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Correlates of Perceptual Learning in an Oculomotor Decision
Variable
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In subjects trained extensively to indicate a perceptual decision with an action, neural commands that generate the action can represent
the process of forming the decision. However, it is unknown whether this representation requires overtraining or reflects a more general
link between perceptual and motor processing. We examined how perceptual processing is represented in motor commands in naive
monkeys being trained on a demanding perceptual task, as they first establish the sensory-motor association and then learn to form more
accurate perceptual judgments. The task required the monkeys to decide the direction of random-dot motion and respond with an eye
movement to one of two visual targets. Using electrically evoked saccades, we examined oculomotor commands that developed during
motjon viewing. Throughout training, these commands tended to reflect both the subsequent binary choice of saccade target and the
weighing of graded motion evidence used to arrive at that choice. Moreover, these decision-related oculomotor signals, along with the
time needed to initiate the voluntary saccadic response, changed steadily as training progressed, approximately matching concomitant
improvements in behavioral sensitivity to the motion stimulus. Thus, motor circuits may have general access to perceptual processing
used to select between actions, even without extensive training. The results also suggest a novel candidate mechanism for some forms of
perceptual learning, in which the brain learns rapidly to treat a perceptual decision as a problem of action selection and then over time to

use sensory input more effectively to guide the selection process.
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Introduction

Perceptual decisions require the conversion of noisy sensory ev-
idence into a categorical judgment (Link, 1992; Gold and
Shadlen, 2002; Ratcliff and Smith, 2004; Bogacz et al., 2006; Gold
and Shadlen, 2007). How and where in the brain the decision is
formed appears to depend, at least in part, on experience.
Learned improvements in perceptual sensitivity can involve
changes in how sensory evidence is interpreted to form the deci-
sion (Dosher and Lu, 1998; Law and Gold, 2008). Learned asso-
ciations between the outcome of the decision process and spe-
cific, immediate actions can lead to a representation of the
decision process in circuits that prepare the actions (Gold and
Shadlen, 2000, 2003). Our goal was to better understand the re-
lationship between these phenomena by examining how experi-
ence shapes the representation of decision formation in com-
mands that prepare associated actions.

We trained monkeys to decide the direction of random-dot
motion and indicate their decision with an eye movement. In
monkeys trained extensively on this task, brain regions involved
in generating the eye-movement response, including the lateral
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intraparietal area (LIP), superior colliculus (SC), and parts of the
prefrontal cortex including the frontal eye field (FEF), also rep-
resent the accumulation of motion information used to select the
response (Horwitz and Newsome, 1999; Kim and Shadlen, 1999;
Roitman and Shadlen, 2002). However, it is not known whether
extensive training is necessary to establish this link between per-
ceptual and motor processing. If so, it would imply that the per-
ceptual processing is typically performed elsewhere in the brain
and only eventually reflected in motor circuits. Conversely, if
merely associating a perceptual decision with an action can estab-
lish this link, circuits that prepare actions might have more gen-
eral access to perceptual information used to select among those
actions.

Training also causes long-lasting improvements in perceptual
sensitivity to visual motion (Ball and Sekuler, 1982, 1987; Law
and Gold, 2008). Unlike other forms of perceptual learning
thought to involve changes in how sensory information is repre-
sented in early sensory areas of cortex (Goldstone, 1998; Gilbert
et al., 2001), these perceptual gains do not appear to involve
changes in the middle temporal area (MT), which represents mo-
tion evidence used to solve the task (Newsome and Paré, 1988;
Salzman et al., 1990; Britten et al., 1992, 1996). Instead, these
improvements correspond to changes in the representation of
accumulating motion evidence in area LIP (Law and Gold, 2008).
However, nothing is known about the relationship between these
changes in decision processing and the effects of learned behav-
ioral associations on where in the brain they are represented.

We used a microstimulation technique to assess the relation-
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Figure 1.  Task design and microstimulation sites. A, Task without microstimulation. The monkeys viewed a random-dot
stimulus with a randomly selected duration, motion strength, and direction (two alternatives separated by 180°) of motion.
Simultaneous offset of the dots and fixation point indicated to the monkey to make a saccadic eye movement to one of two choice
targets located along the axis of motion. A saccade to the target in the direction of motion was followed by auditory feedback and
a juice reward. An incorrect saccade was followed by a brief time-out period. B, Task with microstimulation. After finding a
microstimulation site in the FEF, the axis of motion was rotated to be approximately perpendicular to the evoked saccades. On a
subset of trials, offset of the motion stimulus and fixation point was accompanied by onset of FEF microstimulation, causing an
evoked saccade. The monkey then typically made a voluntary saccade to one of the two targets, followed by feedback. C, D, MRI
reconstruction of microstimulation sites (black circles) in the FEF (red shaded region) from Felleman and Van Essen (1991) for At
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ship between decision formation and ocu-
lomotor preparation (Gold and Shadlen,
2000, 2003). We show that, throughout
training, saccadic eye movements evoked
with electrical microstimulation of the
FEF during motion viewing reflected both
the monkey’s subsequent saccadic choice
and the motion information used to arrive
at that choice. The results suggest that
action-oriented circuits might play a gen-
eral role in processing perceptual informa-
tion used for action selection.

Materials and Methods

We used two adult rhesus monkeys (Macaca
mulatta), one male (At) and one female (Av).
Both were naive to behavioral and electrophys-
iological testing before the experiments began.
All behavioral, surgical, and electrophysiologi-
cal procedures were performed in accordance
with the National Institutes of Health Guide for
the Care and Use of Laboratory Animals and
were approved by the University of Pennsylva-
nia Institutional Animal Care and Use
Committee.

Surgical preparation. Each monkey was pre-
pared for experimental testing in a single surgi-
cal session, in which a head-holding device, re-
cording cylinder (Crist Instrument), and single
scleral search coil used to monitor eye move-
ments (Robinson, 1963; Judge et al., 1980) was
implanted. Magnetic resonance imaging
(MRI), along with custom additions to publicly
available software packages AFNI (Cox, 1996)
and the Caret-SureFit Software Suite (Van Es-
sen et al.,, 2001), were used to visualize the
three-dimensional trajectory of the implanted
recording cylinder relative to the FEF and thus
guide electrode placement during the experi-
ment (Fig. 1) (Kalwani et al., 2009).

Behavioral task and training. The monkeys
were initially trained to enter into and sit com-
fortably in a custom-built primate chair, sit qui-
etly in the testing booth (Acoustic Systems),
and perform a simple visually guided saccade
task. Once these tasks became routine (after
~1-2 months), the monkeys were trained on
the direction-discrimination task [described in
detail by Gold and Shadlen (2003)]. Briefly, the
monkey was positioned 60 cm directly in front
of a 21-inch CRT monitor (Viewsonic). Visual
stimuli were generated in MATLAB on a
Macintosh computer, using the Psychophysics
Toolbox software (Brainard, 1997; Pelli, 1997)
with custom additions to draw the motion
stimulus. To perform the task, the monkey was
required to fixate a central spot while viewing a
random-dot motion stimulus until both the
fixation point and motion stimulus were turned
off simultaneously and then was rewarded for

<«

(€, right hemisphere) and Av (D, left hemisphere) using Caret
(Van Essen et al., 2001) and AFNI (Cox, 1996) brain-mapping
software. Yellow shaded region indicates the projection of the
recording cylinder onto the surface of the brain (Kalwani et
al., 2009).
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making a saccadic eye movement to the target located in the direction of
coherent motion (or with a probability of 0.5 on trials with no coherent
motion). On a given trial, a control computer running REX software
(Hays, 1982) on the QNX operating system (QNX Software Systems)
pseudorandomly chose the direction of coherent motion (from two
equally balanced alternatives separated by 180°), percentage of coher-
ently moving dots (0, 3.2, 6.4, 12.8, 25.6, 51.2, or 99.9%), and viewing
duration [chosen from an exponential distribution bounded between 0.1
and 1.5 s to avoid trials that were too brief or too long but also to approx-
imate a flat hazard function and therefore minimize the ability to antic-
ipate stimulus offset; the distribution had a mean value of between 0.2
and 0.8 s in a given session to ensure that most trials ended before the
expected response would occur on a reaction-time (RT) version of the
task]. As the monkeys’ performance improved with training, the distri-
butions of motion coherences and viewing durations were adjusted to
maintain a relatively stable overall percentage of correct responses [more
trials using stimuli with low coherences and short viewing durations were
added in later sessions, giving a median (interquartile range, or IQR)
percentage correct per session of 72.0 (4.6)% for monkey At, 72.0 (4.2)%
for monkey Av], and thus overall feedback and motivation, for each
session.

