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Abstract
Children show gradual and protracted improvement in an array of behaviors involved in the conscious
control of thought and emotion. Behavioral research has shown that these abilities, collectively
referred to as executive functions (EF), can be dissociated into separable processes, such as inhibition
and working memory. Furthermore, noninvasive neuroimaging shows that these component
processes often rely on separable neural circuits involving areas of the frontal cortex and nuclei of
the basal ganglia. As additional noninvasive methodologies become available, it is increasingly
possible to continue to dissect and dissociate components of EF and also test predictions made by a
number of theoretical neuroanatomical models. One method of late is genetics, which is noninvasive
and readily used in concert with neuroimaging. The biological data obtained with neuroimaging and
genetics is particularly able to inform neuroanatomical models that link specific brain systems with
higher more abstract process models derived from purely behavioral work. As much progress in this
area continues to occur, we seek to evaluate the age dependency and manner in which certain aspects
of EF and certain anatomical circuits show changes and interactions as children develop. Some
examples are taken from research on children with the developmental disability attention deficit
hyperactivity disorder. A review of selected developmental research shows that current cognitive
and neuroanatomical models of EF offer a great many system- and synaptic-level hypotheses that
can be tested using imaging and imaging genetics in longitudinal and cross-sectional study designs.
Here, we focus on age-related changes in inhibition and working memory.
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Executive function (EF) or executive control refers to the higher order cognitive processes
involved in the conscious control of behavior, thought, and emotion. Today there is a flurry of
empirical activity surrounding executive control processes from a variety of perspectives,
including developmental psychology and developmental psychopathology.1 However, the
neurobiological mechanisms underlying developmental changes in executive control are still
largely unknown. Motives for the sudden increase in research into EF from a developmental
perspective come from evidence that suggests impaired EF to play a key role in several
childhood disorders. In particular, robust evidence suggests dysfunctional EF to be one
important neuropsychological component involved in the multifactorial etiology of attention
deficit hyperactivity disorder (ADHD).2,3 Yet, developmental change in EF deficits, such as
inhibitory control and working memory in children with ADHD, remains in question. As
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Nigg2 so aptly puts it, “Nearly all research treats ADHD in a static fashion, rather than as an
unfolding developmental pathway” (p. 25). In this review, we emphasize the importance of
understanding the intrinsic link between cognitive and neural processes in typical and atypical
development. We use EF deficits in ADHD as a primary illustrative example here because it
is one of the most well-researched areas in developmental psychopathology3 and arguably
ready to be approached from a developmental interdisciplinary perspective. In the first section
of this review, we give a short overview of the typical EF development, we then argue for
viewing ADHD as a developmental rather than as a static disorder and present preliminary
evidence indicating developmental change in executive dysfunction in relation to ADHD
symptoms. The developmental findings presented here are in line with current theoretical
developmental models of EF and dysfunction.4 In the second part of this review, we then
propose several tools that are appropriate to begin to link theoretical models of the
developmental organization of EF to extant models of the basic neurobiological processes that
underlie observed behavioral change in typical and atypical populations, such as ADHD.
Finally, we cover a few examples of recent progress in neuroimaging and imaging genetics
where these tools have been used to test neurobiological models of EF in children, albeit in a
static fashion. We propose that neuroimaging and genetic research, when combined with age-
appropriate cognitive assessments, may be a useful strategy to begin to relate cognitive
development to corresponding neural and synaptic changes in the brain. To this end, we begin
with a review of selective evidence that demonstrates the need for a dynamic age-sensitive
research model in ADHD. Such a model is readily tested using the current neuroimaging and
imaging–genetic methods.

