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Abstract: There is current interest in understanding genetic influences on both healthy and disordered
brain function. We assessed brain function with functional magnetic resonance imaging (fMRI) data col-
lected during an auditory oddball task—detecting an infrequent sound within a series of frequent
sounds. Then, task-related imaging findings were utilized as potential intermediate phenotypes (endo-
phenotypes) to investigate genomic factors derived from a single nucleotide polymorphism (SNP) array.
Our target is the linkage of these genomic factors to normal/abnormal brain functionality. We explored
parallel independent component analysis (paraICA) as a new method for analyzing multimodal data.
The method was aimed to identify simultaneously independent components of each modality and the
relationships between them. When 43 healthy controls and 20 schizophrenia patients, all Caucasian, were
studied, we found a correlation of 0.38 between one fMRI component and one SNP component. This
fMRI component consisted mainly of parietal lobe activations. The relevant SNP component was contrib-
uted to significantly by 10 SNPs located in genes, including those coding for the nicotinic a-7cholinergic
receptor, aromatic amino acid decarboxylase, disrupted in schizophrenia 1, among others. Both fMRI and
SNP components showed significant differences in loading parameters between the schizophrenia and
control groups (P 5 0.0006 for the fMRI component; P 5 0.001 for the SNP component). In summary, we
constructed a framework to identify interactions between brain functional and genetic information; our
findings provide a proof-of-concept that genomic SNP factors can be investigated by using endopheno-
typic imaging findings in a multivariate format. Hum Brain Mapp 30:241–255, 2009. VVC 2007 Wiley-Liss, Inc.
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INTRODUCTION

Brain imaging techniques such as positron emission to-
mography, magnetic resonance imaging, magnetoencepha-
lography, and electroencephalography are being applied
increasingly to study the structure and function of the
human brain in health and disease. More recently, the
combination of imaging data (which may represent candi-
date endophenotypes or disease vulnerability markers)
with genetic information appears to be a valuable way to
study particular subset of polymorphisms which may have
functional consequences. This approach is especially im-
portant in the study of schizophrenia, where even identical
twins have only about 50% concordance for the disease
[Lee et al., 2005]. Hence, it is likely that both genetic and
endophenotypic information will be needed to comprehen-
sively understand the disorder. Recent results in schizo-
phrenia suggest that disturbed working memory and asso-
ciated prefrontal cortex activation may be two genetically
influenced markers for vulnerability to the illness [Brahmb-
hatt et al., 2006]. However, relatively little is known about
the genetic determinants of these dysfunctions.
Most genetic linkage studies focus on particular gene(s)

or single nucleotide polymorphism(s) (SNPs) of interest
and examine the relationship between a genotype and a
phenotype univariately. Using this approach, a number of
genes have been associated with increased vulnerability
for schizophrenia [Carter, 2006; Harrison and Owen, 2003].
For example, the association of the G72/G30 locus with
schizophrenia and bipolar disorder has been reported in
several studies [Detera-Wadleigh and McMahon, 2006;
Goldberg et al., 2006b]. Other genes or SNPs frequently
studied in schizophrenia include catechol-O-methyltrans-
ferase (COMT) [Ho et al., 2005; Numata et al., 2007;
Ohnishi et al., 2006], brain-derived neurotrophic factor
(BDNF) [Bath and Lee, 2006; Ho et al., 2006; Numata et al.,
2007], and disrupted in schizophrenia 1 (DISC1) [Derosse
et al., 2007; Porteous et al., 2006]. Furthermore, recent stud-
ies demonstrate that specific polymorphisms in COMT,
BDNF, and DISC1, among others, are associated with
subtle but consistent alterations in the patterns of brain
activation, cognitive function, and clinical symptoms in
patients [Meyer-Lindenberg and Weinberger, 2006; Roff-
man et al., 2006].
There is substantial evidence that schizophrenia is likely

to be a complex genetic disorder, with multiple risk genes
of individually weak effect [Owen et al., 2005]. Therefore,
a multivariate approach, capable of extracting hidden
cross-information from a larger number of genes, has the
potential to uncover influences of multiple genetic factors
on the functioning of both healthy and disordered brains.
From the genomic perspective, more recent work has
focused on screening large numbers of SNPs and defining
association in terms of ensembles of multiple SNPs. This
physiogenomic approach [Ruano et al., 2005b has led to
important discoveries of genetic markers in the fields of
cardiology [Derosse et al., 2007; Ruano, et al., 2006a;

Ruano, et al., 2005a], nutrition [Ruano et al., 2006b], and
psychiatry [Ruano et al., 2006c].
In this paper we propose a novel physiogenomic

approach to simultaneously analyze brain images and
genetic information from both schizophrenia patients and
healthy controls. An association of 367 linearly weighted
SNP genotypes, as one independent genetic factor, is
assumed to influence to a certain degree one independent
brain function—functionally connected brain regions with
activations—extracted from fMRI data. The brain function
here is considered as a potential endophenotype, and the
goal is to find the relationship between the genetic associa-
tion and brain function.
Independent component analysis (ICA) is a statistical

and computational technique for recovering hidden inde-
pendent factors or components underlying sets of random
variables, measurements, or signals. An advantage of ICA
is its capability to reveal factors without the need for spe-
cific prior knowledge of the properties of these factors.
ICA has been applied to the analysis of functional mag-
netic resonance image (fMRI) data in order to discover
hidden components presenting (in the case of spatial ICA)
brain activation in certain brain regions [Calhoun and
Adali, 2006; Calhoun et al., 2001a,c, 2006; McKeown and
Sejnowski, 1998; McKeown et al., 1998]. ICA can also be
used to analyze spatial patterns from activation maps com-
puted using a general linear model based upon paradigm
timing [Calhoun et al., 2006]. Similarly, ICA is also a rea-
sonable approach to discover the unknown but important
information stored in genetic arrays. Researchers have uti-
lized ICA [Lee and Batzoglou, 2003; Liebermeister, 2002]
or principal component analysis [Horne and Camp, 2004;
Lin and Altman, 2004] to identify or to select genes. Candi-
date gene association studies often utilize SNP data. Stud-
ies selecting optimal SNP sets to capture intragenic genetic
variation or tag-specific haplotypes have employed princi-
pal component analysis [Horne and Camp, 2004; Lin and
Altman, 2004]. Dawy et al. proposed an ICA-based algo-
rithm to map SNPs to a certain phenotype, assuming that
SNP expressions affecting a given phenotype are inde-
pendent sources transformed by a linear mixing process
[Dawy et al., 2005].
We present an approach for revealing relationships