Rewards and penalty times were varied throughout training to maxi-
mize motivation and performance. Trials in which the monkey chose the
correct target were immediately followed by one or more audible tones
paired with 0-5 drops of apple juice, based on a reward schedule that
encouraged multiple correct responses. The intertrial delay following
these trials was ~1-1.5 s. For trials in which the monkey chose the other
target (“error trials”) or did not complete the trial appropriately [by
either breaking fixation or not selecting one of the two choice targets,
which occurred in median (IQR) percentage of trials per session = 13.9
(11.2)% for At, 8.0 (7.5)% for Av; these trials were not included in any of
the analyses], an additional penalty time of ~2-3 s was enforced.

Oculomotor measurements. Eye position was monitored throughout
each experimental session using a scleral search coil technique (CNC
Engineering) with a coil implanted monocularly in each monkey. Eye
position signals were sampled at 1000 Hz. During motion viewing, the
monkeys were required to maintain fixation to within *2.5° of visual
angle. After offset of the motion stimulus and fixation point, the mon-
keys had 80—700 ms in which to initiate a voluntary saccadic response to
one of the two targets. Each target was 0.8° in diameter located 8° from
the center of the fixation point in both directions along the axis of mo-
tion; saccades were required to end within 3.5° of the center of the nearest
target or the trial was classified as “no choice” and not included in the
analyses. Saccades were defined as eye movements that traveled at least
one degree of visual angle, reached a peak velocity of >100°/s and had an
instantaneous acceleration of >4°/s*. The end of a saccade was defined as
the eye position at the time that eye deceleration was >—4°/s* (ap-
proaching zero) for at least 5 ms. For each voluntary saccade, we mea-
sured mistargeting as the absolute distance between saccade end-point
and the center of the nearest target) and latency as the time from fixation-
point offset to saccade onset.

To measure ongoing oculomotor activity during motion viewing, we
evoked saccades with electrical microstimulation of the FEF. Eye move-
ments evoked with electrical microstimulation of one of several brain
areas including the FEF and superior colliculus typically have stereotyped
trajectories that can be influenced by ongoing oculomotor activity at the
time of microstimulation (Sparks and Mays, 1983; Schlag et al., 1989;
Kustov and Robinson, 1996; Tehovnik et al., 1999; Martinez-Trujillo and
Treue, 2002; Tehovnik and Slocum, 2004). Accordingly, interrupting the
direction-discrimination task with FEF microstimulation results in an
evoked saccade with a trajectory that is sensitive to oculomotor activity
while the direction decision is being formed. In trained monkeys, this
activity reflects both the impending eye-movement response and the
motion information used to select that response (Gold and Shadlen,
2000, 2003). We assessed how this activity relates to both the motion
stimulus and impending saccadic response throughout training.

In most sessions a glass-coated tungsten electrode with an impedance
of ~0.1 M(Q) (Alpha Omega) was inserted into the cortex through a sterile
guide tube with a NAN microdrive (Plexon). FEF sites were determined
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by the ability to evoke saccades in darkness with <50 uA of current and
a consistent direction. Microstimulation consisted of a train of 0.25-ms-
long, biphasic pulses applied at a rate of 400 Hz for 60 ms. Once a
microstimulation site was found, the task was oriented so that the axis of
motion was approximately orthogonal to the direction of the evoked
saccade. The microstimulation current was adjusted to evoke saccades
reliably while the monkey performed the direction-discrimination task
(60-110 wA). Microstimulation was applied on a subset of trials (typi-
cally ~50%) randomly interleaved in each experiment. For 10 sessions
late in training for At and 14 sessions late in training for Av, no micro-
stimulation data were collected and the task was configured with a hor-
izontal axis of motion.

Evoked-saccade trajectories were measured as the vector from the ini-
tial eye position (position at stimulus offset) to the endpoint of the
evoked saccade. Endpoints typically drifted over the course of an exper-
iment, probably because of relative movement between the brain and the
tip of the microelectrode. This drift was corrected by first computing a
150-point running mean of the x and y coordinates of the saccade end-
points associated with each direction choice. The average of the two
running means were then subtracted from each endpoint. This proce-
dure corrected for the drift and centered the distributions of endpoints
corresponding to the two direction choices nearly at zero. Deviations of
the evoked saccade were quantified as the dot product of the endpoint
vector of the run-mean subtracted data with the unit vector along the axis
of motion in the direction of the monkey’s choice. Thus, deviations in the
direction of the monkey’s choice were positive.

Behavioral data analysis. We analyzed the behavioral data using a de-
cision model that assumed the monkey’s choice on a given trial was based
on the value of a decision variable that represented the accumulation of
motion information over time [for details, see Eckhoff et al. (2008),
especially “ddPow2” of Eq. 37]. Briefly, the value of the decision variable,
x, evolves as a function of a time-varying drift rate A(¢) and a noise term
cdw:

dx = A(t)dt + cdW. (1)

The mean value (w) of x at time T is the integrated value of the drift rate,
which we assumed was a linear function of motion coherence (C) and a
power function of time:

T

w(C,T) = J'A(t)dt = aCT", (2a)

0

where a and n are parameters that govern the coherence and time depen-
dence of A(t). We also assumed that the noise (variance, v) of x scaled by
a factor ¢ with the average drift rate:

v(C,T) = O(2r, + aC)T", (2b)

where ¢ and r,, are free parameters. Note that this was not an RT task and
so the experimenter, not the subject, controlled viewing duration. Thus,
we assumed that evidence was accumulated not to a fixed threshold, as is
used in models of performance on RT tasks (Ratcliff and Rouder, 1998),
but rather to a fixed time. Specifically, we assumed that the correct choice
was made when the value of x at the end of motion viewing was >0, an
error otherwise. The psychometric function describing accuracy as a
function of motion coherence and viewing time (T) is therefore the
following:

w©

w(C,T) ) 3)
“2v(c,n) |

1
PX(C,T) = fp(x,t)dx = 5[1 + er
0

Finally, lapses (L, errors at the highest motion strengths) were measured
directly as the fraction of errors for stimuli of the highest motion strength
and the longest 40% of viewing times used in a given session (the preci-
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sion of this estimate was quantified using binomial errors) and used to
scale the entire function to reach an upper asymptote at L:

P(C,T) = L + (1 — 2L) P*(C,T). (4)

We fit session-by-session behavioral data to P(C, T') using two free pa-
rameters, a and n. The remaining parameters were set to values used
previously (¢ = 0.3 and r, = 10 spikes/s) (see Gold and Shadlen, 2000,
2003; Eckhoft et al., 2008). For a given fit, we computed discrimination
threshold as the motion strength required to achieve 82% correctat 0.5 s
viewing time.

We assessed goodness-of-fit of the psychometric functions fit to data
from individual sessions using Monte Carlo methods (Wichmann and
Hill, 2001). For each session, the best-fitting psychometric function was
used as a generating function to simulate 2000 data sets. Goodness-of-fit
was quantified for the empirical and simulated data sets using root-mean
square deviance (D,,,,,, where deviance is two times the logarithm of the
ratio of the likelihood of obtaining the data given the model and the
likelihood of the saturated model). The distribution of D, for the sim-
ulated data sets was used to generate confidence limits for the empirical
fit.

Oculomotor data analysis. Multiple weighted linear regression was
used to relate the mean magnitude of deviation from individual sessions
to several parameters:

deviation = a; + @, Lapse + a,lm + a5 Session a, Length
+ a5 Latency + ¢, (5)

where Lapse is the upper asymptote of the psychometric function (Eq. 4),
I i 18 the microstimulation current, Session is session number, Length is
the mean length of the evoked saccade, Latency is mean latency, and ¢ is
Gaussian noise with variance that was estimated from the data (SEM
magnitude of deviation) from the given session.

