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Abstract
Aims—In this study, we investigated whether short-term exercise, known to promote hippocampal
BDNF expression, would also enhance activity in the Porsolt forced swim test (FST), a model for
assessing antidepressant efficacy. We also wished to determine whether exercise combined with
antidepressants would be more effective at modifying behavior in the FST than either intervention
alone. In parallel with this, we also expected that these interventions would preserve post-stress levels
of BDNF, and that antidepressants designed to selectively enhance noradrenergic or serotonergic
neurotransmission (reboxetine or citalopram, respectively) would have differential effects on
behavior and BDNF expression.

Main methods—Male Sprague-Dawley rats were treated with exercise (voluntary wheel running),
reboxetine, citalopram, or the combination of exercise and each antidepressant, for 1 week. At the
end of this period, a subset of animals from each treatment group underwent the FST. Post-stress
levels of hippocampal BDNF mRNA were then quantified via in situ hybridization.

Key findings—Our results indicate that while both exercise and antidepressant treatment preserved
post-stress levels of hippocampal BDNF mRNA, each intervention led to a unique behavioral profile
in the FST. We found that antidepressant treatment increased swimming time in the FST, but that
exercise decreased swimming time. While the combination of reboxetine-plus-exercise led to an
increase in climbing and diving, citalopram-plus-exercise reduced these behaviors.

Significance—It is possible that active behaviors during the FST, though specific to antidepressant
medications, may not reflect increased hippocampal BDNF expression or other survival- associated
benefits.
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Introduction
Social and physical stressors have been shown to result in decreased expression of brain-
derived neurotrophic factor (BDNF) within the hippocampus (Pizarro et al. 2004; Murakami
et al. 2005), and have led to functional losses (Thome et al. 2001; Kim and Diamond 2002).
Furthermore, decreased BDNF expression is thought to play a role in the neurodegenerative
and behavioral changes associated with chronic stress and depression (Bergström et al.
2008). Restoring these levels may underlie the therapeutic responses to antidepressant
medications (Duman and Monteggia 2006).

Exercise increases the expression of hippocampal BDNF (Garza et al. 2004; Adlard et al.
2005) and reverses the harmful effects of chronic unpredictable stress on mood and spatial
memory performance (Zheng et al. 2006). The combination of voluntary exercise and
antidepressant treatment enhances the expression of hippocampal BDNF and that of its
transcript variants in an additive manner (Russo-Neustadt et al. 1999), and evidence exists that
noradrenergic activation is an essential part of this BDNF-enhancing mechanism (Garcia et al.
2003; Ivy et al. 2003; Van Hoomissen et al. 2004).

Both norepinephrine (NE) and serotonin (5-HT) selective reuptake inhibitors enhance
hippocampal BDNF expression after chronic treatment, and exercise often accelerates and/or
increases this effect (Russo-Neustadt et al. 2000, 2004). Reboxetine, a highly NE-selective
antidepressant (Montgomery 1999), led to particularly rapid increases in hippocampal BDNF
mRNA that were potentiated with concurrent exercise (Russo-Neustadt et al. 2004).
Citalopram, a highly 5-HT-selective monoamine reuptake inhibitor (Sanchez and Hyttel
1999), also enhanced hippocampal BDNF transcription when combined with voluntary
physical activity (Russo-Neustadt et al. 2004). Evidence suggests that 5-HT-selective agents
may not be as rapidly effective as NE-selective agents for inducing changes in the expression
of neurotrophins (Duman 1998), or altering behavior (Lucki 1998).

The Porsolt forced swim test (FST), involving exposure of a rodent to swimming in a narrow
glass cylinder, has served as both an acute stress paradigm and a means to assess
“antidepressant-like” efficacy. A variety of clinically efficacious antidepressants reverse the
reduction in swimming time that occurs the day following the initial (15 minute) exposure to
this inescapable stress (Cryan et al. 2005a). Reboxetine has been shown to increase the most
active behaviors observed during the FST, such as climbing the walls of the cylinder (Page et
al. 2003). Serotonin-selective reuptake inhibitors, on the other hand, have tended to enhance
horizontal swimming movements in the cylinder (Cryan et al. 2005b). Antidepressant
treatments have been applied both acutely (between days 1 and 2 of the FST) and more
chronically (up to several weeks before day 1). The latter paradigm has allowed for the
evaluation of more long-term effects of interventions such as antidepressant medications and
exercise, and is thought by some investigators to be more clinically relevant (Detke et al.,
1997).