between brain function and SNP groupings, i.e., to find a
combination of SNPs related to a functional brain network.
This approach involved solving three problems: revealing a
set of specific independent brain functions, identifying in-
dependent SNP associations, and finding the relationship
between SNP associations and brain functions. We develop
an approach, called parallel ICA, with constraints applied
directly to two modalities. This method allows independent
components from two modalities to be identified simulta-
neously, while a term relating the two modalities is empha-
sized. We apply this approach to fMRI data collected dur-
ing an auditory oddball task and to SNP data. Both data
types were collected from each of 63 subjects, including 20
patients with schizophrenia and 43 healthy controls.
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THEORY

Introduction to ICA

The basic ICA model shown in Eq. (1) defines a genera-
tive model for the observed data, which are typically given
as a large database of samples. The observed variables are
assumed to be linear mixtures of some unknown latent
variables, and the mixing system is also unknown. The
latent variables are assumed non-Gaussian (or only one
Gaussian) and mutually independent and they are called
independent components of the observed data. In Eq. (1),
X is an observation matrix that can be composed of meas-
urements such as speech signals, MRI images, or SNP ge-
notypes. S contains the independent components, which
consists of unknown sources such as multiple speakers’
voices, brain activation networks, or genetic associations
for various phenotypes. A is a linear mixing matrix, relat-
ing the sources to the contaminated measurements. W is
an unmixing matrix. If W equals the inverse of A, then the
Z, the estimated component matrix, is equivalent to S, the
source matrix. Therefore, the essence of ICA is to find W
so that Z is as close as possible to the true independent
components contained in S. There are many ICA algo-
rithms based on different independence criteria. Among
them, the Infomax algorithm attempts to find the W matrix
through maximizing an entropy function as defined in Eq.
(2) [Bell and Sejnowski, 1995; Cardoso, 1997]. Before apply-
ing maximization, principle component analysis is used to
reduce the dimensionality of the observation matrix X
down to the same dimension as the component matrix.
Hereafter, principle component analysis is always imple-
mented before proceeding ICA.

X ¼ A � S; Z ¼ W � X;

If W ¼ A�1; then Z ¼ S;
ð1Þ

maxfHðYÞg ¼ �E½ln fyðYÞ�;

Y ¼ 1

1þ e�U
; U ¼ W � X þ W0 ð2Þ

where fy(Y) is the probability density function of Y. E is
the expected value. H is the entropy function.

Parallel ICA Structure

The purpose of parallel ICA proposed here is to dis-
cover independent components from two modalities, in
addition to the relationship between them, as illustrated in
Figure 1. S1 represents the independent components esti-
mated from data X1 via an unmixing matrix W1; S2 repre-
sents independent components estimated from data X2 via
an unmixing matrix W2. At the same time, a term specific

to the relationship between S1 and S2 is built into the W1

and W2 matrices. Each unmixing matrix for both modal-
ities is thus computed using information derived from
both modalities. The relation between the two modalities
can be specified by the user under a variety of rationales,
and it can be correlated between the W matrices, other
similarity measures, or any other relationship with reason-
able interpretation.
Three problems need to be solved simultaneously in

parallel ICA. Two of them relate to maximizing the inde-
pendence between components for the two modalities,
respectively. The third is the determination of the relation-
ship between the two modalities. For example, in this
study we try to find the correlation between the column
vector of A1 from one modality, and the column vector of
A2 from the other modality, as described in Eq. (3) (our
choice of this relation is explained in Method section). For
simplicity of explanation, only one component from each
side is constrained.

CorrðA1i;A2jÞ ¼
CovðA1i;A2jÞ

StdðA1iÞ � StdðA2jÞ
; A1 ¼ W�1

1 ð3Þ

where Corr is the correlation function; Cov is the covari-
ance function. Std is the standard deviation function. i and
j are indices of components.

Parallel ICA Optimization

Our algorithm is based upon the Infomax algorithm;
hence, maximization of the mutual entropy is used to max-
imize the independence between components. The rela-
tionship between modalities is determined by adding a
term which maximizes the squared correlation. The final
maximization is shown in Eq. (4),

Figure 1.

Parallel ICA structure.
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max HðY1Þ þ HðY2Þ þ CorrðA1;A2Þ2
n o

¼ �E½ln fyðY1Þ� � E½ln fyðY2Þ� þ
CovðA1i;A2jÞ2

varðA1iÞ � varðA2jÞ

( )
;

Y1 ¼
1

1þ e�U1
; U1 ¼ W1 � X1 þ W10; A1 ¼ W�1

1 ;

Y2 ¼
1

1þ e�U2
; U2 ¼ W2 � X2 þ W20; A2 ¼ W�1

2 ; ð4Þ

where i and j indicate the constrained components selected
during every maximization iteration. These two indices
can vary along the maximization process. Thus, the algo-
rithm is adaptive to the continuing updated components.
The three terms in maximization function [Eq. (4)] have

different characteristics; to maximize two entropies equally,
we simply maximize the first two terms in parallel with
two learning rates, using the natural gradient maximization
[Amari, 1998; Yang and Amari, 1997]. The third term is
optimized using the steepest descent method, and the step
size is calculated at each iteration on the selected two com-
ponents. Thus, we arrive at the following update rules:

For the first term: DW1 ¼
@H1

@W1
¼ k1 � I þ ð1� 2Y1ÞUT

1

� �
:

For the second term: DW2 ¼
@H2

@W2
¼ k2 � I þ ð1� 2Y2ÞUT

2

� �
:

For the third term: DA1i ¼
@CorrðA1i;A2jÞ2

@A1i

¼ kc1 � h1 �
2CorrðA1i;A2jÞ
StdðA2jÞStdðA1iÞ

3 A2j � A2j

� �
þ
Cov A1i;A2j

� �
A1i � A1i

� �
Var A1i

� �
( )

;

DA2j ¼
@Corr A1i;A2j

� �2
@A2i

¼ kc2 � h2 �
2Corr A2j;A1i

� �
StdðA2jÞStdðA1iÞ

3 ðA1i � A1iÞ þ
Cov A1i;A2j

� �
A2j � A1j

� �
VarðA2jÞ

( )
ð5Þ

where the ks are the learning rates for Data 1, Data 2, and
correlation terms, and the h is the step size calculated at
each step according to Wolfe conditions [Nocedal and
Wright, 1999]. The learning rates, determining the empha-
sizing weight put onto each term during the maximization,
play important roles in the convergence and balance.

