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1. Introduction

In the postgenomic era, with microarray technologies pro-
ducing great deal of gene expression data, mining these
data to get insight into biological processes at system-wide
level has become a challenge for bioinformatics. On one
hand, due to the complex and distribute nature of biological
research, there is a great deal of methods for inferring
gene regulatory networks. But all these methods focused on
constructing the complicated entire network calculated from
the given microarray data. The tremendous amounts of genes
in those networks distribute analysts’ attention, so it is hard
to get any clear perception of valuable knowledge from such
complicated networks, let alone further study of each single
gene. On the other hand, the wide spread of knowledge
over independent databases aggravates the hardness of
integrating comprehensive annotation information for genes
and lowers the study effectiveness. Thus, a novel method
integrating both single molecular network construction and
highly centralized gene-functional-annotation analysis is in
demand for gene network and functional analysis.

This paper proposed an integrated method based on
linear programming and a decomposition procedure with
integrated analysis of the significant function cluster using

Kappa statistics and fuzzy heuristic clustering. Our method
concentrates on and constructs the distinguished single gene
network integrated with function prediction analysis by
DAVID. For the distinguished single molecular network, we
did (1) control and experiment comparison, (2) identifica-
tion of activation and inhibition networks, (3) construction
of upstream and downstream feedback networks, and (4)
functional module construction. We tested this method to
identify ATF2 regulation network module using data of 45
samples from one and the same GEO dataset. The results
demonstrate the effectiveness of such integrated way in terms
of developing novel prognostic markers and therapeutic
targets.

2. Methods

2.1. Distinguished Single Molecular Network Construction.
The entire network was constructed using GRNInfer [1]
and GVedit tools. GRNInfer is a novel mathematic method
called gene network reconstruction (GNR) tool based on
linear programming and a decomposition procedure that is
used for inferring gene networks. The method theoretically
ensures the derivation of the most consistent network
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structure with respect to all of the datasets, thereby not
only significantly alleviating the problem of data scarcity
but also remarkably improving the reconstruction reliability.
The general solution for a single dataset is the following (1),
which represents all of the possible networks:

J = (X ′ − A)UΛ−1VT + YVT = ̂J + YVT , (1)

where J = (Ji j)n×n = ∂ f (x)/∂x is an n × n Jacobian
matrix or connectivity matrix, X = (x(t1), . . . , x(tm)), A =
(a(t1), . . . , a(tm)), and X ′ = (x′(t1), . . . , x′(tm)) are all n ×
m matrices with x′i (t j) = [xi(t j+1) − xi(t j)]/[t j+1 − t j] for

i = 1, . . . ,n; j = 1, . . . ,m. X(t) = (x1(t), . . . , xn(t))T ∈ Rn,
a = (a1, . . . , an)T ∈ Rn, xi(t) is the expression level (mRNA
concentrations) of gene i at time instance t. y = (yi j) is an
n × n matrix, where yi j is zero if ej /= 0 and is otherwise an
arbitrary scalar coefficient. ∧−1 = diag (1/ei) and 1/e is set
to be zero if ei = 0. U is a unitary m × n matrix of left
eigenvectors, ∧ = diag (e1, . . . , en) is a diagonal n × n matrix
containing the n eigenvalues, and VT is the transpose of a
unitary n × n matrix of right eigenvectors.

But the entire network is too complex to get any clear
perception of such complicated relationships among those
genes, let alone further study of each single gene. We
constructed the distinguished single molecular network by
selecting the centered gene and its directly related genes
based on the entire network for further study. We take
into account the effectiveness of biology study in order
to concentrate on single molecular network rather than
the intricate entire network. It is helpful to get intensive
and deep insight of the whole network. For the distin-
guished single molecular network, we did (1) control and
experiment comparison, (2) identification of activation and
inhibition networks, (3) construction of upstream and
downstream feedback networks, and (4) functional module
construction.