In this current study, our first aim was to test the hypothesis that exercise and antidepressant
treatments would protect against decreased hippocampal BDNF mRNA brought about by the
FST. Our second aim was to test the hypothesis that swimming time, considered a correlate of
antidepressant efficacy, would be increased by exercise, and that the different antidepressant
agents in combination with exercise would have unique effects on animal behavior in this test.
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Materials and methods
Subjects and experimental design

All animal use procedures described below were conducted in strict accordance with the
National Research Council’s Guide for the Care and Use of Laboratory Animals (1996). All
efforts were made to minimize the number of animals and any pain/distress they might incur.
Male Sprague-Dawley rats (n = 85, 350g; Charles River) were housed singly in polyethylene
cages (48 × 27 × 20 cm) with food and water ad libitum, and a 12:12 hr (06:00 to 18:00) light/
dark cycle.

Voluntary physical activity entailed free access to running wheels for one week prior to the
FST. After a week of initial acclimation to the vivarium, rats were placed in polyethylene cages
equipped with running wheels (34.5 cm diameter; Nalgene, Oregon). Distance traveled on the
running wheel per 24-h period was recorded by computer using Ratrun software (C. Hage
Associates, CA). Control animals remained in cages of comparable size without wheels.

Rats were surgically implanted (09:00 hr) in the mid-scapular region with osmotic mini-pumps
(Alza, Palo Alto, CA), which continuously infused drug (saline, reboxetine, or citalopram)
subcutaneously. Citalopram (10 mg × kg−1 × day−1) or reboxetine (40 mg × kg−1 × day−1) was
administered over 7 days, during which, these rats were allowed free access to their running
wheels. These dosage regimens have been used in previous studies using these reboxetine or
citalopram (Russo-Neustadt et al., 2004; Hesketh et al., 2008). Control rats were implanted
with pumps that infused saline and were handled, but were not subjected to the FST.

Rats were then subjected to forced swim stress for 15 and 5 minutes on 2 consecutive days at
19:00 using the Porsolt method (Porsolt et al. 1977). Animals were sacrificed by rapid
decapitation immediately after the last forced swim test.

Forced swim test
Rats were forced to swim by being individually placed into a cylindrical container (22.5 cm
diameter, 45.5 cm height) containing a water (25°C) depth of 15 cm. Following a 15-min
induction period in the water, rats were removed and dried off with a towel before being
returned to their home cages. Twenty-four h later, they were placed in the cylinder for a second
test of 5 minutes duration. The total time spent immobile vs. total swimming activity was
measured during this 5-minute test. In addition, the proportion of active time spent climbing
the walls of the cylinder and/or diving during the test period was assessed using a four-point
scale from 1 to 4, based on the number of episodes of each behavior observed (see Fig. 1).
Swimming behavior entailed active movements of the forepaws with directed horizontal
actions such as crossing between quadrants of the cylinder and turning. Climbing was defined
as upward-directed movements of the forepaws along the side of the cylindrical container.
Diving involved the subject’s entire head and body being submerged beneath the water.
Immobility was characterized as floating with minimal movements required to keep the head
above water. The rater was blind to each animal’s treatment group. Rats were decapitated
immediately following their last forced swim period and their brains excised and frozen in an
isopentane/dry ice bath. Brains were stored at −80°C until processed for in situ hybridization.
A total of 7 animal groups (n = 7 rats per group unless otherwise indicated) were used: saline,
sedentary, no forced swim (NFS) (n = 9); saline, sedentary, forced swim (FS); saline, activity,
FS; reboxetine, sedentary, FS; reboxetine, activity, FS; citalopram, sedentary, FS; and
citalopram, activity, FS.

Arunrut et al. Page 3

Life Sci. Author manuscript; available in PMC 2010 April 24.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



cRNA probes, in situ hybridization, and data analyses
Construction of cRNA probes, in situ hybridization, and data analyses for hippocampal BDNF
mRNA levels were performed as previously described (Russo-Neustadt et al. 2000).