Overfitting Issue

Any data-driven approach possibly encounters a prob-
lem with overfitting due to too many parameters or too
strong overlearning, which can lead to false discovery. We

use additional techniques to avoid overfitting that may be
caused by two possible reasons in our algorithm: over-
emphasizing correlations and overestimating component
number.
To avoid an overemphasized correlation, we adaptively

adjust the learning rate of the correlation term [kc in Eq.
(5)] in the maximization function. By monitoring the en-
tropy term H(.) online, we can, to some degree, assess the
overall effect of connection term on the total maximization
function. Based on the level in which the H(.) term is
altered, we change the k adaptively to balance the two
aspects in the maximization function.
Estimating the correct number of components is still

considered a challenge in the field of blind source separa-
tion. The Akaike information criterion (AIC), an informa-
tion theoretic approach for determining data dimensional-
ity [Akaike, 1974], is a reasonable approach widely used in
different areas of research. However, it tends to overesti-
mate component number. To eliminate overestimated com-
ponent influence, we use modified AIC method proposed
by Li et al., [Li et al., 2007] for fMRI data, through a sub-
sampling scheme to obtain a set of effectively i.i.d. samples
to compensate the spatial smoothness in fMRI images.
Owing to no ready-to-use method for the SNP data, we
first use AIC method to estimate components’ number,
and then, reduce the component number cautiously and
empirically to reach a consistence level among different
runs. The principle we applied in the reduction process is
similar to a leave-one-out cross-evaluation, where all sam-
ples except one are used in different runs and a consistent
result is arrived using reasonable parameters.
Simulations presented later will give a clear picture of

the algorithm performance against overfitting under vul-
nerable conditions.

SUBJECTS AND DATA SPECIFICATION

In this study, two types of data were collected from 63
participants, including 20 patients with schizophrenia and
43 healthy controls. All of them provided written,
informed, IRB-approved consent at Hartford Hospital.
fMRI data were used to understand brain functions and
SNP data were used to find genetic influences.

Participants

Participants were recruited via advertisement, presenta-
tions at local universities and clinics, and by word-of-
mouth. Prior to inclusion in the study, healthy participants
were screened to ensure they were free from DSMIV Axis
I or Axis II psychopathology [assessed using the SCID
[Spitzer et al., 1996] and also interviewed to determine
that there was no history of psychosis in any first-degree
relatives. Patients met criteria for schizophrenia in the
DSM-IV on the basis of the Structured Clinical Interview
for DSM IV [First et al., 1995] and review of the case file.
All selected subjects were White/non-Hispanic. The
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patients were 39 6 10 years old, ranging from 20 to 54,
and the healthy controls were 48 6 16 years old ranging
from 21 to 83. There were 21 female and 22 male partici-
pants in the 43 healthy controls, and 3 female and 17 male
Schizophrenia (SZ) patients. To include as many subjects as
possible in our study, we decided to use all subjects,
instead of the relatively balanced subset, while assessing
the effect of age, gender, and other factors on our measure-
ments. Full scale IQ scores for the groups evaluated from
the National Adult Reading Test (NART) [Blair and Spreen,
1989] were 110.9 6 6.6 for controls and 104.9 6 10.1 for
patients (only 40 controls and 19 patients had NART scores
recorded). Positive and Negative Syndrome Scale (PANSS)
scores for 16 SZ patients (the other four patients’ PANSS
scores were missing) were also observed, with PANSS total
scores of 67.6 6 30.0, positive symptom scores of 15.4 6 4.1,
and negative symptom scores of 14.5 6 6.7. The 17 SZ
patients who provided medication information were taking
10 different antipsychotic in variable doses.

fMRI Data Collection

FMRI data were collected during performance of an au-
ditory oddball task [Kiehl and Liddle, 2003], which con-
sists of detecting an infrequent sound within a series of
frequent sounds. Auditory stimuli were presented to each
participant by a computer stimulus presentation system
via earphones. The standard stimulus was a 500-Hz tone,
the target stimulus was a 1,000-Hz tone, and the novel
stimuli consisted of nonrepeating random digital noises
(e.g., tone sweeps, whistles). A full description of the task
design is available [Kiehl et al., 2005]. The participants
were instructed to respond as quickly and accurately as
possible with their right index finger on a keypad every
time they heard the target stimulus.
Scans were acquired at the Olin Neuropsychiatry

Research Center at the Institute of Living on a Siemens
Allegra 3 T dedicated head MRI scanner equipped with
40 mT/m gradients and a standard quadrature head coil.
The functional scans were acquired using gradient-echo
echo-planar-imaging with the following parameters (repeat
time 5 1.50 s), echo time 5 27 ms, field of view 5 24 cm,
acquisition matrix 5 64 3 64, flip angle 5 708, voxel size
5 3.753 3.753 4 mm3, slice thickness5 4 mm, gap5 1 mm,
29 slices, ascending acquisition).

fMRI Data Preprocessing

Six ‘‘dummy’’ scans were performed at the beginning to
allow for longitudinal equilibrium, after which the para-
digm was automatically triggered to start by the scanner.
Data were preprocessed using the software package SPM2
(http://www.fil.ion.ucl.ac.uk/spm/). Images were real-
igned using INRIalign—a motion correction algorithm
unbiased by local signal changes [Freire and Mangin,
2001]. Data were spatially normalized into the standard
Montreal Neurological Institute space [Friston et al., 1995],

resliced to 3 mm3, and spatially smoothed with a 10-mm3

Gaussian kernel. Data for each participant were analyzed
by a multiple regression incorporating regressors for the
novel, target, and standard and their temporal derivatives
plus an intercept term. The target-related contrast images
were used in this study for parallel ICA. To balance the
size of one fMRI image and one SNP image, containing
the SNP genotypes from one subject, we used a mask
based upon one-sample t-test against zero activation to
select meaningful voxels, and downsampled the images by
a factor of 2. The resultant images with a size of 7,060 vox-
els were the input from fMRI modality to parallel ICA.