A critical parameter in the decision model is a, which describes how
the decision variable scales with motion strength and viewing time (Eck-
hoffetal., 2008). Our analyses focused on finding similar dependences in
the oculomotor data. To account for changes in the overall magnitude
and variability of each oculomotor parameter (evoked-saccade deviation
and voluntary-saccade latency and mistargeting) that might occur across
sessions, we computed the z-score of each parameter separately for data
corresponding to each choice in each session. We then fit these z-scored
data from each session (or pooled data across sessions) to the following
linear equations:

2(C,T) = Bo + BiC + B.T, (6a)
and

z(C,T) = v, + y,CT", (6b)
where 3; and v; are fit, real-valued parameters. Equation 6a describes the
dependence on motion coherence (C, the fraction of coherently moving
dots) and viewing time (T, in seconds). Equation 6b describes the depen-
dence on the multiplicative interaction between coherence and time (to
the power n, which is the median value of the time exponent from Eq. 2
fit to the behavioral data for each monkey: 0.51 for At, 0.94 for Av),
analogous to the role of a in the decision model (Eq. 2). To compute
predicted (scaled) discrimination thresholds from the fits to Equation 6b
(see Fig. 9) for each session, the absolute, best-fitting value of vy, in
Equation 6b replaced a in Equation 2 above after scaling by k such that
median(ky,) = median(a).

To limit possible confounding effects on the fits to Equation 6 of the
different distributions of motion stimuli used in different sessions, we
restricted the fits to a range of values of C and T common to each session
(C<99% and 0.1 s < T < 0.6 s). Within this range, the actual values of
each parameter used in each session were similar across sessions [median
(IQR) value across sessions of the median coherence within a session was
6.5 (6.5)% coherence for both monkeys and of the median viewing time
within a session was 0.35 (0.09) s for At and 0.29 (0.02) s for Av]. We
further tested for an effect of the slight session-by-session differences in
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these values by simulating data sets using Equation 6b as a generative
model. Specifically, for each parameter we first computed the weighted
mean of the best-fitting value of y, and v, across sessions (weighted by
the SEM from each fit), then for each session computed z(C, T) from
those mean values and the actual values of C and T used in that session,
plus Gaussian noise (with zero mean and the variance of the residuals to
the fits to Eq. 6b of the actual data from each session). We then computed
correlation coefficients between these simulated data sets and simulated
behavioral data generated in a similar manner using the mean behavioral
fits across sessions (from Eq. 2).

Results

We trained two monkeys on the direction-discrimination/eye-
movement task (Fig. 1) (monkey At was trained for 161 sessions
over 437 d for a total of 321,418 trials; monkey Av was trained for
222 sessions over 607 d for a total of 435,425 trials). The task
required a conversion of graded sensory input into a binary
choice of motor output. Throughout training, we examined the
extent to which aspects of the eye-movement response reflected
not just the binary choice but also the process of converting the
graded sensory input into that choice.

The results are organized as follows. First we show the effects
of training on performance, including relatively rapid acquisition
of the visuomotor association and subsequent steady gains in
sensitivity to the motion stimulus. Next, using the trajectories of
eye movements evoked with FEF microstimulation, we show that
the monkeys appeared to be preparing their eye-movement re-
sponses while forming their direction decisions throughout
training. We then show that these developing oculomotor com-
mands became increasingly sensitive to the strength and duration
of the motion stimulus used to form the decision and select the
appropriate response. Other oculomotor parameters, including
the latency to initiate the voluntary saccadic response, also
showed a similar increase in motion sensitivity with training.
Finally, we show that these changes in oculomotor sensitivity to
the motion stimulus were correlated with the concurrent im-
provements in behavioral performance, implying an ongoing
link between perceptual and motor processing.

Behavioral performance

Both monkeys quickly learned the visuomotor association and
then slowly improved their sensitivity to weak motion signals
over months of training. Figure 2A—C shows performance data
from three example sessions in early, middle, and late periods of
training for monkey At. In the early session the upper asymptote
did not reach perfect performance. This nonzero “lapse rate,”
which indicates choice errors for easily perceptible stimuli and is
sensitive to how well the monkeys had learned the general re-
quirements of the task including the sensory—motor association,
was not apparent in the later sessions. Moreover, the curves
shifted leftward and became more separated as a function of
viewing time as training progressed, indicating improved sensi-
tivity to weak, brief motion signals.

For both monkeys, lapse rates declined rapidly with training
(Fig. 2D, E, gray triangles). The highest lapse rates (>10% errors
for long-duration, high-coherence stimuli) occurred in the very
earliest sessions and then declined to near zero (single-
exponential fits of lapse vs session had a lower asymptote of zero
for both monkeys and a time constant of 3.8 sessions for monkey
At, 5.9 sessions for Av). Thus, the monkeys learned both the
general requirements of the task and the association between
motion direction and saccadic response early in training and sub-
sequently made few or no choice errors for strong stimuli with
easily perceived directions of motion.
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monkey At. Percentage of correct responses is plotted versus motion strength. Grayscale values correspond to different viewing
times (three equally spaced hins between 100 and 800 ms, with darker symbols for longer times). More trials with lower coher-
ences and shorter viewing times were added as training progressed and sensitivity improved to maintain an approximately
constant overall percentage of correct responses per session. Dashed lines indicate threshold (percentage coherence correspond-
ingto82% correctatlong viewing times, corrected for lapses asin Eq. 4). D, E, Lapse rate (errors for high-coherence, long-duration
stimuli; gray triangles, right ordinate) and discrimination threshold (black symbols, left ordinate with a logarithmic scale) as a
function of session for At (D) and Av (E). Error bars are SEM. Lines are weighted fits to a decaying single-exponential function. F,
G, Degradation of perceptual sensitivity for unfamiliar axes of motion for At (F) and Av (G). The residuals to the exponential fits to
threshold (in logarithmic units) in D and E, respectively, are plotted as a function of the familiarity of the axis of motion (the
average, angular difference between the current axis of motion and the axes of motion from all previous sessions; larger values
indicate less familiar axes). Only sessions with zero lapse rates were used. Lines are weighted linear fits. Positive slopes (H,:
slope = 0, p << 0.07in both panels) indicate that perceptual sensitivity tended to be worse than the current trend for less familiar

for monkey At and 42.0 sessions for Av). axes of motion.

We consider the improvements in per-
ceptual sensitivity, which occurred in the presence of explicit,
trial-by-trial feedback and progressed over the course of months,
to be a form of perceptual learning. The fact that the lapse rate
was zero for the majority of sessions while discrimination thresh-
old improved suggests that the monkeys’ choice errors were due
to limitations in perceptual processing in these sessions and not
failures of associative learning, strategy, or overall knowledge of
the task. Moreover, as is the case for many other forms of percep-
tual learning, the improvements were at least partially specific to
the stimulus configurations used during training (e.g., Karni and
Sagi, 1991; Poggio et al., 1992; Fahle and Edelman, 1993; Gilbert,
1994; Liu and Weinshall, 2000). Both monkeys tended to perform
worse than expected from their current level of training when
presented with unfamiliar axes of motion, even when considering
only sessions with zero lapse rates (Fig. 2F, G). Thus, novel stim-
ulus configurations tended to degrade perceptual sensitivity to
the motion stimulus without affecting task knowledge.

A final consideration was the potential influence of the micro-
stimulation technique on behavioral performance [median
(IQR) percentage of microstimulation trials per session = 35.7
(41.9)% for monkey At, 40.9 (30.9)% for monkey Av]. Even in
the earliest sessions this manipulation had only a minor effect on
the monkeys’ ability to complete the trial by making a second,
voluntary saccade to one of the two choice targets (the percentage

of trials in which the monkey did not select one of the targets was
<6% for trials without microstimulation and <2% for trials with
microstimulation for all sessions in both monkeys). Moreover,
electrical microstimulation did not alter significantly either lapse
rate (mean *= SD difference in lapse rate per session for trials
without and with microstimulation = 0.0 * 0.1, ¢ test for H:
mean = 0, p = 0.40 for monkey At; 0.0 = 0.1, p = 0.88 for Av) or
discrimination threshold (mean = SD difference in log threshold
per session for trials without and with microstimulation = 0.0 =
0.1, ttest for Hy: mean = 0, p = 0.11 for monkey At; 0.0 = 0.1,p =
0.59 for Av). Thus, the microstimulation technique appeared to
have little effect on perceptual performance.