Results
As expected for the Porsolt Forced Swim Test, antidepressant treatment increased swimming
time during the five-minute test period (Figure 1). Reboxetine significantly increased
swimming time [F5,36 = 6.877, p = 0.03], and citalopram led to a non-significant trend for an
increase [F5,36 = 6.877, p = 0.11]. These treatments did not lead to a notable change in climbing
or diving behavior. Exercise, on the other hand, significantly decreased swimming time
[F5,36 = 6.877, p = 0.01], and also led to a decrease in climbing and diving behavior. Each
antidepressant produced distinct behavioral responses when combined with exercise for one
week prior to the test: Citalopram-plus-exercise significantly decreased swimming time, and
also decreased climbing and diving behaviors. Reboxetine-plus-exercise did not increase total
swimming time, but led to a vigorous level of climbing and diving. Also of note: Citalopram
led to significantly greater swimming time than citalopram-plus-exercise (p = 0.01), and
reboxetine treatment resulted in significantly greater swimming time than reboxetine-plus-
exercise (p = 0.03). Swimming times during the 15-minute induction period (day 1) reflected
similar trends to those observed during the test period, but these changes did not reach statistical
significance (Table 1). The rater reliability coefficient (intraclass correlation coefficient, model
2 or ICC-2) for swimming time was found to be 0.475 (F1.23 = 2.81, p = .0082).

In this study, forced swimming (FS) decreased BDNF mRNA levels as compared to sedentary
animals without FS in two hippocampal regions [CA1: F11,69 = 4.542, p = 0.014; CA2:
F11,69 = 2.187, p = 0.0096]. All treatments prevented this decrease in BDNF mRNA due to FS
in the CA1 and CA2. In addition, several treatments significantly increased BDNF mRNA
relative to FS levels in the remaining hippocampal regions. Exercise alone achieved this
increase in the CA3 [F11,69 = 3.836, p = 0.049] and CA4 [F11,69 = 7.162, p = 0.035]. Citalopram
and citalopram-plus-exercise also both led to an increase over FS levels in the CA3 and CA4
[citalopram/stress: CA3: F11,69 = 3.836, p = 0.042; CA4: F11,69 = 7.162, p = 0.038; citalopram-
plus-exercise/stress: CA3: F11,69 = 3.836, p = 0.043; CA4: F11,69 = 7.162, p = 0.0071]. The
combination of reboxetine and exercise resulted in this increase in the CA4 [F11,69 = 7.162,
p = 0.038] and DG [F11,69 = 3.847, p = 0.029].

Rats allowed access to their running wheels during the 1-week exercise period ran an average
(mean ± S.E.M.) of 1.10 ± 0.13 (saline, physical activity), 2.06 ± 0.24 (reboxetine, physical
activity), and 1.26 ± 0.18 (citalopram, physical activity) km per 24-h period. The reboxetine-
plus-exercise group ran significantly more per 24-hr period than did the other two groups
[F2,152 = 6.42, p = 0.0021].

Discussion
In our current study, NE- and 5-HT-selective antidepressants, exercise and the exercise-
antidepressant combinations all prevented a decline in hippocampal BDNF mRNA when
applied for one week prior to the Porsolt FST. As noted earlier, all of these interventions have
been demonstrated to enhance hippocampal BDNF expression in unstressed animals (Russo-
Neustadt et al. 2004). Exercise and antidepressants have in common the activation of
monoaminergic neurotransmission, which influences central BDNF expression and confers
neuroprotection (Dishman et al. 2000; Ivy et al. 2003; Duman and Monteggia 2006).

Studies in recent years have revealed a decline in hippocampal BDNF expression with acute
stress (Ueyama et al. 1997), and antidepressants (Popoli et al. 2002) or antidepressant/exercise

Arunrut et al. Page 4

Life Sci. Author manuscript; available in PMC 2010 April 24.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