SNP Data Collection and Preprocessing

A blood sample was obtained for each subject and DNA
extracted. Genotyping was performed using the Illumina
BeadArrayTM platform and the GoldenGateTM assay [Fan
et al., 2003; Oliphant et al., 2002]. The PG Array of
Genomas was used, which contains a SNP array consisting
of 384 SNPs from 222 genes from six physiological sys-
tems: neurobiology, cardiovascular system, inflammation,
metabolism, cholesterol biochemistry, and cell prolifera-
tion. The following pathways were represented: insulin re-
sistance, glucose metabolism, energy homeostasis, adipos-
ity, apolipoproteins and receptors, fatty acid and choles-
terol metabolism, lipases, receptors, cell signaling and
transcriptional regulation, growth factors, drug metabo-
lism, blood pressure, vascular signaling, endothelial dys-
function, coagulation and fibrinolysis, vascular inflamma-
tion, cytokines, neurotransmitter axes (serotonin, dopamine
cholinergic, histamine, glutamate), and behavior (satiety).
The PG Array is a product of Genomas, Inc. and its
detailed composition has been published as a patent appli-
cation. Genotyping analysis software, GenCall, was used
to cluster the resultant intensities from the genotyping
microarray into three clusters: AA, AB, and BB without
assuming dominant or recessive inheritance. On the basis
of the GenCall score, a number between 0 and 1 indicating
how close to the center of the cluster a sample lies, we set
up a threshold to select only reliable genotype results.
SNPs with a GenCall score of 0.25 or higher were selected
resulting in 367 SNPs. Genotypes are inherently categorical
and can be represented as discrete numbers, e.g., 1 for one
type of homozygous, 0 for heterozygous, and 21 for the
other type of homozygous. Negative and positive signs are
not important in our test, since we look at variation of ge-
notypes, and signs can be switched by the mixing matrix
based on effects on the phenotype.

METHOD

Now, we apply the parallel ICA onto the two modalities
described earlier, with the goal of identifying functional
brain networks, SNP associations, and their relationship.
Components extracted from fMRI can be interpreted as
networks of brain regions that express functional changes
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in different subjects to different degrees. Components
extracted from SNP data are distinct linear combinations of
SNPs that may affect certain generic functionalities or pheno-
types [Dawy et al., 2005; Lin and Altman, 2004]. These com-
ponents are expressed to different degrees in different sub-
jects. The loading parameters for each component reflect the
component’s influence/expression on subjects [Calhoun
et al., 2001b]. Relationships between the two modalities can
be incorporated as well. For example, if a component
extracted from fMRI data is functionally related to a compo-
nent extracted from SNP data—in other words, an associa-
tion of SNPs has functional consequences revealed in a spe-
cific fMRI brain network—then we expect that the influence/
expression pattern of these two components in all partici-
pants is correlated. Hereafter, the loading parameters are
used in the paper to address subjects’ component patterns.
To demonstrate the algorithm, we implemented the

method on a dataset including schizophrenia patients and
healthy controls. Our goals were to first identify connec-
tions between fMRI and SNP and then to investigate
group differences. In other words, after we found the
linked components between brain functions and genetic
associations, we tested for a significant difference between
schizophrenia and healthy groups in the loading parame-
ters of the components.

Parallel ICA for fMRI and SNP Data

We represented fMRI data collected from the partici-
pants as a set of spatially independent voxels which are
linearly mixed [Calhoun et al., 2004, 2006). Hence, the X
and S matrices in Eq. (1) are constructed as follows:

Xf ¼ xf1; xf2;xf3; . . . ;xfn

� �T
; Sf ¼ sf1; sf2; sf3; . . . ; sfm

� �T
;

Sf ¼ Wf � Xf ;

Af ¼ W�1
y ; Af ¼ af1; af2; . . . ; afm

� �
;

ð6Þ

where n is the number of participants and m is the number
of components. xfi and sfi are both vectors of voxel values
in brain images. The Af matrix is a participant-by-compo-
nent (n 3 m) mixing matrix. Each column of Af shows in-
formation about how a component appears in every partic-
ipant. The pth column of Af matrix, for example, contains a
loading parameter/influence for the pth component for
each of the n participants.
We defined a genetic independent component as a spe-

cific SNP association, i.e., a group of SNPs with various
degrees of contribution, which partially determines a spe-
cific phenotype or endophenotype. This association can be
modeled as a linear combination of SNP genotypes [Dawy
et al., 2005; Lee and Batzoglou, 2003],

s ¼ b1 � snp1 þ b2 � snp2 þ � � � þ bn1 � snpn;

where snp is a genotype at a given locus and b is a weight
contributed from a SNP to the genetic association. Beside

the independent component, the weight itself is also of in-
terest, implying the influence factor and type, i.e., inhibi-
tory or excitory to a phenotype. With the assumption that
each component has a independent distribution pattern in
367 SNPs, we constructed the SNP data matrix, X, in a
participant-by-SNP direction. The mixing process is pre-
sented in Eq. (7),

Xs ¼ xs1; xs2; xs3; . . . ; xsn½ �T; Ss ¼ ss1; ss2; ss3; . . . ; ssm½ �T;
Ss ¼ Ws � Xs;

