
a1b1 integrin and interleukin-7 receptor up-regulate the expression
of RANKL in human T cells and enhance their osteoclastogenic

function

Introduction

The homeostasis of the skeletal system depends on a bal-

ance between bone-forming osteoblasts and bone-resorb-

ing osteoclasts. The ability of the immune system,

through tissue-persisting activated/effector CD4+ T cells,

to regulate this balance towards osteoclasts contributes to

pathological bone resorption seen in chronic inflamma-

tory diseases such as rheumatoid arthritis (RA), perio-

dontitis and inflammatory bowel disease.1–4 This is in part

attributable to the ability of activated T cells to produce

the osteoclastogenic cytokine receptor activator of NF-jB

ligand (RANKL), which following its binding to its recep-

tor RANK expressed on osteoclast precursors initiates the

differentiation programme that leads to the formation of

mature osteoclasts.1–5 Activated T cells in vitro or isolated
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Summary

Activated T cells, through the production of the receptor activator of

NF-jB ligand (RANKL) cytokine, have been implicated in the osteoclast

development and bone loss that are associated with autoimmune diseases

such as rheumatoid arthritis. However, the cellular pathways that regulate

the expression of RANKL and the induction of osteoclasts are still

unclear. In this study, we show that, in human effector CD4+ T cells, acti-

vation of a1b1 integrin and interleukin (IL)-7 receptor (IL-7R) up-

regulates the expression and production of RANKL but has no effect on

the production of interferon-c, an inhibitor of T-cell-mediated osteoclasto-

genesis. Thus, both a1b1 integrin and IL-7R enhance the ability of these

cells to induce the formation of osteoclasts from human monocytes. Fur-

thermore, we found that simultaneous activation of effector CD4+ T cells

via a1b1 integrin and IL-7R synergistically increases the production of

RANKL and enhances their osteoclastogenic function. We also show that,

although a1b1 integrin does not protect human effector CD4+ T cells

from IL-2-withdrawal-induced apoptosis, it does enhance the pro-survival

effect of IL-7, further emphasizing the importance of the a1b1/IL-7R syn-

ergistic effect. Together our results identify a new function of a1b1 inte-

grin in T cells and suggest that activation of effector CD4+ T cells

through a1b1 integrin and IL-7R is an important regulatory pathway in

T-cell-dependent osteoclastogenesis. Further understanding of the mecha-

nisms by which IL-7R and a1b1 integrin promote T-cell-mediated osteo-

clastogenesis will lead to new insights into the regulatory pathways of

T-cell-dependent bone resorption associated with autoimmune diseases.
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T cells from patients with chronic inflammatory diseases

such as RA produce RANKL and directly induce the

development of osteoclasts from autologous monocytes

used as osteoclast precursors.6,7

The development of osteoclasts is also dependent on

additional cytokines such as osteoprotegerin (OPG),

which can be produced by stromal cells8 OPG is a decoy

receptor of RANKL and interferes with RANKL-induced

differentiation of osteoclasts.2 Interferon (IFN)-c, which

can be produced by activated T cells, also blocks the

RANKL/RANK signalling pathway and the subsequent

formation of osteoclasts.9,10 In this context, activated T

cells that produce large amounts of IFN-c, such as in

response to T-cell receptor (TCR) stimulation, are unable

to induce the formation of osteoclasts.9–11 In contrast,

interleukin (IL)-7, which is an important cytokine in

T-cell development and survival,12 has been shown to

induce the development of osteoclasts through T-cell pro-

duction of RANKL,13,14 suggesting that the ability of acti-

vated T cells to induce the formation of osteoclasts is

probably dependent on how they are activated. It is note-

worthy that most of the above studies were conducted

with freshly isolated resting T cells, which are unlikely to

be representative of the effector T cells found at the sites

of tissue injury and which are associated with the inflam-

matory response. It is therefore still unclear how effector

T cells are activated to potently induce the formation of

osteoclasts.