Normal Development of EF
Although empirical evidence suggests that rudiments of EF emerge very early in life (e.g.,
delayed response performance in humans5), it is now clear that these cognitive control
functions follow an exceptionally protracted course of development, with variations in
maturational timing depending on specific executive component function. With regard to
inhibitory control, many different types of inhibitory processes exist representing different
levels of cognitive complexity (see Kipp6 for an excellent review on different types of
inhibitory control in children with ADHD), it has been repeatedly reported that, in typically
developing children, many types of inhibitory control are fully matured around 10–12 years
of age.7–9 In contrast, executive attention as measured by the child Attention Network Task
appear stable after age seven,10 whereas performance on many traditional EF tasks involving
more component functions, such as set shifting and planning (e.g., the Wisconsin card sorting
test and the Tower of Hanoi) and working memory, continue to improve in adolescence and
into early adulthood.7,8,11–13 Behavioral evidence of this sort is often supported by findings
showing protracted structural maturation of the frontal cortex. For example, myelination of the
pre-frontal cortex starts postnatally and has been shown to continue into adulthood.14 Further,
dendritic and synaptic density in the frontal lobes appear to reach a peak in the first few years
of life, with selective pruning of excess connections occurring throughout childhood and
adolescence.15 Development of these structural processes is thought to underlie many of the
important functional improvements.16 These long-standing observations of neural changes
that occur during brain development can now begin to be related to changes in behavior and
brain activity using noninvasive methods, such as structural magnetic resonance imaging
(MRI), functional MRI (fMRI), and diffusion tensor imaging. Additional probes of
neuromodulatory changes and synaptic processes are also being explored using selected
candidate genetic markers in conjunction with imaging measures. By relating developmental
changes in behavior with individual variation in brain structure and genetic markers for
synaptic processes, a more detailed and mechanistic basis for cognitive development may
emerge. As discussed in the latter part of this review, a number of current developmental and
neuroanatomical models offer a framework for hypothesis-driven research in this area.
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EF in Relation to ADHD—What Is Known and What Is Not?
Indeed, impaired executive functioning is now recognized as one of the primary components
in the complex neuropsychology of ADHD.2,3 Substantial evidence exists for structural,
functional, and neurochemical brain differences in ADHD in regions that are considered key
for EF.17 An association between ADHD and deficits in prepotent motor inhibition constitutes
the most robust findings.18,19 Importantly, however, mean effect sizes for EF measures seem
to be only moderate,18 a result that has contributed to the notion that only a subset of children
with ADHD have impaired executive control, whereas others may have dysfunction in other
neuropsychological domains (see Refs. 20–22, for alternative neuropsychological models of
ADHD). Although we agree with the notion that ADHD may have “etiological types”
characterized by deficits in different neuropsychological domains,2 at least one other potential
explanation should be highlighted in relation to the seemingly moderate effect sizes with regard
to executive deficits in ADHD. As mentioned earlier in this review, previous studies have
treated ADHD as a static rather than as a developmental disorder. In other words, the likelihood
that children with ADHD may show variations in executive deficits at different developmental
stages has not yet been fully taken into account. Instead, conclusions with regard to the strength
of executive dysfunction in relation to ADHD have been based on the mean age of groups of
children often spanning a wide range of ages. Thus, it may well be that effect sizes for specific
executive component functions have been decreased by large developmental variations in
performance within the ADHD group under study. Kipp6 puts emphasis on this critical issue
when stating “it is important to compare performance across small age ranges, so that
developmental differences are not missed by great variations in performance when
performances of the younger and older children are combined” (p.1258).

Barkley’s EF Model of ADHD
Perhaps the most influential and comprehensive account of the neuropsychological deficits
underlying ADHD is Barkley’s4 developmental model on the hierarchical organization of EF.
Barkley suggests that the primary neuropsychological deficit in ADHD is in inhibitory control
(i.e., prepotent inhibition, interruption of an ongoing response, and interference control). This
primary deficit in inhibition, in turn, impairs the four other EFs necessary for self-regulation
of behavior, cognition, and emotions—that is working memory, internalization of speech/
verbal working memory, and reconstitution. Barkley’s model has been criticized as one of the
theories attempting to explain a common core neuropsychological deficit that should be
necessary and sufficient to cause all cases of ADHD, at least with regard to the combined
subtype.23,24 As mentioned earlier, this is most likely not the case as can be partly reflected
in moderate-effect sizes for EF tasks and discrepancies in EF performance across studies.
Nevertheless, Barkley’s model, until proven otherwise, has explanatory power for
understanding the neuropsychology underpinning the ADHD subgroup characterized by EF
deficits. In addition, Barkley’s theory also has important theoretical advantages relating to how
ADHD should be conceptualized in terms of development (i.e., a static versus a developmental
disorder) and whether ADHD is best viewed as a categorical or a dimensional disorder. These
issues have important implications for future ADHD research and theory and therefore deserve
further attention.