combinations (Russo-Neustadt et al. 2001) have been reported to prevent or reverse these
changes. Exercise has also been reported to protect against decrements in hippocampal function
and/or neurochemistry caused by stress (Zheng et al. 2006; Filipovic et al. 2007; Greenwood
et al. 2007). Because an increase in BDNF expression promotes hippocampal survival (Kozisek
et al. 2008), it is likely that the change evident following our interventions reflects
neuroprotection. Both physical activity and antidepressants have been demonstrated to enhance
hippocampal neurogenesis and provide some resistance to the damaging effects of acute
stressor exposure or brain injury (Bjornebekk et al. 2005; Dranovsky and Hen 2006). In
unstressed animals, the combination of exercise with a variety of antidepressant medications
enhances the expression of BDNF mRNA, BDNF protein and the activation of several survival-
promoting molecules in the hippocampus to a greater degree than either intervention alone
(Russo-Neustadt et al. 2000, 2004; Chen and Russo-Neustadt 2005). Since the presence of the
running wheel in the animal’s cage can represent a form of environmental enrichment, it is
possible that enrichment could account for part of the exercise effect. It also should be noted
that reboxetine significantly increased running activity during the experiment (by
approximately 58%, with respect to vehicle-treated exercising animals). Therefore, part of the
BDNF-enhancing effect of the reboxetine-exercise combination may have resulted from
enhanced activity along with enhanced NE transmission.

Contrary to our initial expectations, combination treatments of exercise plus antidepressant
were not more effective than individual interventions in preventing the decline in hippocampal
BDNF mRNA occurring as a result of the FST. Exercise combined with tranylcypromine, a
monoamine oxidase inhibitor, has been evidenced to protect against BDNF mRNA deficits
due to a different form of swimming stress in one previous study (Russo-Neustadt et al.
2001). Since acute stress and glucocorticoid production can suppress hippocampal BDNF
expression (Smith et al. 1995; Pizarro et al. 2004; Gronli et al. 2006), it is possible that our
interventions may have met with a ceiling effect not present in unstressed or mildly stressed
animals.

In contrast to the uniform neurochemical effect reported above, each of our interventions had
unique behavioral effects during the FST. As evident in several previous studies (Detke et al.
1997; Connor et al. 1999), both antidepressant medications tended to increase total swimming
time during the 5-minute test period (though only reboxetine produced effects that reached
statistical significance). In contrast to this, exercise decreased swimming time, and physical
activity also decreased the amount of climbing and diving observed. Although physical activity,
like antidepressant treatment, increases hippocampal BDNF and confers protection against
deleterious effects of stress in the hippocampus (reviewed above), exercise in the current study
produced behavioral effects in the FST that were the opposite of those associated with
antidepressants. Therefore, there appears to be a lack of correlation between BDNF levels and
motor activity in the FST following voluntary exercise. Previous studies have been conducted
on exercise and the FST, with mixed results. Some groups have reported increased swimming
time during the FST following exercise (Bjornebekk et al. 2005; Duman et al. 2008; Trejo et
al. 2008), and some have found either no significant change or a decrease (Solberg et al.
1999; Yoo et al. 2000). It is possible that specific experimental conditions, like animal strain,
or duration, mode or intensity of the exercise, may account for the different outcomes in these
studies (Calil and Marcondes 2006). For example, it is possible that a greater duration of
voluntary exercise (perhaps two weeks or more) is necessary to produce behavioral activation
in the FST. It is also important to note that our FST was conducted with a water depth of 15
cm, which is significantly less than the water depth used by some groups (Calil et al., 2006
and Connor et al., 1999: 20 cm.; Cryan et al., 2002: 30 cm.). The ability of animals to feel the
bottom of the cylinder with their tails can significantly affect their behavior in the FST (Cryan
et al., 2002). Time of day may also be a very important contributing factor, as our animals were
tested at the beginning of the dark phase, and rats have been observed to take part in
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significantly less escape-oriented activity during the dark phase, a result that may be associated
with decreased anxiety and differential hormone levels (Kelliher et al. 2000). Importantly,
exercise has been reported to produce significant anti-anxiety effects (Fulk et al. 2004; Dishman
et al., 1996; Greenwood et al., 2007), and the decreased swimming, climbing and diving noted
in our study may reflect decreased anxiety during the FST. It has been called to question in
recent years whether decreased swimming time during the FST reflects behavioral despair, or
may denote something altogether different (Nishimura et al. 1988; Holmes, 2003; Cryan et al.
2005a), such as a more relaxed mental state, or greater physical fitness for maintaining the
floating posture. For example, some research groups have followed decreased swimming time
in the FST as an indicator of a lessened stress response (Kelliher et al. 2000). Decreased anxiety
after exercise may explain the lack of correlation between hippocampal BDNF levels and motor
activity in the FST; it is possible that increased motor activity, though a specific response to
antidepressants, does not correlate with hippocampal neuroprotection.