Oculomotor preparation during decision formation

We used microstimulation-evoked eye movements to assess on-
going oculomotor activity while the monkeys were viewing the
motion stimuli and forming their direction decisions (Fig. 3). On
randomly selected trials, we interrupted motion viewing at un-
predictable times by simultaneously extinguishing the motion
stimulus and fixation point and applying electrical microstimu-
lation to the FEF. This manipulation resulted in an evoked sac-
cadic eye movement with a trajectory that depended on the site of
microstimulation and is sensitive to ongoing oculomotor activity
at the time of microstimulation (Fig. 3A,F) (Robinson and
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Relationship between evoked-saccade trajectories and the direction decision formonkey At (A—E) and Av (F-J). A, F, Average evoked-saccade vectors from individual sessions resulting

from electrical microstimulation of the left () or right (F) FEF. B, G, Endpoints of evoked saccades from correct trials in a single session plotted relative to their running-mean values [to remove the
effects of drift on the evoked-saccade trajectories and center the distributions of endpoints at zero, the location of the fixation point; see Materials and Methods and Gold and Shadlen (2000, 2003)]
and separated by the subsequent voluntary choice (black points for leftward choices, gray for rightward choices). Solid line indicates the axis of motion. Dashed line indicates the optimal linear
classifier for distinguishing between the two groups of points. €, H, Circular histogram of the distribution of the angle between the axis of motion and the optimal linear classifier separating
evoked-saccade endpoints corresponding to the two direction choices for each session (the minimum angle between the solid and dashed lines in B and G). D, I, Magnitude of deviation versus
session. Points and error bars are mean and SEM values, respectively, from correct (black symbols) or error (gray symbols) trials in individual sessions. Positive values indicate that evoked saccades
tended to deviate in the direction of the monkey's subsequent choice. Filled symbols indicate H,: magnitude = 0, p << 0.01 (Mann—Whitney test). Lines are weighted linear fits to data from correct
trials only (H,: slope = 0, p =< 0.05 in both panels). E, J, Ratio of the average magnitude of deviation measured on discrimination trials versus the average magnitude of deviation measured on
instructed-saccade trials (which was not performed in all sessions). X marks indicate outliers that typically resulted from a near-zero denominator, plotted at outer bounds of —1and 2. These points

were not included in the linear fits (lines; H,: slope = 0, p < 0.01 in both cases). pos, Position; deg, degree.

Fuchs, 1969; Bruce et al., 1985; Tehovnik and Slocum, 2004).
After completion of the evoked saccade, the monkey made a sec-
ond, voluntary saccadic eye movement to shift gaze to one of the
two choice targets located along the axis of motion, which was
oriented approximately perpendicular to the trajectories of the
evoked saccades for the given site, to indicate its direction deci-
sion. We measured the relationship between the evoked-saccade
trajectories and the subsequent voluntary saccades.

The monkeys appeared to be preparing their voluntary sac-
cadic responses during motion viewing. The endpoints of the
evoked saccades corresponding to each of the two direction de-
cisions tended to be separated from each other by a line running
approximately perpendicular to the axis of motion (Fig.
3B,C,G,H) [median (IQR) minimum angle of a simple linear
classifier relative to the axis of motion = 78.2 (17.1)° for monkey
At, 72.4 (28.9)° for Av with an upper bound of 90°]. We quanti-
fied the magnitude of deviation of the evoked-saccade trajectories
along the axis of motion using the dot product between the run-
mean subtracted evoked-saccade endpoints (see Materials and
Methods) and the unit vector in the direction of the chosen tar-
get. This value tended to be positive, indicating that the evoked
saccades tended to deviate in the direction of the impending vol-

untary saccade to the selected target (Fig. 3D, I, black symbols)
[median (IQR) magnitude of deviation on correct trials from all
sessions = 0.39 (1.13)°, Mann—Whitney test for H,: median = 0,
p < 0.01 for At; 0.17 (1.18)°, p < 0.01 for Av]. Throughout
training, these deviations also tended to be in the direction of the
impending voluntary saccade even for error trials when the mo-
tion was in the opposite direction (Fig. 3 D, I, gray symbols) [me-
dian (IQR) magnitude of deviation on error trials from all ses-
sions = 0.38 (1.16)°, Mann—Whitney test for H: median = 0, p <
0.01 for At; 0.17 (1.20)°, p < 0.01 for Av]. Thus, the evoked-
saccade deviations appeared to behave similarly during and after
training, in both cases reflecting the direction of the impending
saccadic response and not simply the direction of the motion
stimulus (Gold and Shadlen, 2000, 2003).

The average magnitude of deviation per session declined sys-
tematically with training, a particularly striking effect for monkey
At (Fig. 3D,I). A multiple, weighted linear regression showed a
consistent, session-by-session relationship between deviation
magnitude and session number but not lapse rate, microstimu-
lation current, mean length of the evoked saccade, or mean la-
tency of the voluntary response for both monkeys (Eq. 5; p < 0.05
for Hy: a3 = 0 for both monkeys and a5 = 0 for Av, p > 0.05
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Table 1. Regression parameters for deviation magnitude (Eq. 5)

Monkey Av

—0.0018 (—0.0094, 0.0058)
0.0027 (—0.0009, 0.0044)
—0.0004 (—0.0008, —0.0002)
—0.0002 (—0.0048, 0.0045)
—0.0020 (—0.0037, —0.0004)

Monkey At

0.0103 (—0.0080, 0.0286)

0.0134 (—0.0077, 0.0191)
—0.0029 (—0.0048, —0.0011)
—0.0004 (—0.0125, 0.0117)
—0.0026 (—0.0052, 0.0001)

Values are maximum-likelihood fits (95% confidence intervals). Bold indicates significantly different from zero.
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Figure4. The coherence- and time-dependent decision variable derived from behavior. A-D, Expected value of the decision variable [(C, T)/V/2v(C, T) from Eq. 3] from correct trials using the
mean values of the best-fitting parameters fit to data from individual sessions for both monkeys (A: sessions 1-30; B: sessions 31— 80 for At, 31-90 for Av; C: 81142 for At, 91-170 for Av; D:
143-161 for At, 171-222 for Av) plotted as a function of viewing time for different motion strengths (see inset in ). E, F, Best-fitting value and SEM of the parameter a from Equation 2 describing
the scaling of the decision variable fit to behavioral data from individual sessions for At (E) and Av (F), plotted as a function of session number. Lines are weighted linear fits (H,: slope = 0,p << 0.01

in both cases). a.u., Arbitrary units.

otherwise) (Table 1). There was a similar decline with training of
deviation magnitude measured on discrimination trials relative
to deviation magnitude measured on randomly interleaved trials
of a simple instructed-saccade task, in which only a single (cor-
rect) target was shown and thus no deliberative decision process
was necessary (Fig. 3E,]). These results imply that ongoing ocu-
lomotor activity during motion viewing was strongest early in
training, as soon as the monkeys learned to indicate their direc-
tion decision with an eye movement. As training progressed, this
activity became less like preparing the obligatory saccadic re-
sponse on instructed trials, mirroring the increasingly delibera-
tive process of forming the direction decision from the sensory
evidence.

Influence of motion information on oculomotor parameters

We used the evoked-saccade deviations to test whether ongoing
oculomotor activity during motion viewing also reflected the
perceptual information used to select the saccadic response. To
better understand how these oculomotor signals relate to forma-
tion of the perceptual decision used to select the saccadic re-
sponse versus execution of the response itself, we also analyzed
two other parameters of the response, both measured on trials
without microstimulation. Latency, measured from the offset of

the motion stimulus and fixation point to the onset of the saccade
[median (IQR) value from all trials = 270 (64) ms for At, 249 (46)
ms for Av], can, in principle, reflect factors involved in the selec-
tion and preparation of the response (Luce, 1986; Carpenter and
Williams, 1995). In contrast, mistargeting, measured as the dis-
tance between the endpoint of the voluntary saccade and the
midpoint of the nearest target [median (IQR) value from all tri-
als = 0.91 (0.56)° for At, 1.48 (1.06)° for Av], is assumed to be
related less to selection and more to the execution of the response.