ADHD—A Developmental and Dimensional Disorder
Barkley4,25 advocates a move away from current diagnostic criteria of ADHD (i.e., Diagnostic
and Statistical Manual of Mental Disorders [DSM IV-TR-2000]) that characterize ADHD as
a categorical and static disorder, with symptoms remaining essentially the same regardless of
age. Instead, Barkley along with other researchers, such as Edmund Sonuga-Barke, propose
ADHD as a dimensional and developmental disorder.4,25,26 To be more specific, viewing
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ADHD as a dimensional disorder means that clinical features of ADHD are taken to represent
the extreme end of normal traits rather than as a distinct category. Further, viewing ADHD as
a developmental disorder means understanding it as a delay in the rate which a normal trait is
developing. Therefore, quantitative rather than qualitative deviations in EF should be predicted
in children with ADHD compared to normal controls. Further, Barkley’s model is, to our
knowledge, the only one that allows for specific developmental predictions with regard to
executive control in relation to ADHD.

EF as a Potential Developmental Pathway in ADHD
Most previous research on EF deficits in children with ADHD have focused on school-aged
children and have not included longitudinal data. Studying neuropsychological deficits in
children in the preschool age is important given the theoretical importance of this period in
contemporary neuropsychological accounts of ADHD. For example, according to
Barkley’s4 framework model, one would primarily predict inhibitory dysfunction to be
associated with ADHD during the preschool years. Inhibitory deficits are therefore seen as the
developmental precursor to more general and later developing EF problems. Further, the need
for longitudinal studies has been pronounced along with the up and coming perspective of
ADHD as possibly developing along distinct and multiple neuropsychological pathways, of
which impairments in EF most likely is one. In order to determine such pathways, longitudinal
studies tracking the unfolding of key domains, such as EF, reward response, or regulation of
arousal/activation, using age-appropriate tasks are necessary. Better understanding of the roots
of executive control has potential implications for early detection and intervention of this
disorder. Further, the need for longitudinal studies has been emphasized so that pathways
between potential risk factors and later manifestation of the disorder can be distinguished from
transient behavioral disturbances.

Following the developmental perspective of ADHD, robust age-related changes in executive
control in typically developing children should be taken to indicate that development is an
important factor that should be emphasized in research on the neuropsychological
manifestation of ADHD. However, age-dependent changes in the relation between
neuropsychological deficits and ADHD behavioral symptoms have hitherto been largely
ignored in extant ADHD research. Therefore, the very few studies showing preliminary
evidence of developmental change in EF deficits in relation to ADHD symptoms should be
brought to the fore. Brocki and Bohlin27 investigated age-related effects in the relation between
EFs and ADHD symptoms. The results from this study, based on a normal sample ranging in
age from 6 to 13 years, suggest that poor inhibition is most clearly associated with ADHD
symptoms (both hyperactivity and inattention) for younger children, whereas poor functioning
with regard to later developing and more complex EFs, such as working memory, is associated
with inattention symptoms for older children. In line with these findings are also recent data
from several other cross-sectional and longitudinal studies showing contrasting results with
regard to executive dysfunction in preschool versus school-aged children. For example, in a
recent longitudinal study,28 it was found that different types of inhibitory control were good
independent predictors of ADHD symptoms in a preschool sample including children at risk
for ADHD and/or oppositional defiant disorder (ODD). In contrast, no relations were obtained
between working memory and symptoms of ADHD or ODD, neither concurrently nor
longitudinally. Indeed, this result is in line with previous studies linking ADHD symptoms to
poor inhibitory control in the preschool age.26,29–31 However, the longitudinal study28 also
makes an important new contribution to the ADHD research field by providing 2-year
longitudinal findings showing that distinct types of inhibitory control may represent separate
developmental roots or pathways giving rise to later ADHD symptoms. This is particularly
important in relation to the possibility of children with ADHD showing different patterns of
competence and deficit in each inhibitory process depending on age, an issue that awaits
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empirical testing and should be of interest in future studies examining ADHD from a
developmental perspective. Further, in a recent clinical study,32 marked impaired performance
in working memory processes and mild impairment in prepotent motor inhibition in elementary
school-aged children with a diagnosis of ADHD-C compared to normal controls were
demonstrated. These results are partly inconsistent with the findings obtained in the
longitudinal study28 just cited, in that the extent to which ADHD symptoms could be accounted
for by problems in inhibitory control and working memory varied between the two studies. To
be more specific, a general weakness in working memory was observed in the ADHD-C group
with particularly marked impairments on a verbal working memory task thought to put a heavy
load on the central executive of the working memory system.32 In contrast, the results from
the longitudinal study28 showed an important role for inhibitory control rather than working
memory in explaining preschool ADHD symptoms. The discrepancy in findings between these
studies may represent relative immaturity versus maturity in working memory and inhibitory
processes in preschool children compared to school-aged children. Further, in a longitudinal
study by Berlin et al.,33 inhibition in the preschool age (5 years) not only predicted symptoms
of hyper-activity and inattention in school age (8½ years) but also functioning in more complex
EF, such as working memory. Together, these results indicate that inhibitory control deficits
may be most pronounced in relation to ADHD symptoms in the preschool age and early
elementary school age, whereas more complex cognitive functions, such as working memory,
come into play in later elementary school age. Thus, these findings are in line with
Barkley’s4 developmental prediction suggesting deficits in inhibitory control to be an early
developmental precursor to, or which “sets the stage” for, more complex EF, such as working
memory. The results from the Berlin et al. study33 also indicate that changes in earlier phases
of EF development may impact later stages. It should be mentioned, however, that some studies
do report associations between impaired working memory and ADHD behavioral symptoms
already in the preschool age.31,34,35 Contrasting results for working memory and ADHD in
preschool children are not easily explained, but may be due to variations in samples and types
of measures used. For example, it is currently unclear both empirically and theoretically
whether short-term memory measures actually do tax working memory processes in preschool
children.36 The preliminary findings just presented should motivate future research to examine
developmental change in neuropsychological deficits not only in ADHD but also in other
developmental disorders. A cohesive understanding of these developmental trajectories may,
possibly, be resolved from research on basic mechanisms of working memory, inhibition,
attention, and the common and unique neural networks that carry out these functions.