Integrins are a/b heterodimeric membrane proteins

that mediate cell–cell interactions and cell adhesion to

the surrounding extracellular matrix (ECM). In addi-

tion, integrins can elicit a wide variety of intracellular

signals that modulate cell growth, proliferation and

apoptosis.15,16 T cells express several members of the b1

integrin family, which following cellular activation medi-

ate their attachment to the ECM.17,18 In addition, T-cell

interactions with the ECM in injured tissues also regu-

late their effector functions. Recent studies have focused

on the function of collagen-binding integrins a1b1 and

a2b1, which are expressed on effector/memory T cells

infiltrating the tissues.18–20 In this regard, several stud-

ies, including ours, have demonstrated that these inte-

grins co-stimulate TCR-dependent proliferation and

cytokine production and protect effector T cells from

apoptosis.21–24 In addition, a1b1 integrin has been

shown to be involved in the development of RA, a

chronic inflammatory disease associated with bone

resorption. Indeed, infiltrating T cells from the arthritic

synovium of patients express high levels of a1b1 inte-

grin25,26 and its blockade with antibodies significantly

reduces the inflammatory response and the development

of arthritis in animal models.27,28 Whether a1b1 inte-

grin has a direct role in T-cell-mediated osteoclastogen-

esis has not been explored. To explore this possibility,

we have examined whether activation of a1b1 integrin

regulates the expression of RANKL and the ability of

effector CD4+ T cells to induce the formation of osteo-

clasts. Furthermore, we have also examined whether

IL-7 regulates RANKL expression in these cells, and

whether a1b1 integrin enhances the osteoclastogenic

function of IL-7, as integrins can act as co-stimulatory

molecules.

Our results show that ligation of a1b1 integrin with its

ligand collagen IV (Coll IV) or activation of IL-7R with

IL-7 up-regulates to the same extent the expression of

RANKL in human effector CD4+ T cells. This is cor-

related with the ability of Coll IV- and IL-7-activated T

cells to induce the formation of osteoclasts from mono-

cytes. Importantly, activation of effector CD4+ T cells

with both Coll IV and IL-7 led to a synergistic induction

of RANKL and development of osteoclasts. Finally, we

show that ligation of a1b1 integrin also augments the

ability of IL-7 to protect these cells from IL-2-with-

drawal-induced apoptosis. Our results indicate that a1b1

integrin and IL-7R may represent two major regulatory

pathways that contribute to the osteoclastogenic func-

tion of effector CD4+ T cells and may thus be impor-

tant in T-cell-dependent bone loss associated with the

development of autoimmune and chronic inflammatory

diseases.

Materials and methods

Antibodies and reagents

Anti-CD3 (OKT3), anti-CD28 (CD28�2), anti-CD127

(hIL-7R-M21) and isotype control monoclonal antibodies

(mAbs) were purchased from BD Biosciences (San Diego,

CA). The anti-a1 integrin (FB12) and poly-L-lysine (PLL)

were purchased from Chemicon (Temecula, CA). Fluores-

cein isothiocyanate (FITC)-conjugated anti-mouse mAbs

were purchased from Jackson Immunoresearch (West

Grove, PA), Coll IV and IL-2 from Sigma (St Louis,

MO), and IL-7, macrophage–colony-stimulating factor

(M-CSF) and anti-human RANKL mAb (70525) from

R&D Systems (Minneapolis, MN).

Isolation of primary CD4+ T cells and generation of
long-term activated lymphoblasts

Peripheral blood mononuclear cells (PBMC) from healthy

adult volunteers were isolated on Ficoll gradients. Primary

human naı̈ve CD4+ T cells were then purified by negative

selection using magnetic beads from StemCell Technologies

(Vancouver, BC, Canada) according to the manufac-

turer’s instructions. Staining with anti-CD3 and anti-CD4

mAbs and flow cytometry [fluorescence-activated cell

sorter (FACS)] analysis indicated that more than 97%

of the isolated cells were CD3/CD4 double-positive T

cells. Freshly isolated blood T cells do not express the
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collagen-binding integrins a1b1 and a2b1 but do so after

in vitro activation.18,19,24 Thus, the cells were activated

with immobilized anti-CD3 (2�5 lg/ml) and soluble anti-

CD28 (5 lg/ml) mAbs for 24 hr in complete RPMI 1640

medium supplemented with 10% of fetal bovine serum

(FBS), 2 mM/l glutamine and 100 units/ml penicillin and

streptomycin. The cells were then washed, transferred to

flasks and cultured for 10 more days in the presence of

20 U/ml of recombinant IL-2, which was added every

2 days. Because IL-2 down-regulates the expression of

IL-7R on activated/effector T cells,29 the cells at day 10

were cultured for one more day in fresh medium in the

absence of IL-2 before being used in subsequent experi-

ments. These cells, which will be referred to as effector

CD4+ T cells, are responsive to TCR activation, which

leads to IL-2 and IFN-c production.