We compared all three parameters (evoked-saccade deviation
and voluntary-saccade latency and mistargeting) to the expected
value of the coherence- and time-dependent decision variable
inferred from behavior [u(C, T)/Vv(C, T) from Eq. 3] (Fig. 4).
This variable, which quantifies the discriminability of the stimu-
lus (Green and Swets, 1966; Graham, 1989), is based on an accu-
mulation of information over time and thus is a form of sequen-
tial sampling model used extensively for psychophysical analysis
(LaBerge, 1962; Audley and Pike, 1965; Laming, 1968; Luce,
1986; Link, 1992; Ratcliff and Smith, 2004; Bogacz etal., 2006). As
has been reported previously for the direction-discrimination
task, discriminability grew as a function of viewing time with a
rate of rise that increased with increasing motion strength (Fig.
4 A-D) (Wang, 2002; Ditterich, 2006; Shadlen et al., 2006; Gross-
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The coherence and time dependence of evoked-saccade deviations. A, €, Scatter plots of Spearman’s rank correlation coefficients (p) between the trial-by-trial magnitude of deviation

and the coherence (ahscissa) or viewing time (ordinate) of the motion stimulus. Points indicate values of p computed from individual sessions for monkeys At (4) and Av (C) for correct trials. Arrows
are medians. B, D, Histograms of p between the trial-by-trial magnitude of deviation and the coherence- and time-dependent decision variable inferred from behavior on correct trials computed
forindividual sessions for At (B) and Av (D). Arrows indicate median values. Gray bars indicate counts corresponding to H: p = 0, p << 0.05. Positive values in A-Dimply that the deviations tended
to be larger on trials with more easily discriminable stimuli. E-H, Average deviations (z-scored per choice per session) from blocks of sessions for both monkeys combined (using the same sessions
described for Fig. 4 A-D), computed as the mean value in 100-ms-wide bins of viewing time offset in steps of 25 ms for each coherence (see insetin E). These plots include only data from correct trials
and sessions in which p > 0 (from Band D). I-L, Same conventions as in E-H, but using only data from sessions in which p << 0. M, N, Best-fitting values of -y, (and SEMs) from Equation 6b, which
quantifies the relationship between deviation magnitude and the strength and duration of the motion stimulus on the given trial, plotted as a function of session number. Lines are linear fits (H,:

slope = 0, p << 0.05in both cases).

berg and Pilly, 2008). The strength of this dependence on coher-
ence and time increased with training (Fig. 4 E, F ), accounting for
the improvements in discrimination threshold (Eckhoff et al.,
2008).

Evoked-saccade deviations tended to be positively correlated
with the strength and, to a greater extent, duration of the motion
stimulus on a trial-by-trial basis in individual sessions (Fig.
5A,C) (the Spearman’s rank correlation coefficient between the
trial-by-trial magnitude of deviation and motion coherence per
session had a median value of 0.03, Mann—Whitney for H,: me-

dian = 0, p < 0.01, for At and 0.02, p < 0.01, for Av; the Spear-
man’s rank correlation coefficient between the trial-by-trial mag-
nitude of deviation and motion viewing time per session had a
median value 0of 0.16, p < 0.01, for Atand 0.07, p < 0.01, for Av).
Together, these dependencies were reflected in positive correla-
tions between the magnitude of deviation and the expected value
of the coherence- and time-dependent decision variable inferred
from behavior (Fig. 5B, D) (the Spearman’s rank correlation co-
efficient between the trial-by-trial magnitude of deviation and
the expected value of the decision variable described in Eq. 2 for



2144 - ). Neurosci., February 18, 2009 - 29(7):2136 -2150

correct trials had a median value of 0.08, Mann—Whitney p <
0.01, and was >0 for 111 sessions and <0 for 34 sessions for At;
median = 0.06, p < 0.01, >0 for 149 sessions and <0 for 53
sessions for Av).

The growth of deviation magnitude as a function of both mo-
tion strength and viewing time is illustrated in Figure 5E-H. Each
panel shows the average magnitude of deviation as a function of
viewing time for different coherences at different points of train-
ing from both monkeys, using only sessions with positive corre-
lations between deviation magnitude and the expected value of
the inferred decision variable. To combine data across sessions
that could differ in magnitude and variability (Fig. 3), we first
took z-scores of deviation magnitude per choice and per session
(note that the average deviation magnitude, before computing
z-scores, across sessions was positive for each panel, implying a
tendency to deviate in the direction of the subsequently selected
target: mean * SEM deviation magnitude = 1.17 * 0.03° for the
data in Fig. 5E, 0.51 = 0.01° for F, 0.29 * 0.01° for G, and 0.25 =
0.01° for H). Thus, the ordinate in Figure 5E-H is in units of
z-score, with positive values implying deviations that were larger
than the mean value for the given choice and session and negative
values implying deviations that were smaller than the mean value
for the given choice and session. The z-scored deviations tended
to increase with increasing motion coherence and viewing time
(weighted linear regression using Eq. 6a; Hy: 8, 3, = 0, p < 0.01
in all four panels). Moreover, there was a steady progression on
the dependence of deviation magnitude on the multiplicative
interaction between motion strength and viewing time, consis-
tent with the progression of the expected value of the coherence-
and time-dependent decision variable inferred from behavior
[weighted linear regression using Eq. 6b; Fig. 5E: y, (95% CI) =
0.36 (0.25, 0.48) z(deviation)/coh/s; F: 0.29 (0.12, 0.46); G: 0.67
(0.54, 0.80); H: 0.97 (0.62, 1.31)].

Despite this overall tendency of deviations to increase with
increasing motion strength and viewing times, there were also
sites throughout training that showed the opposite effect, with
deviations that tended to decrease with increasing motion
strength and viewing time (Fig. 5I-L). These “negative” effects,
like the “positive” effects, corresponded to evoked-evoked sac-
cade trajectories that tended to deviate in the direction of the
chosen target (mean = SEM magnitude of deviation = 0.91 =
0.04° for the data in Fig. 51, 0.54 * 0.02° for ], 0.30 = 0.01° for K,
and 0.34 * 0.02° for L). The negative effects also reflected increas-
ing sensitivity to the motion stimulus with training. Deviation
magnitude depended negatively on motion coherence and either
positively (Fig. 51,]) or negatively (Fig. 5K,L) on viewing time
(weighted linear regression using Eq. 6a; Hy: By, B, = 0, p <
0.05). There was also a general progression of the dependence of
deviation magnitude on the multiplicative interaction between
motion strength and viewing time [weighted linear regression
using Eq. 6b; Fig. 5I: 7y, (95% CI) = —0.13 (—0.27, 0.00) z(de-
viation)/coh/s; J: —0.42 (—0.52, —0.33); K: —0.26 (—0.34,
—0.18); L: —0.83 (—1.19, —0.47)].

We do not know what gave rise to a positive or negative effect
for a given site. Both effects occurred throughout training for
both monkeys, with no systematic change in their relative fre-
quency of occurrence [the fraction of positive effects in a sliding
21-session window had a median (IQR) value of 0.57 (0.26) for
At, 0.60 (0.10) for Av and did not vary as a function of training
session, linear regression Hy: slope = 0, p > 0.05]. Likewise, the
presence of a positive versus negative effect did not appear to be
related to the mean vector length of the evoked saccade, mean
distance of the endpoint of the evoked saccade to the nearest
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choice target, mean latency of the voluntary saccade, or ampli-
tude of the microstimulation current (Mann—Whitney test for
H,: equal medians of the distributions of each parameter com-
puted for each positive or negative case, p > 0.08 for all parame-
ters and both monkeys). Therefore, the oculomotor system ap-
peared to have access to dual representations of the process of
evidence accumulation, one that tended to increase in magnitude
for easier stimuli, the other that tended to decrease in magnitude
for easier stimuli.

