 1 if the subject is in risk set i and 0 otherwise; age, which indicates attained age of the
risk set; and r01, r02, ..., r80 which represent annual exposures (e.g., 52 is exposure during
the age interval 51-52 years.

The SAS macro below can be used to fit a wide variety of models to these data. The model is
invoked by the command %latency (data=DS, case=y, exphx=r01-r80, age=age, parms=, lag=,
wt=, and regmodel=). The term ‘parms’ of the command invoking the macro allows the user
to specify initial values for the regression model parameters; while not required, model
convergence may be facilitated by providing plausible starting values for model parameters.
By default, PROC NLMIXED assigns all model parameters an initial value of 1. The term ‘lag’
of the command invoking the macro allows the user to specify a lag assumption. This was
included in order to replicate analyses by Langholz et al. which lagged exposure assignment
by 2 years when computing exposure history summaries. The term ‘wt’ of the command
invoking the macro allows the user to specify a parametric latency function which can be
defined in terms of time-since-exposure, t. The weight assigned to each annual exposure is
calculated as of the midpoint of that year. Lastly, the term ‘regmodel’ of the command invoking
the macro allows the user to specify the regression model form, which may include covariates
and the variable edose, representing the cumulative effective dose under the specific latency
function.
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v MACRD LATENCY =;
gmacre latency (data=s . cases , exphx=, age= , parms= , lage=, wts=,
regqmodel= };
proc nlmixed data=&data tech=congra ;

pacms Sparms;

lag=&lag ;

eclonga=l;

ARRAY annexp Lexphx;

endage=£flocr (&age) —lag:; endage=min{endage, hboundiannezp!):

DO Y = 1 to endage;

t = {sage -y-lag+ (1B2/385) |;

edose = edose + | [ &wh *oannexplyl 1;
END;

odda=&regmedel

p=odds/ {1+cdds) ;

medel &case ~ binaryip): run;
emend labency;

Lifetime cumulative dose analyzed under an exponential odds model

For analyses of lifetime cumulative dose, the latency function is fixed at unity for all values t

A
BotBizit..+Biztd [ w(dxja)da
0

(i.e., w(t)=1). A log-linear odds model of the form ,;c—, , With 2

covariates for simplicity, z; and z,, would be fitted as follows:

tlatenayidata=05, case=y, exphx=r0l-r80, age=age, parms=hli-hZ=0[
delta=0,lag=0, wt= 1, regmodel=exp(bi+blrzl+b2*z2+deltaredose)l |;

Lifetime cumulative dose analyzed under a linear odds ratio model

A
, _ dds=ePotPrart-Bin | 145 [w(t)xj(a)da
A linear odds ratio model of the form 0

would be fitted as follows:

, where w(t)=1

tlatency{data=D5, case=y, @zphz=rcll-ril, age=age,parms= L{-EkZ=0, lag=7,
wt= 1, regmodel=sxp( bl+kl*zl+bh2*zZ] *{l+dalta*edose ) 1}

A bilinear latency function analyzed under a linear odds ratio model

A
dds=ePorPrai++Buzn) [ 1+6fw(t)xj(a)da]
0

0
A logistic regression model of the form , where

) —

t
w(O=|—|xT[0 < t<a1] +( , would be fitted by invoking macro %

t
) X1[a; < t<ag]
) — A

1
latency as follows:
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latapayridata=0%, case=y, edphi=rll-rBl, age=ajge, parms= bl-ki=0
=30, lag=0, Wt (£ f al]l*(0==t<al) + [ {(a2-t] S {al-al} j*[al=
regmadel= expibdsblrzl+b2+rz2) *(l+delta*edase) |;

A lognormal latency function analyzed under a linear odds ratio model

A lognormal latency function can be included. A linear odds ratio model would be fitted by
invoking macro %latency as follows:
‘latemcy(data=D5

wt= pdf {' LOGNORM
regmodel=exp [ bO+bl*zl+bZ*

«phx=r01-r80, age=age,parms= b0-b2Z=0, lag=0,
al .
(l+delta*edose } };

Epidemiology. Author manuscript; available in PMC 2010 May 1.

al=g

t<adl,;



1duasnuey Joyiny vVd-HIN 1duasnue Joyiny vd-HIN

1duosnuely Joyiny vd-HIN

Richardson

Page 10

0.6 / \
0.5 / N

0.4 / AN

Excess OR/100 WLM
—
/

0.3

Time Since Exposure (years)

Figure 1.

Fitted bilinear and piecewise constant latency functions. Association between lung cancer

mortality and radon exposure among Colorado plateau uranium miners.
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Figure 2.
Fitted lognormal latency functions and associated 95% pointwise credible interval. Association
between lung cancer mortality and radon exposure among Colorado plateau uranium miners.
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Estimated logistic regression coefficients™ obtained via SAS PROC NLMIXED. Fittings of sigmoid, bi-linear, and
lognormal latency functions to lung cancer mortality among workers in the Colorado Plateau

Latency function Parameter Estimate Std. Error Deviance
Time-Constant 2328.1
) 0.3306 0.1018
Bilinear 2316.7
o 8.58 3.72
ay 33.55 2.66
8 0.8593 0.316
Lognormal 2318.2
4 2.67 0.16
A 0.58 0.13
) 15.1279 5.2410

7‘a linear odds rate model of the form:

A
odds=eBo+Biz1++Bzn) [1+6fw(r)xj(a)da]
0

estimated cumulative weighted exposure (in WLM) and w(t) is the latency function..
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