2.2. Functional Annotation Clustering. For the function of
genes that is neither determined by their sequence nor by
the protein families they belong to [2], the function of
those genes included in the same single molecular network
should not be interpreted separately, but should be analyzed
together according to the whole single molecular network.
This method takes into account the network nature of
biological annotation contents in order to concentrate on
the larger biological picture rather than an individual gene.
We used DAVID to do functional annotation clustering. It
changes functional annotation analysis from term- or gene-
centric to biological module-centric [2] in accordance with
our network analysis aim.

The DAVID gene functional clustering tool provides
typical batch annotation and gene-GO term enrichment
analysis for highly throughput genes by classifying them into
gene groups based on their annotation term co-occurrence
[3]. DAVID uses a novel algorithm to measure relationships
among the annotation terms based on the degrees of their
coassociation genes to group similar annotation contents
from the same or different resources into annotation groups.
The grouping algorithm is based on the hypothesis that

similar annotations should have similar gene members.
The functional annotation clustering integrates the same
techniques of Kappa statistics to measure the degree of the
common genes between two annotations, and fuzzy heuristic
clustering to classify the groups of similar annotations
according kappa values [4, 5]. The tool also allows observa-
tion of the internal relationships of the clustered terms by
comparing it to the typical linear, redundant term report,
over which similar annotation terms may be distributed
among many other terms.

3. Results and Discussion

We tested this method using microarrays containing 22215
genes in 40 MPM tumors and 5 normal pleural tissues from
one and the same GEO datasets. We identified potential
tumor molecular markers and chose the top 51 significant
positive genes with normalization of log2, the minimum fold
change = 3.5, delta = 1.59, and a false-discovery rate of 0%
using SAM [6]. We selected activating transcription factor
(ATF)-2 because it is one of the most distinguished genes
in MPM. It is a member of the ATF/cyclic AMP-responsive
element binding protein family of transcription factors.

3.1. Normal Tissues and Tumor Comparisons of Distin-
guished Single Molecular Network. We, respectively, con-
structed the interaction network of the above 51 genes in
healthy tissues and that in tumor using GRNInfer [1] and
GVedit tools and selected the ATF2-centered downstream
subnetworks. With comparison of these ATF2-centered
subnetworks, we can get a more clear perception of the
notable differences between normal tissues and tumor, as
shown in Figure 1. It appeared that ATF2 inhibits C11orf9,
C18orf10, C20orf31, CALD1, CAMK2G, DDX3X, FALZ,
GLS, GOLGA2, ID2, NME2, NMU, NONO, PAWR, PLOD2,
PSMF1, RBMS1, RIC8A, RNF10, TEAD4, TIA1, TNPO1,
unknown2, unknown3, WBSCR20C, and ZF in normal
tissues, as shown in Figure 1(a). It appeared that ATF2
inhibits C11orf9, C15orf5, C18orf10, C20orf31, CAMK2G,
CDR2, DDX3X, FALZ, FLJ10707, GLS, GOLGA2, ID2,
KRT18, LRRC1, NME2, NMU, NONO, NSUN5, OBSL1 2,
PLOD2, PLXNA1, PTOV1, RBMS1, RIC8A, RNASEH1,
RNF10, TEAD4, TIA1, UCK2, USP11, and ZF, while it
activates CALD1 and TFAP2C in tumor, as shown in
Figure 1(b).

With comparison between the two results, notable differ-
ences can be shown clearly in order to get further perception
of pathological changes in MPM. For example, ATF2 target
genes appeared in ATF2 activation to CALD1, TFAP2C in
MPM, as only shown in Figure 2(b). Caldesmon (CALD1) is
a potential actomyosin regulatory protein found in smooth
muscle and nonmuscle cells [7]. Transcription factor AP2-
gamma (TFAP2C) is alternatively titled AP2. Families of
related transcription factors are often expressed in the same
cell lineages but at different times or sites in the developing
embryo. The AP2 family appears to regulate the expression
of genes required for development of tissues of ectodermal
origin such as neural crest and skin [8]. AP2 may also be
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Figure 1: ATF2 downstream network in (a) normal tissue and (b) MPM tissue.
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Figure 2: (a) ATF2 upstream inhibition network of MPM; (b) ATF2 upstream activation network of MPM.

involved in the overexpression of c-erbB-2 in human breast
cancer cells [9].