The dependence of deviation magnitude on the motion infor-
mation used to form the decision throughout training for each
monkey is summarized in Figure 5, M and N. For both monkeys,
this dependence was near zero at the beginning of training and
then progressed, on average, to more positive values (for both
monkeys, a weighted linear regression of the best-fitting value of
v, from Eq. 6b vs session number had a positive slope, p < 0.05).
Consistent with the positive and negative effects described above,
these fits also showed positive and negative effects throughout
training: 7y, > 0 implies increasing deviation magnitude for in-
creasing motion strength and viewing time, whereas y; < 0 im-
plies decreasing deviation magnitude for increasing motion
strength and viewing time. Considering these effects separately,
there was also a steady progression with training of the magni-
tude of vy, (weighted linear regressions of y, vs session for all y, >
0: slope > 0 for both monkeys, p < 0.05; for all y, < 0: slope <0
for both monkeys, p < 0.05). Thus, with training the evoked
saccades tended to become increasingly sensitive to the motion
information used to form the direction decision.

The above analyses suggest that the average value of the
evoked-saccade deviations, like the expected value of the decision
variable inferred from behavior, is an analog quantity that reflects
an accumulation of motion information over time. An alterna-
tive possibility is that neither the decision variable nor the devia-
tions reflect such an analog quantity but rather a mixture of bi-
nary states that depend on whether or not the decision has been
made. For example, probability summation over time combined
with a high threshold would imply that arriving motion signals
either trigger a committed “decision” state or do not affect the
uncommitted “no decision” state that leads to guesses (Green and
Swets, 1966; Watson, 1979; Graham, 1989). Under such condi-
tions, the deviations might be expected to reflect mixtures of the
two states. For example, strong stimuli would be more likely to
reach threshold and therefore might correspond to large devia-
tions, weak stimuli would be more likely to result in guesses and
therefore might correspond to small deviations, and intermediate
stimuli would lead to mixtures of large and small deviations. Such
a mixture model predicts that the widths of distributions of de-
viation magnitude are larger for trials with intermediate versus
easy or difficult stimuli (Gold and Shadlen, 2003).

We found that this prediction was inconsistent with our data.
The IQR of deviation magnitude was typically smaller than the
IQR predicted by the mixture model (Fig. 6) (median ratio of
actual/predicted IQR = 0.97 for At, 0.95 for Av; paired Wilcoxon
signed-rank test for H,: mixture = actual IQR, p < 0.01 for both
monkeys). In one monkey, the mixture model tended to be more
predictive of the actual IQR early in training (Fig. 6C), possibly
reflecting an early guessing strategy. However, the minimal de-
pendence of deviation magnitude on motion information in
those sessions makes this analysis difficult to interpret. For a
more sensitive analysis, we also compared directly fits of a mix-
ture and nonmixture model. The mixture model assumed that
the deviation data resulted from a mixture of two independent
generative processes, each of which generated Gaussian-
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had a significant, negative slope for Av (solid line in €, p << 0.05) but not At. deg, Degree.

distributed data with a unique mean and a common SD (i.e.,
three free parameters). The nonmixture model assumed that the
deviation data resulted from a single generative process, which
generated Gaussian-distributed data with a mean that varied with
motion information according to Equation 6b and a fixed SD
(i.e., three free parameters). These fits tended to favor slightly the
nonmixture model, which did not change systematically with
training in either monkey [the evidence ratio of the Akaike’s
information criterion of the mixture versus nonmixture model
had a mean value of 1.09 for Atand 1.73 for Av, implying that the
nonmixture model was slightly more likely; Hy: slope of a linear
fit of the evidence ratio vs session = 0, p > 0.05 for both monkeys
(Burnham and Anderson, 2004)].

Voluntary-saccade latencies tended to be negatively corre-
lated with the strength of the motion stimulus on a trial-by-trial
basis in individual sessions (Fig. 7A,C) (the Spearman’s rank
correlation coefficient between the trial-by-trial latency and mo-
tion coherence per session had a median value of —0.09, Mann—
Whitney for H,: median = 0, p < 0.01, for At and —0.15, p <
0.01, for Av) but not consistently correlated with viewing time
(the Spearman’s rank correlation coefficient between the trial-
by-trial latency and motion viewing time per session had a me-
dian value of 0.04, p = 0.04, for Atand —0.05, p < 0.01, for Av).
Together, these dependencies were reflected in positive correla-
tions between latency and the expected value of the coherence-
and time-dependent decision variable inferred from behavior
(Fig. 7 B, D) (the Spearman’s rank correlation coefficient between
the trial-by-trial latency and the expected value of the decision
variable described in Eq. 2 for correct trials had a median value of
—0.09, Mann—Whitney p < 0.01, and was >0 for 41 sessions and
<0 for 109 sessions for At; median = —0.17, p < 0.01, >0 for 6
sessions and <0 for 206 sessions for Av).

The change in latency as a function of both motion strength
and viewing time is illustrated in Figure 7E—H. Each panel shows
the average latency from both monkeys as a function of viewing
time for different coherences at different points of training. In
each case, latency tended to decrease (i.e., responses were faster)
with increasing motion coherence (weighted linear regression
using Eq. 6a; Hy: 3; = 0, p < 0.01 in all four panels). The depen-

Mixture model. A, The interquartile range (IQR; i.e., width) of the distribution of deviation magnitude plotted as a
function of the median of the distribution for an example session. Each point corresponds to trials binned by the expected value of
the decision variable (DV). Increasing values of the DV and therefore easier trials correspond to increasing median magnitudes of
deviation. Black symbols are data. Gray symbols are predictions from a mixture model in which the given distribution was
generated by taking a mixture of values from the leftmost and rightmost distributions of real data. In all three intermediate cases
(excluding the two extremes), the mixture distribution had a similar median value but larger IQR than the corresponding real
distribution. B, €, Summary of the mixture-model analysis for monkeys At (B) and Av (C). The ratio of the IQR of a simulated
mixture distribution (e.g., gray symbols in A) and the IQR of the real distribution with a similar median value as the mixture
distribution (e.g., black symbolsin A, excluding the two extremes used to generate the mixtures) is plotted as a function of session
number. A value of <1 implies that the actual IQR was smaller than the predicted mixture IQR. Points are medians, and lines
indicate extremes for data from individual sessions binned as in A. Robust linear fits of the median values versus session number

101-point-wide boxcar filter, and the
mean (95% CI) viewing time from the
given session was 0.65 (0.53, 0.72) for At
and 0.22 (0.09, 0.35) for Av], suggesting
that the latencies at least partially reflected
the anticipated end of the motion viewing
period (an effect that we attempted to
minimize by choosing viewing times that
were consistent with an approximately flat
hazard function). Nevertheless, like the
deviations, the latencies also appeared to
reflect the coherence X time-dependent
decision process that became stronger
with training [weighted linear regression
using Eq. 6b; Fig. 7E: vy, (95% CI) = —0.73 (—0.88, —0.58)
z(latency)/coh/s; F: —0.98 (—1.06, —0.89); G: —1.11 (—1.23,
—0.99); H: —1.53 (—1.76, —1.30)].

The dependence of voluntary-saccade latency on the motion
information used to form the decision throughout training for
each monkey is summarized in Figure 7, I and J. We fit data from
individual sessions to Equation 6b, using only trials with viewing
times less than the mean viewing time used in the given session.
For both monkeys, the best-fitting value of y, was negative for
most sessions and progressed steadily to increasingly negative
values as training progressed (for both monkeys, a weighted lin-
ear regression of the best-fitting value of y, from Eq. 6b vs session
number had a negative slope, p < 0.05). Thus, with training the
latency between dots offset and saccade initiation tended to be-
come increasingly sensitive to the motion information used to
form the direction decision.