As ¼ W�1
s ; As ¼ as1; as2; as3; . . . ; asn

� �T

ð7Þ

where n is the number of participants and m is the number
of components. xsi is a vector of 367 SNP genotypes for
one participant. ssi is a vector of 367 SNP weights for one
genetic component. As is the matrix of the loading parame-
ters, presenting the influence of each SNP component on
participants.
Under current data structure, the relationship between

the influences/presences of brain function and genetic
component is calculated as the correlation between the col-
umns of the fMRI Af matrix and the SNP As matrix. Thus,
we have the correlation term defined as in Eq. (3), and the
maximization function defined as in Eq. (5), where Data 1
is the fMRI and Data 2 is the SNP. The procedure of paral-
lel ICA is illustrated in Figure 2.
The algorithm proceeds as follows:

1. Two analyses for fMRI and SNP, respectively, are ini-
tialized with specified learning rates kf, ks, kcf, and kcs..

2. Two W matrices, if necessary, are updated based on
their own entropy terms.

3. The stop criterion is assessed for both modalities. If
both processes satisfy the criterion, the whole parallel
ICA process stops. If only one process satisfies the cri-
terion, then the iteration for this modality stops and the
corresponding W matrix is finalized.

Figure 2.

Parallel ICA procedure.
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4. One component from each modality is selected to be
the related components according to the highest corre-
lation

5. Two W matrices, if necessary, are updated based on
the correlation terms. Afterward, the process goes back
to step 2.

To avoid false discoveries resulting from overfitting, a
leave-one-out evaluation is implemented to test the fidelity
of discoveries. Because of the limited subject numbers, 62
out of 63 subjects were analyzed during 63 runs by paral-
lel ICA with the same parameter setup, and each run
includes one different subject. The consistency among the
63 repetitions was evaluated.

Two-Group Comparison

Since the participants were composed of patients and
healthy controls, a two-group comparison exploring
between-group differences informed us whether the com-
ponents were schizophrenia-relevant (SZ-relevant refers to
any direct or indirect connection to SZ). As described ear-
lier, each column of A matrix reveals the presence pattern
of one component in all participants. A two-sample t-test
is conducted on the fMRI-SNP correlated column vectors
of As and Af, with consideration of other possible factors,
such as gender, IQ, and schizophrenia symptom severity.
We examined each factor’s contribution to the linked com-
ponents’ loading parameters using linear regression.

SIMULATION

To evaluate the performance of the parallel ICA algo-
rithm, we simulated two datasets with the same dimen-
sionalities as the fMRI and SNP data, respectively. Eight
source signals with different distributions (one Gaussian)
were included for each dataset separately (an example of
simulated sources were plotted in Fig. 3), as well as two
random mixing matrices. One source from the fMRI data
and one source from the SNP data were correlated by
making one column of the fMRI mixing matrix similar to
one column of the SNP mixing matrix to a certain degree.
Random Gaussian noise was superimposed into the mixed
source data afterwards, as explained in Eq. (8). The accu-
racy of recovering both the true sources and the correla-
tion was assessed under different true connection condi-
tions.

Data 1 ¼ A0ð43� by� 43Þ � S0ð43� by� 8000Þ
þ noiseð43� by� 8000Þ;

Data 2 ¼ A00ð43� by� 43Þ � S00ð43� by� 367Þ
þ noiseð43� by� 367Þ; ð8Þ

Since in reality the component number is usually
unknown and an estimated component number plays an

important role in algorithm performance, we evaluated
our algorithm under different estimated component num-
bers.

RESULTS

In this section we first present the simulation results fol-
lowed by the results uncovered from 63 subjects’ fMRI
and SNP data.

Simulation Results

The accuracy used hereafter is defined as the correlation
between the true source(s) and the estimated compo-
nent(s). An example of true related sources and corre-
sponding extracted components is shown in Figure 4,
when the true correlation is 1.0 and the component num-
ber is set to 8. We can tell whether the estimated compo-
nents represent the true sources very well with the excep-
tion of scale. In order to see the improvement of parallel
ICA performance, we compared it with standard ICA,
applied to these two datasets separately. The results from
both methods under different conditions are presented in
Table I.
The ability of parallel ICA to determine the optimal

result varies under different conditions as shown in Table
I. The correlation determined is slightly lower than the
true correlation when the latter is high. When the true cor-
relation is low (when it can be considered as noise effect),
parallel ICA does not extract a false connection. Compar-
ing this approach to standard ICA, we can clearly see the
improvement of parallel ICA in terms of correlation dis-
covery, when such a correlation exists.

Figure 3.

Simulated source singles from Data 1 as well as the noise super-

imposed.
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We also investigated the performance of the algorithm
when using an incorrect component number. While eight
true components are included in each dataset, an over/
under estimated number is applied in the parallel ICA,
and the corresponding results are listed in Table II. The
simulation shows that an overestimated component makes
the algorithm more vulnerable to overfitting with lower ac-
curacy of the component and higher correlation, and a
moderately underestimated component number does not
markedly influence the correlated particular results, illus-
trated in Table II. Thus, we would rather use an underesti-
mated component number than an overestimated compo-
nent number.

Results From 63 Subjects’ fMRI and SNP Data

The modified AIC estimate [Li et al., 2007] of the num-
ber of components for the 63 subjects’ reduced fMRI data
are 5. Twelve components are estimated for the SNP data
by the regular AIC. Then, the numbers are further reduced

to 7, based on the principle mentioned in Overfitting Issue
section. Results include components for the fMRI and SNP
data, and their loading parameters.

Results from parallel ICA

Parallel ICA revealed a correlation of 0.38 between one
fMRI component and one genetic component. For explana-
tion/display purposes, significant SNPs in this linked SNP
component and high activation regions of the linked fMRI
component are only presented. The fMRI component, after
converting to Z scores, is thresholded at |Z| > 2.5. Simi-
larly, SNPs with contribution weights above 2.5 are
selected and listed, representing the genetic component.
The chosen fMRI component is plotted in Figure 5 (|Z| >
2.5) and active regions are listed in Table III.
Significant SNPs in the selected genetic component are

listed with their information in Table IV. Cross correlations
among these SNPs in terms of genotype patterns on all
participants were also calculated. Among them, rs3087454
and rs1355920, both in the a7 nicotinic cholinergic receptor
(CHRNA7), are strongly correlated with a correlation coef-
ficient of 0.53. The rs821616 in the chromosome 1 DISC1
gene and rs4765623 in the chromosome 12 scavenger re-
ceptor class B, member 1 (SCARB1) gene are also highly
correlated with a correlation of 0.47. Presently, it is not
clear why these two SNPs may be in linkage disequili-
brium and further studies will be needed to explain this
association. The recent finding that the same SNPs are not
correlated in patients with diabetes suggests that the link
between these SNPs may be specific to schizophrenia (A.
Windemuth, unpublished observation). Finally, we
observed correlations of 0.28 between rs1355920 and
rs885834 and between rs4765623 and rs2071521.
Out of 63 runs on the leave-one-out evaluation data, the

connection between these fMRI (see Fig. 5) and SNP com-
ponents is 0.37 6 0.07.