3.2. Identification of Activation and Inhibition Networks for the
Distinguished Single Molecule. We also identified the activa-
tion and inhibition networks, respectively, in order to sim-
plify and intensify the analysis process. For example, in ATF2
upstream network of MPM, as shown in Figure 2, it appeared
that C11orf9, CDR2, FALZ, FLJ10534, FLJ10707, FLJ21816,

GLS, LRRC1, NMU, OBSL1, PAWR, PLXNA1, PTOV1,
RNASEH1, TEAD4, TNPO1, TNRC5, USP11, and ZF inhibit
ATF2, as shown in Figure 2(a), whereas C18orf10, DDX3X,
GOLGA2, ID2, KRT18, KRT19, NONO, NSUN5, OBSL1 2,
PLOD2, PSMF1, RBMS1, REC8L1, RIC8A, RNF10, TFE3,
TIA1, unknown1, unknown3, WBSCR20B, and WBSCR20C
activate ATF2, as shown in Figure 2(b).

ATF2 upstream genes TFE3, REC8L1 showed activation
to ATF2. TFE3 is a member of the helix-loop-helix family
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Figure 3: ATF2 feedback subnetwork of MPM.

of transcription factors and binds to the mu-E3 motif of the
immunoglobulin heavy-chain enhancer and is expressed in
many cell types [10]. Nakagawa et al. [11] identified TFE3 as
a transactivator of metabolic genes that are regulated through
an E box in their promoters which led to metabolic conse-
quences such as activation of glycogen and protein synthesis,
but not lipogenesis, in liver [11]. REC8L1 is the human
homolog of yeast Rec8, a meiosis-specific phosphoprotein
involved in recombination events [12]. Brar et al. (2006)
showed that phosphorylation of the cohesin subunit REC8
contributes to stepwise cohesin removal [13].

3.3. Constructing Feedback Network of the Distinguished Single
Upstream and Downstream Gene. We took into account the
feedback relationship and setup ATF2 feedback network,
as shown in Figure 3. ATF2 target genes appeared in ATF2
inhibition to CDR2, GLS, and USP11, consistently, its
upstream genes also appeared in CDR2, GLS, and USP11
inhibition to ATF2. CDR2 is also called CDR62, where CDR
means cerebellar degeneration-related. On Western blot
analysis of Purkinje cells and tumor tissue, the anti-Yo sera
react with at least 2 antigens, a major species of 62 kD called
CDR62 and a minor species of 34 kD called CDR34 [14].
Sahai (1983) demonstrated phosphate-activated glutaminase
(GLS) in human platelets [15]. It is the major enzyme
yielding glutamate from glutamine. Significance of the
enzyme derives from its possible implication in behavior
disturbances in which glutamate acts as a neurotransmitter
[16]. USP11 is also called UHX1. Swanson et al. (1996)
cited evidence indicating that ubiquitin hydrolases play a
role in oncogenesis (oncogenes and tumor suppressor gene
products are degraded in ubiquitin-dependent pathways)
[17]. The relationship of ATF2 with CDR2, GLS, and USP11
represents a negative feedback loop.
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Figure 4: One ATF2 upstream gene metabolic network including
RBMS1, RNASEH1, PTOV1, NONO, C11orf9, PSMF1, TIA1,
TEAD4, GLS, ID2, USP11, TNPO1, PAWR, PLOD2, and TFE3.