Voluntary-saccade targeting errors were, on average, posi-
tively correlated with motion strength, viewing time, and their
multiplicative interaction for monkey At (Fig. 8A,B) (Spear-
man’s rank correlation coefficients between the trial-by-trial
mistargeting magnitude and coherence, time, and the expected
value of the coherence- and time-dependent decision variable
inferred from behavior had median values of 0.05, 0.06, and 0.07,
respectively, Mann—Whitney p < 0.01 for all three cases) but not
Av (Fig. 8C,D) (median values of 0.02, —0.01, and 0.01, respec-
tively, p > 0.01). Because there were both positive and negative
correlations in both monkeys, like for the deviation data we sep-
arated the mistargeting data to visualize these effects individually
(sessions in which mistargeting tended to increase with increas-
ing motion coherence and viewing time are shown in Fig. 8 E-H,
sessions with opposite effects are shown in I-L). For sessions with
positive correlations, mistargeting tended to increase as a func-
tion of coherence and, to a lesser extent, viewing time (weighted
linear regression using Eq. 6a; Hy: 3, = 0, p < 0.05 in Fig. 8 E-H,
Hy: B, = 0, p < 0.05in F-H). For sessions with negative corre-
lations, mistargeting tended to decrease as a function of coher-
ence but not viewing time (weighted linear regression using Eq.
6a; Hy: B, = 0,p <0.05in Fig. 8I-L, H,: B, = 0, p > 0.05in I-L).
In both cases, there was a rough progression in the dependence
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Figure 7.  The coherence and time dependence of voluntary-saccade latencies. A, €, Scatter plots of Spearman’s rank correlation coefficients (p) between the trial-by-trial latency and the
coherence (abscissa) or viewing time (ordinate) of the motion stimulus. Points indicate values of p computed from individual sessions for monkeys At (4) and Av (C) for correct trials. Arrows are
medians. B, D, Histograms of p between the trial-by-trial latency and the decision variable inferred from behavior on correct, nonmicrostimulation trials computed for individual sessions for At (B)
and Av (D). Arrows indicate median values. Gray bars indicate counts corresponding to H,: p = 0, p << 0.05. Negative values in A-Dimply that latencies tended to be shorter (responses were faster)
on trials with more easily discriminable stimuli. E-H, Average latencies (z-scored per choice per session) from correct trials in blocks of sessions for both monkeys combined (using the same sessions
described for Fig. 4 A-D), computed as the mean value in 100-ms-wide bins of viewing time offset in steps of 25 ms for each coherence (see inset in E). The arrow in each panel indicates the mean
viewing time used in the given sessions. /, J, Best-fitting values of -y, (and SEMs) from Equation 6b, which quantifies the relationship between latency and the strength and duration of the motion
stimulus on the given trial, plotted as a function of session number. Lines are linear fits (H,: slope = 0, p << 0.05 in both cases).

on coherence X time [weighted linear regression using Eq. 6b; ~ Comparing oculomotor and behavioral sensitivity to

Fig. 8 E: 7y, (95% CI) = 0.35(0.31, 0.39) z(mistargeting)/coh/s; F:  weak motion

0.57 (0.50, 0.65); G: 0.47 (0.41, 0.53); H: 0.84 (0.71, 0.97); I = There was a session-by-session correspondence between percep-
—0.07 (—0.15,0.00); J: —0.35 (—0.41, —0.29); K: —0.38 (—0.43,  tual and oculomotor sensitivity to the motion stimulus (Fig. 9).

—0.33); L: —0.74 (—0.85, —0.63)]. We compared the absolute values of the coherence X time inter-
The dependence of voluntary-saccade mistargeting on the  action terms from the fits to behavior (a in Eq. 2) and the devia-
motion information used to form the decision throughout train-  tion, latency, and mistargeting data (v, in Eq. 6b). Both terms

ing is summarized in Figure 8, M and N. For both monkeys, the  describe how the measured quantity changed as a function of
best-fitting value of y, from Equation 6b did not change as a  coherence X time, a measure of sensitivity to the motion stimu-
function of session number when considering all sessions to-  lus. We use the absolute value of each term to measure sensitivity
gether (weighted linear regression, Hy: slope = 0, p > 0.05) or  regardless of whether the change in stimulus parameters resulted in
only sessions in which vy, < 0 (p > 0.05), although there wasa  an increase (i.e., for behavior and “positive” deviation and mistar-
positive slope for sessions in which y, >0 ( p <0.05). Thus, there  geting effects) or decrease (i.e., for latency and “negative” deviation
appeared some dependence of mistargeting on the motion infor-  and mistargeting effects) in the magnitude of the measured quantity.
mation used to select the appropriate eye-movement response,  Thus, a large value for each term implies that a given change in
like for the deviation and latency data. However, the mistargeting ~ motion coherence and/or viewing time resulted in a large change in

data appeared to be less sensitive to the improvements in percep-  the average, absolute value of the measured quantity and therefore
tual sensitivity that occurred with training. These results suggest that ~ high sensitivity to those stimulus parameters.
the perceptual information reflected in the deviation and latency There was a significant, positive correlation between the be-

data was consistent, atleast in part, with arole in the selectionbutnot ~ havioral fits and the fits to deviation (Spearman’s rank correla-
necessarily execution of the oculomotor response. tion coefficient p = 0.37, p < 0.01 for H: p = 0 for At, 0.33,p <
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The coherence and time dependence of voluntary-saccade targeting errors. 4, C, Scatter plots of Spearman’s rank correlation coefficients (p) between the trial-by-trial targeting error

and the coherence (abscissa) or viewing time (ordinate) of the motion stimulus. Points indicate values of p computed from individual sessions for monkeys At (4) and Av (C) for correct trials. Arrows
aremedians. B, D, Histograms of p between the trial-by-trial targeting error and the decision variable inferred from behavior on correct, nonmicrostimulation trials computed for individual sessions
for At (B) and Av (D). Arrows indicate median values. Gray bars indicate counts corresponding to H,: p = 0,p << 0.05. Positive values in A-Dimply that the saccade endpoints were further from the
chosen target on trials with more easily discriminable stimuli. E-H, Average mistargeting magnitude (z-scored per choice per session) from blocks of sessions for both monkeys combined (using the
same sessions described for Fig. 4 A-D), computed as the mean value in 100-ms-wide bins of viewing time offset in steps of 25 ms for each coherence (see inset in E). These plots include only data
from correct trials and sessions in which p > 0 (from Band D). I-L, Same conventions as in E-H, but using only data from sessions in which p << 0. M, N, Best-fitting values of -y, (and SEMs) from
Equation 6b, which quantifies the relationship between mistargeting magnitude and the strength and duration of the motion stimulus on the given trial, plotted as a function of session number. In
both cases, the slope of a weighted linear regression was not significantly different from zero ( p > 0.05).

0.01 for Av), latency (0.41, p < 0.01 for At, 0.39, p < 0.01 for Av),
and mistargeting data for Av (0.23, p < 0.01) but not At (0.06,
p = 0.43). These correlations did not simply reflect the fact that
the behavioral and oculomotor parameters depended on the
same stimulus variables (motion coherence and time) that were
adjusted from session to session, because simulated data sets gen-
erated using average values of a and v, across sessions but the
specific set of coherences and times per session (see Materials and
Methods) were not correlated (behavior vs deviation, p = —0.37,
p = 0.51for Hy: p = 0 for Av, p = 0.01, p = 0.90 for At; behavior vs
latency, p = 0.04, p = 0.65 for Av, p = 0.04, p = 0.58 for At; behavior
vs mistargeting, p = 0.03, p = 0.70 for Av, p = —0.04, p = 0.53 for
At). Moreover, the time course of change for perceptual sensitivity

and the motion dependence of deviation and latency (and mistar-
geting for Av but less so for At) was similar, in all cases declining
steadily over the course of training (Fig. 9 D, H). Thus, the sensitivity
of performance, developing oculomotor commands, and saccadic
latencies to weak motion signals increased similarly with training,
implying that all three shared a common representation of sensory
information that was modified by experience.

Discussion

We trained monkeys to make a difficult perceptual decision
about the direction of visual motion and respond with an eye
movement. We examined the relationship between formation of
the direction decision from the sensory evidence and preparation
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Comparison of the motion sensitivity of perceptual and oculomotor data for At (A-D) and Av (E-H ). A, E, The motion (coherence and time) dependence of evoked-saccade deviation

(|'y,|in Eq. 6b) plotted versus the motion dependence of behavior (ain Eq. 2). B, F, The motion dependence of voluntary-saccade latency plotted versus the motion dependence of behavior. €, G,
The motion dependence of voluntary-saccade mistargeting plotted versus the motion dependence of behavior. In A-Cand E-G, points represent data from all individual sessions. D, H, Discrimi-
nation thresholds measured from behavior (black) and inferred from evoked-saccade deviation (red) and voluntary-saccade latency (green) and mistargeting (blue) data. Thresholds were inferred
using the best-fitting, absolute value of -y, as a parameter in the decision model. Points represent data from individual sessions. Lines are 41-session running means. Points for each data type were
rescaled to have equal overall median values; therefore, only the relative trends across sessions are meaningful.

of the eye-movement response. We found that the two processes
were closely linked throughout training, with a continuous flow
of sensory evidence apparent in developing oculomotor com-
mands while the monkey was viewing the visual stimulus and
forming its decision. This oculomotor representation, like task
performance, became increasingly sensitive to weak motion in-
put as training progressed. The results suggest that the brain can
learn to treat perceptual decisions as problems of motor selection
and then gradually shape how well this process uses sensory input
to select the appropriate behavioral response.