Patients versus controls comparison

The loading parameters of the selected SNP/fMRI com-
ponent were also studied for the patient group versus con-
trol group difference. Figure 6 shows both components’
loading parameters in all participants, with 20 SZ first and

Figure 4.

True related sources (left) and corresponding components

(right).

TABLE I. Simulation results from parallel ICA and standard ICA

True correlation 1.00 0.80 0.60 0.40 0.20

Parallel ICA
Extracted correlation 0.97 6 0.01 0.79 6 0.02 0.60 6 0.06 0.42 6 0.07 0.20 6 0.03
Accuracy of SNP 0.90 6 0.00 0.90 6 0.00 0.89 6 0.00 0.99 6 0.01 X*
Accuracy of fMRI 0.99 6 0.00 0.99 6 0.00 1.00 6 0.00 1.00 6 0.00 1.00

Standard ICA
Extracted correlation 0.95 6 0.01 0.77 6 0.03 0.55 6 0.04 0.37 6 0.03 0.20 6 0.03
Accuracy of SNP 0.90 6 0.00 0.90 6 0.00 0.89 6 0.00 0.99 6 0.00 X*
Accuracy of fMRI 0.99 6 0.00 0.99 6 0.00 1.00 6 0.00 1.00 6 0.00 1.00

X* is not the right component.
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followed by 43 healthy controls. A two-sample t-test was
also computed on the loading parameters: the fMRI com-
ponent showed group differences with P 5 0.0006 and the
SNP component with P 5 0.001. Potential factors contrib-
uting to this genetic/phenotypic pattern include gender,
IQ, age, and schizophrenic severity. Percentages of var-
iance explained by these factors are listed in Table V, after
linear regression. A significant between-group difference
exists, providing evidence that this SNP/fMRI component
is schizophrenia-relevant.

ANALYSIS AND DISCUSSION

Correlation

With leave-one-out cross-evaluation, we can reasonably
say that a relationship exists between fMRI and genetic
data as revealed by parallel ICA. Therefore, the connection
between brain function and genes is presented as a pair of
fMRI and genetic components, whose correlation value
was 0.38. The fMRI component revealed brain regions
whose functions are explained in the following section,
and the genetic component is associated with genes previ-
ously known to influence specific brain functions or behav-
iors. The potential interplay of these two components is
interpreted as a possible genetic influence on brain func-
tion. However, because of limited SNP types and subjects,
the results are preliminary, based on the data we had, but
suggest the direction of future studies.

fMRI Component

The selected fMRI component consists of many regional
activations. However, the regions with higher Z scores
listed in Table III are of great interest.
The largest portion of this component is located in pre-

cuneus. In a review paper, Cavanna et al. summarized
functional subdivision of precuneus into an anterior
region, involved in self-centered mental imagery strategies,
and a posterior region, subserving successful episodic
memory retrieval [Cavanna and Trimble, 2006]. Gray mat-
ter volumes were reduced in all parietal subregions in
schizophrenia patients compared to healthy controls (con-
sistent with prior studies, e.g. [Frederikse, et al., 2000] and
the volume alterations in schizophrenia may support the
notion that a regional posterior parietal deficit is critical
for the manifestation of overt psychotic symptoms [Zhou
et al., 2007]. The second region identified was lingual

gyrus, where a volumetric alternation in SZ patients has
been noted in several studies [Gaser et al., 1999]; in one of
these, the predictive power of parietal activation was sup-
ported only in combination with lingual gyrus activity
[Whalley et al., 1999].
A third region identified was the cuneus, which is im-

portant in memory retrieval [Addis et al., 2004; Cabeza
et al., 1997; Cavanna and Trimble, 2006]. The cuneus
appears in several schizophrenic studies [Kircher et al.,
2003; Neckelmann et al., 2006], but to our knowledge has
not yet been intentionally investigated from a SZ relevant
viewpoint.
Three deactivated regions constituted this fMRI compo-

nent: superior frontal, medial frontal, and superior tempo-
ral gyri. The superior frontal gyrus [Goldberg et al., 2006a]
is involved in self-awareness and executive functions. The
medial frontal gyrus is associated with high-level executive
functions and decision-related processes. Since our input
fMRI data were contrast images (target stimulus) collected
in the auditory oddball test. It is not surprising to see

TABLE II. Simulation results from parallel ICA using different component number

Component numbers 2/2 4/4 6/6 8/8 10/10 12/12 14/14

Extracted correlation 0.44 6 0.05 0.48 6 0.05 0.48 6 0.04 0.50 6 0.04 0.57 6 0.05 0.60 6 0.05 0.58 6 0.07
Accuracy for the SNP source 0.95 6 0.00 0.91 6 0.04 0.91 6 0.05 0.89 6 0.04 0.84 6 0.04 0.81 6 0.05 0.55 6 0.34
Accuracy for the fMRI source 0.97 6 0.03 0.99 6 0.00 1.00 6 0.00 1.00 6 0.00 1.00 6 0.00 1.00 6 0.00 0.68 6 0.45

True correlation: 0.5; True component number: 8/8.

Figure 5.

The linked fMRI component discovered by parallel ICA.
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involvement of a portion of superior temporal gyrus,
which includes auditory processing regions and has been
implicated in schizophrenia, particularly in reference to
auditory hallucinations [Barta et al., 1990; Pearlson et al.,
1996].