3.4. Functional Module Construction of the Distinguished
Single Gene. According to ATF2 upstream network, we did
DAVID analysis of function cluster, respectively. The DAVID
functional annotation clustering results appeared that one
ATF2 regulation network was identified as consisting of
the ATF2 upstream genes including RBMS1, RNASEH1,
PTOV1, NONO, C11orf9, PSMF1, TIA1, TEAD4, GLS, ID2,
USP11, TNPO1, PAWR, PLOD2, and TFE3, as shown in
Figure 4.

According to Figure 2, it appeared that RBMS1, NONO,
PSMF1, TIA1, ID2, PLOD2, TFE3 activate ATF2; whereas
RNASEH1, PTOV1, C11orf9, TEAD4, GLS, USP11, TNPO1,
and PAWR inhibit ATF2.

RBMS1, NONO, TIA1, ID2, and TFE3 enhance nucle-
oside, nucleotide, and nucleic acid metabolism because
RBMS1, NONO, TIA1, ID2, and TFE3 are involved in these
metabolism; PSMF1 activation to ATF2 means the increase
of Acyl-CoA metabolism and porphyrin metabolism; PLOD2
activation to ATF2 indicates the progress of cholesterol
metabolism and other protein metabolism, as shown in
Figure 5.

RNASEH1, PTOV1, and TEAD4 inhibition to ATF2 dec-
reases nucleoside, nucleotide, and nucleic acid metabolism
mediated by the three genes; C11orf9 inhibition to ATF2
means the decline of polysaccharide metabolism, whereas
GLS represents the weakness of amino acid and cyclic
nucleotides metabolism; USP11 inhibition to ATF2 indicates
the fall-off in protein metabolism and modification, whereas
PAWR in glycogen metabolism, as shown in Figure 5.
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polyadenylation, BP00056: Metabolism of cyclic nucleotides, BP00071: Proteolysis, BP00090: Nitrogen metabolism, BP00102: Signal transduction, BP00142: Ion transport, BP00143: Cation transport, 
BP00289: Other metabolism,

BP00031: Nucleoside, nucleotide and nucleic acid metabolism, BP00040: mRNA transcription, BP00044: mRNA transcription regulation, BP00048: mRNA splicing, BP00071: Proteolysis, BP00104: 
G-protein mediated signaling, BP00128: Constitutive exocytosis, BP00148: Immunity and defense, BP00273: Chromatin packaging and remodeling,

BP00060: Protein metabolism and modification, BP00071: Proteolysis, BP00104: G-protein mediated signaling, BP00143: Cation transport, BP00179: Apoptosis, BP00250: Muscle development,

BP00063: Protein modification, BP00064: Protein phosphorylation, BP00125: Intracellular protein traffic, BP00194: Gametogenesis, BP00196: Oogensis, 

BP00040: mRNA trancription, BP00043: mRNA transcription elongation, BP00044: mRNA transcription regulation, BP00179: Apoptosis, BP00298 : Glycogen metabolism, 

BP00031: Nucleoside, nucleotide and nucleic acid metabolism, BP00040: mRNA transcription, BP00044: mRNA transcription regulation,

BP00026: Cholesterol metabolism, BP00041: General mRNA transcription activities, BP00060: Protein metabolism and modification, BP00061: Protein biosynthesis, BP00075: Other protein 
metabolism, BP00104: G-protein mediated signaling, BP00142: Ion transport, BP00150: MHCI-mediated immunity, BP00216: Biological process unclassified, BP00268: Antioxiadation and free 
radical removal,

Figure 5: Molecular function and biological process from DAVID.
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4. Conclusions

Our method concentrates on and constructs the dis-
tinguished single gene network integrated with function
prediction analysis by DAVID. For the distinguished sin-
gle molecular network, we did (1) control and exper-
iment comparison, (2) identification of activation and
inhibition networks, (3) construction of upstream and
downstream feedback networks, and (4) functional module
construction. We tested this method to identify ATF2
regulation network module using data of 45 samples from
one and the same GEO dataset. The results demonstrate the
effectiveness of such integrated way in terms of developing
novel prognostic markers and therapeutic targets.
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