Anatomical and Mechanistic Framework Models of Catecholamine
Regulation of Executive Function

To begin to further understand how a wide range of neuropsychological endophenotypes may
interrelate at various developmental timepoints, we rely on existing—albeit rather static—
neuroanatomical framework models. Using these models, we propose to draw out specific
predictions that can be adequately tested using imaging and imaging–genetic tools.
Neuroimaging and human genetics both have been used in this way to illuminate important
issues of typical and atypical development during the last decade. For example, neuroimaging
has revealed separate neural networks related to several aspects of human attention37 and,
further, has made it possible to work out the time course and connectivity of these networks.
38 Genetic research, when employed with behavioral data and/or imaging data, can document
the correlation of individual differences in performance or brain function with specific
chromosomal locations. Recent technological advances in genome sequencing and genome
manipulation serve as potent drivers of experimentation aimed at linking gene function to brain
development.39 To begin to relate developmental changes in EF to corresponding changes in
neural circuitry (via imaging) and synaptic processes (via imaging genetics), we review
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selected neuroanatomical models of attention and EF that will serve as our framework for
hypothesis construction and future testing.

Imaging findings in adults support the presence of three networks related to different aspects
of attention. These networks carry out the functions of alerting, orienting, and executive
control.40–42 Alerting is defined as achieving and maintaining a state of high sensitivity to
incoming stimuli; orienting is the selection of information from sensory input; and executive
control is defined as involving the mechanisms for resolving conflict among thoughts, feelings,
and responses. The alerting system has been associated with frontal, parietal, and thalamic
regions and can be assayed by the use of warning signals prior to targets in an fMRI setting.
37 The influence of warning signals on the level of alertness is thought to be from the
modulation of neural activity by the norepinephrine system.42 Orienting can be manipulated
by presenting a cue indicating where in space a person should attend, thereby directing attention
to the cued location.43 Event-related fMRI studies have suggested that the superior parietal
lobe is associated with orienting following the presentation of a cue.37,44 The superior parietal
lobe in humans is closely related to the lateral intraparietal area in monkeys, which is known
to produce eye movements.45 When a target occurs at an uncued location and attention has to
be disengaged and moved to a new location, there is activity in the temporal parietal junction.
44 Lesions of the parietal lobe and superior temporal lobe have been consistently related to
difficulties in orienting.46