Genetic Component

The related genetic component was contributed to by 10
SNPs located in nine genes: aromatic L-amino acid decar-
boxylase (AADC), a-2A adrenergic receptor gene
(ADRA2A), CHRNA7, DISC1, choline acetyltransferase
(CHAT), SCARB1, apolipoprotein C-III (APOC3), musca-
rinic cholinergic receptor, 3 (CHRM3). CHRNA7, DISC1,
and CHAT are well-known schizophrenia susceptibility
genes.
CHRNA7 is a member of a superfamily of ligand-gated

ion channels that mediate fast cholinergic transmission at
synapses. This gene is located in a chromosomal location
involved in the genetic transmission of schizophrenia [De

Luca et al., 2004; Freedman et al., 2001]. In our study, two
SNPs in the CHRNA7 gene, rs3087454 and rs1355920, were
found to correlate with patterns of brain activation during
an auditory oddball task. These results are consistent with
previous studies linking polymorphisms in CHRNA7 pro-
moter region with sensory gating alterations in patients
with SZ, as measured by the P50 inhibition in auditory
evoked response [Freedman et al., 1997; Leonard et al.,
2002]. The associations of CHRNA7 with schizophrenia
vary in different ethnic groups. Studies on populations in
France, Switzerland, and USA reported positive results
[Freedman et al., 2006; Houy et al., 2004; Leonard et al.,
2002; Stassen et al., 2000], and studies on population in
China and additional populations in USA reported nega-
tive results [Fan et al., 2006; Gault et al., 2003]. Our analy-
ses of Caucasian patients further support the idea that
CHRNA7 is a candidate gene related to brain function in
schizophrenia.
DISC1 was identified as a novel gene disrupted by

translocation that segregated with schizophrenia in a Scot-
tish family. It is also a key susceptibility factor for major
mental illnesses [Derosse et al., 2007; Sawamura and Sawa,
2006]. Several genetic studies have shown evidence of
SNPs in DISC1 associated with schizophrenia, schizoaffec-
tive disorder, and bipolar disorder [Hodgkinson et al.,
2004]. Among them, SNP rs821616 selected in our study

TABLE IV. Significant SNPs and their information

extracted by parallel ICA

SNP Z score Gene

rs1466163 24.08 AADC: aromatic L-amino acid
decarboxylase

rs2429511 3.97 ADRA2A: a-2A adrenergic receptor
gene

rs3087454 23.09 CHRNA7: cholinergic receptor,
nicotinic, a7

rs821616 2.96 DISC1: disrupted in schizophrenia 1
rs885834 22.78 CHAT: choline acetyltransferase
rs1355920 22.77 CHRNA7: cholinergic receptor,

nicotinic, a7
rs4765623 2.73 SCARB1: scavenger receptor class B,

member 1
rs4784642 22.71 GNAO1: guanine nucleotide binding

protein (G protein), a activating
activity polypeptide O

rs2071521 2.58 APOC3: apolipoprotein C-III
rs7520974 2.55 CHRM3: cholinergic receptor,

muscarinic 3

TABLE III. Talairach label of regions of interest

Area Brodmann area L/R volume (mL) L/R random effects: max Z (x, y, z)

Positive
Precuneus 7 19 0.8/0.1 4.8(0,2 70,50)/3.4(6, 276,51)
Lingual gyrus 18 17 0.7/0.2 4.7(212, 285, 213)/3.9(6, 285, 213)
Cuneus 17 18 19 0.5/0.0 4.7(212, 296, 23)/NA
Fusiform gyrus 18 19 0.2/0.2 5.1(218, 291, 213)/3.7(24, 285, 218)
Superior parietal lobule 7 0.2/0.1 4.5(26, 270,56)/2.7(6, 270,56)
Postcentral gyrus 5 7 0.2/0.1 4.2(26, 246,71)/3.0(6, 240,71)
Inferior occipital gyrus 17 18 0.1/0.0 5.0(212, 291, 28)/3.3(30, 285, 213)

Negative
Superior frontal gyrus 6 0.1/0.0 2.8(212, 211,64)/NA
Medial frontal gyrus 6 0.1/0.0 2.5(212, 26,58)/NA
Superior temporal gyrus 38 0.0/0.1 NA/2.7(36,7, 228)

Figure 6.

fMRI and SNP loading parameters.

r Liu et al. r

r 250 r



was previously reported to be associated with schizophre-
nia (P 5 0.004) in a family-based study [Callicott et al.,
2005]. Specially, patients who were carriers of a common
haplotype containing the minor allele at rs821616 had sig-
nificantly lower ratings on paranoid delusions than non-
carrier, presenting a significant association of DISC1 with
lifetime severity of delusion in SZ [Derosse et al., 2007].
Therefore, it is reasonable that this SNP was selected as
being relevant to brain function, particularly from a SZ
and healthy control dataset.
CHAT participates in modulating wide-ranging choliner-

gic-dependent functions including cognitive performance,
sleep, arousal, movement, and visual information process-
ing. Compelling evidence has mounted implicating CHAT
in schizophrenia [Holt et al., 2005; Karson et al., 1996].
A positive connection between three SNPs (rs1880676,
rs3810950, and rs733722) locating in CHAT and SZ was
reported in the study by Mancama et al. [2007] on Spain
(Bosque) population. The three SNPs were not present in
our SNP arrays, but we detected a different SNP, rs885834,
located only 2,000 bases from the CHAT gene.
AADC is an enzyme implicated in two metabolic path-

ways, synthesizing important neurotransmitters, dopa-
mine, norepinephrine, epinephrine, and serotonin. Evi-
dence implicates AADC with schizophrenia [Ikemoto,
2002, 2004; Ikemoto et al., 2003]. AADC may possibly act
as a modulator of age at onset in males with schizophrenia
[Borglum et al., 2001]. Elevated AADC activity was ob-
served in the brain of patients with psychosis [Reith et al.,
1994]. The number of AADC-positive neurons was
reduced in the striatum in schizophrenia compared to con-
trols [Ikemoto et al., 2003]. On the other hand, there are
contradictory reports of no association between AADC
and SZ [Speight et al., 2000; Zhang et al., 2004].
ADRA2A is a member of the G protein-coupled receptor