Our results relied largely on a microstimulation technique used
to infer developing oculomotor commands. The logic of the tech-
nique is as follows. FEF microstimulation evokes a saccadic eye
movement with a stereotyped trajectory (Robinson and Fuchs, 1969;
Bruce et al., 1985). However, when microstimulation is applied after
an instruction to make a voluntary eye movement but before it is
executed, the resulting evoked saccade deviates in the direction of the
impending, planned movement [e.g., an evoked saccade with an
upward trajectory will, when evoked during the preparation of a
rightward eye movement, follow a trajectory up and to the right
(Schiller and Sandell, 1983)]. Accordingly, we interrupted motion
viewing with FEF microstimulation and analyzed the trajectories of
evoked saccades to infer planned eye movements during the time of
decision formation (Gold and Shadlen, 2000, 2003).

We analyzed the evoked-saccade trajectories in terms of both the
subsequent voluntary saccadic response and the sensory informa-
tion used to select that response. We showed that these trajectories
reflected the direction of the voluntary saccade and not simply the
direction of motion, because both correct and erroneous decisions
about motion direction corresponded to evoked-saccade trajectories

that tended to deviate in the direction of the subsequent saccadic
response. The inferred plan thus appears to reflect activity that builds
up in the brain before a voluntary eye movement (Schall, 1991).
However, we also showed that this purely oculomotor view is in-
complete, by relating the evoked-saccade trajectories to the strength
and duration of the motion evidence used to select the response. We
previously showed that the oculomotor plan can also reflect patterns
of choices made on previous trials, which is particularly evident early
in training and when the sensory evidence is weak (Gold et al., 2008).
Thus, like in trained monkeys, during training this plan appears to be
related to not just the preparation and execution of the saccadic
response but also its selection, hence its relationship to decision
making (Gold and Shadlen, 2000, 2003).

The microstimulation technique likely reflects complex patterns
of neural activity distributed across the FEF, SC, LIP, and other
structures involved in the selection and preparation of saccades
(Schall, 1991). Our results therefore give a broad view of oculomotor
activity but require complementary techniques to understand how
that activity is represented in the underlying neural circuitry. For
example, single-unit recordings might help elucidate the positive
and negative effects we measured in the deviation data. The positive
effects are consistent with the dynamics of certain neurons in this
network whose activity tends to ramp up during motion viewingina
coherence-dependent manner and ultimately encodes the direction
of the saccadic response. Likewise, the negative effects are similar to
certain neurons whose activity tends to ramp down during motion
viewing in a coherence-dependent manner (Horwitz and Newsome,
1999; Kim and Shadlen, 1999; Roitman and Shadlen, 2002). How-
ever, those neurons tend to encode the direction opposite to the
saccadic response on the given trial, which is difficult to reconcile
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with the evoked-saccade deviations that tended to reflect the direc-
tion of the saccadic response for both positive and negative cases. We
suspect that our results reflect complex interactions of numerous
subsets of oculomotor neurons including those that encode both
saccade choices, the release of fixation, and the direction of the
evoked saccade. More work is needed to measure the activity of those
neurons during the conditions examined in this study.

A key conclusion from previous studies using both evoked
saccades and single-unit recordings to study decision making in
fully trained monkeys is that the relationship between perceptual
decision making and saccade planning depends on the task de-
sign. In monkeys trained to indicate their direction decision with
an eye movement to a target at a known location, like in this
study, the perceptual decision appears to instruct directly the
choice of eye-movement response and thus engages the oculo-
motor system, even when a delay is introduced between decision
formation and response onset (Horwitz and Newsome, 1999;
Kim and Shadlen, 1999; Shadlen and Newsome, 2001; Roitman
and Shadlen, 2002). In contrast, in monkeys trained to indicate
their decision with an eye movement to a target of a particular
color but uncertain location, the monkeys cannot explicitly form
the decision as a saccade plan and the oculomotor system is not
similarly engaged (Gold and Shadlen, 2003). The parts of the
brain engaged during decision formation thus appear to depend
critically on behavioral context.

The present work extends those results in two key ways. The first
is that extensive training is not necessary to engage action-oriented
circuits during decision making, which occurs even as the visuomo-
tor association is being learned. This result is important because it
implies that the decision-action link is not simply a manifestation of
excessive familiarity with the task, which was one possible interpre-
tation of the previous results using well trained monkeys. Instead,
once an association is established between a perceptual decision and
an action, circuits that prepare the action appear to be able to have
consistent access to the computations that interpret incoming sen-
sory information to form the decision. Thus, rather than being indica-
tive of a possible separate system for “habitual” or “intuitive” decisions
used only under certain repetitive circumstances (Dayan and Balleine,
2002; Kahneman, 2002), the results suggest that action-oriented circuits
might play a more general role in deliberative, goal-directed decision
making associated with those actions (Shadlen et al., 2008).

The second novel result from our study is that the oculomotor
commands reflect perceptual sensitivity to the stimulus. This re-
sult implies that “vision for action” and “vision for perception”
might not be dissociated under these conditions. This idea is
perhaps not so surprising: those terms typically refer to a disso-
ciation between visual processing in the dorsal and ventral
streams (Ungerleider and Mishkin, 1982; Goodale and Milner,
1992), whereas the motion and oculomotor processing required
of this task are both thought to reside primarily in the dorsal
stream (Newsome and Paré, 1988; Salzman et al., 1990; Britten et
al., 1992, 1996; Shadlen and Newsome, 2001; Roitman and
Shadlen, 2002). Nevertheless, our result strengthens the idea that
within the dorsal stream, the information from vision used to
select and guide actions is not processed separately from the in-
formation that governs perceptual sensitivity.

Our present results do not indicate where along this process-
ing stream the changes responsible for improved motion sensi-
tivity occur. However, a previous study implicated changes at the
level of forming the direction decision from the motion evidence
(Law and Gold, 2008). The middle temporal area (MT) contains
direction-selective neurons thought to play a critical role in rep-
resenting motion information used to perform the direction-
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discrimination task (Newsome and Paré, 1988; Salzman et al.,
1990; Britten etal., 1992, 1996). Area LIP is part of an oculomotor
network that encodes the conversion of motion information into
a categorical direction judgment (Horwitz and Newsome, 1999;
Kim and Shadlen, 1999; Shadlen and Newsome, 2001; Roitman
and Shadlen, 2002; Hanks et al, 2006). Training-induced
changes in perceptual sensitivity correspond to changes in
motion-driven responses in LIP but not MT (Law and Gold,
2008). That is, perceptual sensitivity appears to be governed not
by changes in how direction-tuned neurons respond to visual
motion but rather how their output is interpreted to form the
direction decision. Our results suggest that when decisions are
associated with specific actions, improvements in perceptual sen-
sitivity involve changes in how information from vision is used to
select and guide those actions.

Such a mechanism would be a form of “embodiment” that
places high-order functions like perception and learning in the
context of behavioral control (Clark, 1997; O’Regan and Nog,
2001; Cisek, 2006). It contrasts dramatically with the proposal
that many forms of perceptual learning involve changes in early
sensory areas, like primary visual cortex, that have little direct
relationship to behavioral planning (Gilbert et al., 2001). How-
ever, this idea is consistent with forms of perceptual learning
thought to involve changes related to higher-order processes like
decision making and associative learning (Hall, 1991; Dosher and
Lu, 1999; Seitz and Watanabe, 2003). Our results suggest that
neural circuits involved in action selection might represent a con-
fluence of these processes, as learned associations with sensory
input lead to the establishment and then refinement of action-
oriented mechanisms that interpret the sensory input to form
decisions that guide motor output.
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