More specifically, in the area of executive control of attention, tasks that involve such processes
as working memory, stimulus-response conflict, and inhibitory control are often employed as
a means of dissecting the functional contributions of different areas that underlie executive
control. Casey47 and reviews48–50 showed that the use of multiple experimental tasks and
parametric manipulations within tasks provide a method for specifically relating changes in
brain function to component processes of EF. In several cases, the structural and functional
imaging data gathered across tasks has been interpreted with reference to specific circuits that
are activated in these EF tasks. Neuroanatomical models centered on the role of so-called basal
ganglia thalamocortical loops involving the dorsolateral frontal cortex, anterior cingulate
gyrus, striatum, and basal ganglia have been a particularly successful framework for modeling
and testing neuroimaging results on EF in developing populations.50–53 Disruptions in these
reciprocally connected basal ganglia thalamocortical circuits can alter behaviors ranging from
simple motor responses to cognitive and emotional processes,54 and, furthermore, the basal
ganglia thalamocortical loops are heavily innervated and regulated by dopamine and
noradrenaline. As described below, selected hypotheses concerning the role of dopamine and
noradrenaline on the function of these circuits has been extensively probed using positron
emission tomography (PET) and, more recently, using behavioral and imaging genetics.

One of the central features of the basic basal ganglia thalamocortical circuit model it that
specialized anatomic structures and functional properties of cells and synaptic connections
within these loops are invoked to dissociate cognitive processes associated with different
aspects of EF. For example, in working memory tasks, properties of the prefrontal cortex are
often ascribed the function of actively maintaining rules and task-relevant experience in a
dopamine-dependent fashion.55 Primate research shows that during working memory tasks
representations in the prefrontal cortex are supported by extended firing of cortical cells that
are stabilized by frontal dopamine levels.56 In the basal ganglia thalamocortical network
model, frontal striatal connections mediated by dopaminergic input and unique structural
properties of striosomes, along with direct and indirect GABA-ergic neural pathways in the
basal ganglia, serve to probabilistically filter, integrate, and select actions.57 Primate research
reveals that the direct and indirect pathways are independently regulated by dopamine where
dopamine increases the probability of positive Go responses in a D1 receptor-dependent
fashion, and dopamine dips favor Nogo responses that are mediated through D2 receptors.
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58,59 D1 and D2 pharmacological agonists/antagonists that differentially modulate activity
and gene expression in separate Go and NoGo striatal populations support the filtering and
counterbalancing function of the direct and indirect pathways in action selection and inhibitory
control processes.60 In adult human populations, for example, dopamine medications modulate
Go and NoGo responses in opposite directions.60 Thus, the basal ganglia thalamocortical
circuit models provide a rich framework to begin to dissociate working memory processes from
inhibitory control processes. This framework model—although developmentally static—
provides a footing to begin to explore the developmental trajectories in working memory and
inhibitory control as described above.

In cases of development change in EF in developmental disorders, such as ADHD described
above, the core basal ganglia thalamocortical loop model is also particularly useful in framing
a great many pharmacological, imaging, and genetic results. For example, inefficiencies in
inhibitory control have been linked by many to diminished dopaminergic tone in the striatum.
61–63 Much genetic evidence supports the dopamine transporter gene (DAT1) as a risk factor
for ADHD, and patient populations often show higher than normal densities of striatal
dopamine transporters.64,65 The upregulation of extracellular striatal dopamine66 and not
frontal dopamine by methylphenidate67,68 further supports that notion that subcortical
portions of the basal ganglia corticothalamic circuits develop inefficiently in ADHD. In
addition, ADHD subjects often show more within-subject variability in overall reaction times
of cognitive tasks.69,70 The noradrenergic innervation of frontal striatal loops has been used
as a framework to account for this aspect of the ADHD phenomenon since reciprocal
connections between locus coeruleus and anterior cingulate cortex may account for the link
between alerting and phasic release of noradrenergic and response variability.71 For example,
deficits in response inhibition can be ameliorated by noradrenergic transporter blockers,72–
74 and primate studies using sustained-attention tasks have shown that tonically released
cortical noradrenergic can affect response variability71 wherein phasic noradrenergic release
leads to more exact reaction times and less response variability.75 In general then,
catecholaminergic hypotheses concerning the etiology of ADHD can also be examined within
the context of our general basal ganglia thalamocortical circuit models. It should be noted,
however, that there are likely to be many other brain systems involved in the developmental
deficits seen in ADHD, such as circuits that carry out verbal and visual–spatial processes. We
focus on a particular mechanistic neuroanatomical model insofar as specific, well-
substantiated, and testable hypotheses can be drawn. We acknowledge that our model covers
only one of many possible systems implicated in developmental impairments of ADHD.