superfamily. The receptor has a critical role in regulating
neurotransmitter release from sympathetic nerves and
from adrenergic neurons in the central nervous system.
Possible associations of the ADRA2A with symptoms of
attention-deficit/hyperactivity disorder have been studied
and confirmed by many researchers [Deupree et al., 2006;
Park et al., 2005; Schmitz et al., 2006; Wang et al., 2006].
However, no association between ADRA2A polymor-

phisms and schizophrenia has been found up to now
[Clark et al., 2007].
Heterotrimeric guanine nucleotide-binding proteins (G

proteins) integrate signals between receptors and effector
proteins, important signal transducing molecules in cells.
G proteins are functionally categorized into the inhibi-
tory G proteins (Gi), the stimulatory G proteins (Gs), and
other G proteins (Go). The Go is the most abundant G pro-
tein class expressed in brain, but its function is less known
and maybe involved in mediating extracellular signal-
regulated kinase activation by G protein-coupled receptors
[Zhang et al., 2003]. The expression of GNAO1 was
reported significantly decreased in individuals with schizo-
phrenia compared to unaffected family controls [Vawter
et al., 2004].
SCARB1 has affinity for high-density lipoproteins

(HDLs) and mediates the selective uptake of cholesterol
esters. Several studies have shown that SCARB1 protein is
expressed in the human brain [Husemann and Silverstein,
2001; Srivastava, 2003], and contributes to selective uptake
of HDL-associated vitamin E in the brain, to play an im-
portant role in the blood–brain barrier [Goti et al., 2001].
APOC3, a very low density lipoprotein protein, is also a
constituent of HDL and triglyceride-rich lipoprotein, inhib-
iting lipoprotein lipase and hepatic lipase. CHRMS is a
member of G protein-coupled receptor, whose function is
defined by acetylcholine binding. Muscarinic receptors
influence many effects of acetylcholine in the central and
peripheral nervous systems. The CHRM3 controls smooth
muscle contraction and its stimulation causes secretion of
glandular tissue. The connection of these last three genes
with mental disorders is not clear. However, the strong
correlation of SCARB1 and DISC1 SNPs suggests that this
gene may be associated with schizophrenia.

Schizophrenia-Relevant Components

We have discussed a pair of fMRI/SNP components that
are functionally correlated. This suggests that the selected
genes contribute directly or indirectly to or partially influ-
ence the related brain functions. In addition, we investi-
gated a potential relationship between this pair of fMRI/
SNP components and schizophrenia, considering possible
factors such as gender, IQ, and symptom severity. Because
of incomplete medication status information, we did not
include these in our analysis. All the factors except symp-
tom severity (PANSS) scores can maximally explain 2% of
total variance of loading parameters for both fMRI and
genetic components. For SZ patients, the PANSS scores
show a strong relationship with the fMRI/SNP compo-
nents. Positive and negative symptom scores show differ-
ent connection patterns for the fMRI and SNP components.
Further analysis is needed to explore the potential rela-
tions of SZ severity with brain function and genetic associ-
ations, but generally speaking, the strong observed connec-
tions actually support a correlation between a subjective

TABLE V. Percentage of variance explained by potential

factors

r2 SNP (%) fMRI (%)

IQ 0.16 0.29
Gender 0.65 1.02
Age 2.14 0.04
PANSS (total) 7.56a 32.15a

PANSS (positive) 20.96a 9.00a

PANSS (negative) 19.19a 44.92a

aOnly 16 SZ patients.
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measurement of disease severity and an objective brain
imaging determination.
From the t-test results (P 5 0.001 for SNPs; P 5 0.0006

for fMRI), we found a significant difference between two
subject groups. After we explored the characteristics of
fMRI and genetic components, the schizophrenia-relevant
changes are consistent with known dysfunctions in this
illness. For example, the abnormalities in parietal lobe
(precuneus, superior parietal gyrus) and superior frontal
cortex occur in regions commonly implicated as abnormal
in schizophrenia. Furthermore, as discussed earlier,
CHRNA7, DISC1, and CHAT are considered candidate
genes for schizophrenia vulnerability and brain alterations.
However, in order to confirm the connection between
these genes and the function of specific brain regions, as
well as their schizophrenia relevance, the same approach
will need to be applied to a much larger group of subjects
using more SNPs. We are now in the process of collecting
data from additional subjects as well as analyzing these
data with a whole genome SNP analysis.

CONCLUSION AND FUTURE WORK

In this paper, through parallel ICA, we built up a physi-
ogenomic framework to combine fMRI data and genetic
data to investigate connections between them. The results
of this study suggest a valid relationship between specific
regional brain functions and the selected genes. Brain
regions included those precuneus, cuneus, and lingual
gyrus, mainly involved in memory retrieval network.
Some of these regions were previously implicated in schiz-
ophrenia and other psychiatric disorders. Genetic associa-
tions revealed the contributions of 10 SNPs (in 9 genes).
Three of them, CHRNA7, DISC1, and CHAT have been
previously reported to be closely associated with schizo-
phrenia, and the other two have shown connections with
brain dysfunction. Some have been linked to each other
functionally, including SCARB1 and APOC3; yet others
have not yet been studied. Moreover, this pair of SNP/
FMRI component also showed a significant difference
between the schizophrenia and control groups. Both com-
ponents thus appear to be schizophrenia-relevant. How-
ever, these latter results must be considered preliminary
and subject to replication in a larger SNP set with more
subjects.
In summary, our study demonstrates a novel approach

to analyzing multimodality, fMRI, and genetic data, in
order to investigate connections between them. The new
approach can assess multivariate genetic influence on
endophenotypes, such as brain function related to mental
disorders. As proof of principle, we tested 367 SNPs that
were chosen initially for a metabolism study. The identifi-
cation of CHRNA7 and DISC1 as associated genes vali-
dates our approach. Given that current technology can
investigate over 500,000 SNPs, the analysis of such data
will provide a much more comprehensive means to iden-

tify possible SNP/fMRI associations, and the proposed
approach is well suited to perform such an analysis.
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