Also, in this study each antidepressant medication produced distinct effects when combined
with exercise. Reboxetine combined with exercise increased climbing and diving, whereas
citalopram combined with exercise decreased climbing/diving behaviors and also produced a
trend towards decreasing swimming time. Other investigators have presented evidence that
norepinephrine-selective reuptake inhibitors increase climbing during the FST, and
significantly less of this specific behavior is observed in animals treated with 5-HT-selective
agents (Detke et al. 1995; Cryan et al. 2005b). Since exercise is known to enhance the central
release of both NE and 5-HT (Chaouloff 1997; Schmid et al. 1998; Dishman et al. 2000), it is
possible that physical activity accentuated the neurotransmitter-selective behavioral effects of
each antidepressant. Furthermore, the 5-HT component may be responsible for a calming effect
on animal behavior. Our results indicate that interventions with a serotonergic component, such
as citalopram and exercise, may have decreased the more active behaviors such as climbing
and diving. Additionally, previous research has shown that not all antidepressants increase
swimming time equally well in the FST. It has been reported that the SSRI antidepressants, in
particular, produce a reliable response in the tail suspension test (TST), but often fail to do so
in the Porsolt FST (Cryan et al. 2002). Nevertheless, SSRIs are among the most effective and
widely prescribed medications today (Cryan et al. 2002). Some research groups have made
modifications to the FST that enable SSRI-induced antidepressant-like behaviors, such as an
increase in swimming, to be measured (Detke et al. 1995; Lucki 1997).

Conclusion
In conclusion, the results of our study suggest that, while antidepressant treatment and
voluntary physical exercise produce very similar effects on BDNF levels and survival signaling
in the hippocampus, each intervention produces unique behaviors during the FST. A re-
examination of the meaning of active behaviors during the FST (what they may reflect in terms
of emotional function and well-being of the CNS) would be warranted.
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Fig. 1.
Exercise and antidepressant interventions exerted distinct effects on total swimming time (in
seconds) and the degree of climbing/diving (on a scale from 1 to 4) during the 5-minute Porsolt
Swim Test period. Data are the mean ± S.E.M., n = 7 per treatment group. Time data were
analyzed using a one-way ANOVA with p < 0.05 level of significance, followed by Fisher’s
post-hoc LSD test. * indicates a significant difference from control; brackets indicate
significant difference between indicated values. The effect sizes (Cohen’s d) are as follows:
1.36 (exercise), 0.91 (citalopram), 0.892 (citalopram plus exercise), 1.21 (reboxetine) and 0.01
(reboxetine plus exercise).
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Fig. 2.
Forced swimming decreased BDNF mRNA levels in the CA1 and CA2; this effect was
prevented with all interventions tested. Several interventions also significantly increased
BDNF mRNA relative to FS levels in the remaining hippocampal regions. Results are displayed
as the percentage of control (Saline/Sedentary/No forced swim) and represent the mean ±
S.E.M. Asterisks denote statistically significant differences from control group (*p < 0.05,
**p < 0.01). Bridges between bars denote statistical significance between the indicated groups
(p < 0.05). All treatments were administered for an acute period of 1 week (NFS: no forced
swim; FS: forced swim; Sal: saline; Reb: reboxetine; Cit: citalopram; Sedentary: no access to
running wheel; Active: voluntary access to running wheel).
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Table 1
Swimming times during the 15-minute induction period of the Porsolt forced swim test
Total swimming time (in seconds) during the 15-minute induction period on the first day of the Porsolt forced swim
test. Data are the mean ± S.E.M., n = 7 per treatment group. Data were analyzed using a one-way ANOVA with p <
0.05 level of significance, followed by Fisher’s post-hoc LSD test, and no significant differences were found. Effect
sizes (Cohen’s d, shown below) appear in parentheses below each value.

Treatment Time Swimming (sec)

Control 412.86 ± 39

Exercise only 305.29 ± 62 (1.04)

Citalopram only 431.43 ± 55 (.18)

Citalopram plus Exercise 321.14 ± 60 (.89)

Reboxetine only 499.43 ± 72 (.84)

Reboxetine plus Exercise 451.71 ± 88 (.38)

ANOVA [F(5, 36)], p 1.38, .256
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