Neuroimaging and Imaging–Genetic Tools for Testing Neuroanatomical
Framework Models in Developing Populations

In conjunction with a current neuroanatomical model, there are several technological tools that
are suitable for hypothesis testing in developing human populations. Noninvasive imaging and
genetic methods are ideal for the study of development in children both in cross-sectional and,
more advantageously, in longitudinal study designs. Such imaging and imaging–genetic
research is well situated to begin to relate developmental changes in behavioral performance
to corresponding changes in brain structure and function as well as specific genetic differences.
A general review of the literature shows that comparisons of brain structure and function in
healthy and ADHD populations show a great many differences in basal ganglia thalamocortical
circuits and, furthermore, that age-dependent improvement in inhibitory control from ages 4
to 12 can be related to changes in specific regions of these circuits.76–79 Although an in-depth
treatment of the imaging literature on development of EF in typical children and in children
with ADHD is beyond the scope of this review, there are several exemplars of how specific
links have been made between changes in behavioral performance and specific components of
the developing basal ganglia thalamocortical circuits.
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Initial developmental neuroimaging findings found that whole brain volumes lag by up to 5%
in children with ADHD and, more specifically, in structures of basal ganglia thalamocortical
loops.80 Reduction in prefrontal and caudate volumes81,82 as well as reductions in Globus
pallidus have been observed.83 These neuroimaging results can be used to support a
developmental-delay etiology of ADHD whereby widely distributed brain systems are slower
in gaining the necessary coordination and coherent communication. Along these lines, brain
activity in children with ADHD during the performance of cognitive operations can be more
diffuse than in normal children.53,84 Such diffuse patterns of brain activity have been noted
in young children and found to become more focal with development.85 Children with ADHD
can have higher frontal activation and lower striatal activation than control children during
response inhibition,86 as well as reduced activation of frontal areas in adolescents with ADHD.
87 Abnormal networks of regions involving insular, inferior frontal, and striatal regions are
also reported.88 The hypoperfusion of frontal and striatal areas again supports a working
framework model that implicates abnormal or delayed development wherein dorsal and ventral
aspects of basal ganglia thalamocortical loops are differentially affected.89

In addition to standard neuroimaging strategies, it has recently become possible to integrate
genetic methods into current studies. The current imaging genetics methods can be used to link
individual differences in genotype to changes in brain structure or function. When candidate
genes are those known to confer risk of ADHD or other developmental disabilities, it is of
interest to ask what types of structures and synaptic connections might be related to genetic
risk. For example, in the case of the DAT1 and the dopamine receptor type 4 gene (DRD4),
two known risk factors for ADHD, these genes influence the structure and activity of the
caudate and frontal cortex in familial and mixed populations, respectively.90 Family and twin
research shows that variation in frontal regions and EF tasks are influenced by heritable factors.
91–93 In the case of ADHD, twin and familial genetic studies show that the disorder tends to
cluster in families, with an increased incidence among first- and second-degree relatives of
affected individuals and siblings of children with ADHD.64

Initial candidate gene investigations were based on two theories of ADHD: (i) the dopamine
deficit theory of ADHD94,95 and (ii) a neuroanatomical network theory of attention,96 which
suggests how dopamine is involved in the component process of executive attention. The
candidate gene studies of ADHD have focused on two dopamine genes whose locations were
known: the DAT gene on chromosome 5 and the DRD4 gene on chromosome 11. Early studies
conducted by Castellanos and colleagues examined brain volumetric measures in two groups
of ADHD children, with and without the DRD4 7-repeat VNTR allele.97 More recently, a
longitudinal study of the DRD4 found that the 7-repeat allele of the DRD4 gene was associated
with cortical thinning in regions important in attentional control. This regional thinning was
most apparent in childhood but this association diminished during development.79 Such
imaging–genetic research provides a synthetic approach capable of tying together basic
synaptic processes with more global changes in neural structure and activity.

Concluding Remarks
The availability of noninvasive neuroimaging and imaging–genetic measurement tools are
useful tools when used in conjunction with neuroanatomical models of cognition that seek to
dissect and dissociate component processes that underlie behavior. The current models are
understandably somewhat static with respect to age-dependent changes but nevertheless
provide a rich source of testable predictions suitable for populations of different ages. We
propose that future developmental models will grow by hypothesis at multiple levels of analysis
in longitudinal and cross-sectional populations. In this way, the complex internal structure of
childhood disorders can be better understood, resulting in more effective age-related treatments
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and eventually modification in current diagnostic procedures so that diagnostic thresholds can
be adjusted to the child’s age.
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