Cell surface molecule expression

The expression of cell surface receptors on effector

CD4+ T cells was determined by immunostaining and

flow cytometry analysis. The cells were incubated on ice

with 10 lg/ml of anti-a1 integrin or anti-CD127 or with

control isotypic mAbs for 45 min in PBS containing 1%

FBS. The cells were washed and incubated with FITC-

conjugated anti-mouse mAb for another 45 min. Cells

were washed in PBS and analysed by flow cytometry

using a FACScan instrument (BD Biosciences).

Enzyme-linked immunosorbent assays (ELISAs)

The production of IFN-c and soluble RANKL was mea-

sured using specific ELISAs from R&D Systems (Minne-

apolis, MN) and Biomedica (Vienna, Austria),

respectively. After 24 hr of activation, cell supernatants

were harvested and loaded on an ELISA plate according

to the manufacturer’s instructions.

Apoptosis assays

Apoptosis was determined using the Annexin V-PE/7AAD

detection kit from BD Biosciences. After stimulation, the

cells were washed in cold PBS, and 105 cells were incu-

bated in 1· buffer containing 5 ll of Annexin V-PE and

5 ll of 7-aminoactinomycin (7-AAD) for 15 min at room

temperature, in the dark. The cells were then washed and

analysed by flow cytometry using the FACScan instru-

ment (BD Biosciences) and apoptotic cells were identified

as cells that were Annexin V-positive.

Reverse transcriptase–polymerase chain reaction
(RT-PCR) analysis

Total RNA was extracted with Trizol reagent according to

the manufacturer’s instructions (Invitrogen, Carlsbad,

CA). First-strand cDNA was prepared from 1 lg of total

RNA using the Thermoscript RT-PCR system from Invi-

trogen. RANKL and b-actin transcripts were amplified by

PCR using specific primers as previously described.30 PCR

reactions were performed with 1 U Taq polymerase in a

total volume of 50 ll, and amplifications were carried out

in a Peltier Thermal Cycler (MJ Research, Ramsey, MN).

The amplification for each gene was in the linear curve,

i.e. under non-saturating conditions during the exponen-

tial phase. A volume of 10 ll of the reaction mixture was

size-separated on a 2% agarose gel, and specifically ampli-

fied products were detected by ethidium bromide staining

and UV illumination.

Immunoblot analysis

The cells were resuspended in RPMI 1640 medium and

stimulated in six-well plates. At the end of cultures, the

cells were harvested and washed in cold PBS, and cell

lysates were prepared in radio-immune precipitation assay

(RIPA) buffer containing protease and phosphatase inhib-

itors as previously described.24 Cell lysates were subjected

to sodium dodecyl sulphate–polyacrylamide gel electro-

phoresis (SDS-PAGE) and analysed by immunoblot using

specific anti-RANKL mAb. The blots were stripped and

re-probed with control anti-actin mAb (Santa Cruz Bio-

technology, Santa Cruz, CA) to ensure equal loading. In

all experiments, immunoblots were visualized using a

horseradish peroxidase (HRP)-conjugated secondary anti-

body followed by enhanced chemiluminescence detection

(Pierce, Rockford, IL).

Osteoclastogenesis experiments

The ability of RANKL-expressing effector CD4+ T cells to

induce the development of osteoclasts was tested in a co-

culture assay with human monocytes used as osteoclasts

precursors. Human CD16-negative monocytes, which

have the ability to differentiate into osteoclasts,31 were

isolated from the peripheral blood of healthy volunteers

by immunomagnetic negative selection (StemCell Tech-

nologies, Vancouver, BC, Canada). Monocytes

(1 · 105 cells) were seeded in 48-well plates and were

activated with M-CSF (100 ng/ml) in alpha minimum

eagle medium (aMEM) supplemented with serum and

antibiotics. Shortly thereafter, effector T cells (1 ·
105 cells) that had been activated or not for 12 hr with

IL-7, Coll IV, anti-CD3 mAb, IL-7 + Coll IV or anti-

CD3 + Coll IV were added to the monocytic cultures.

Culture media and activated T cells were replaced every

2 days with fresh media and freshly activated effector T

cells, respectively, as above. At the end of the experi-

ment (day 8), osteoclast development was visualized

by tartrate-resistant acid phosphatase (TRAP) staining

(Sigma) according to the manufacturer’s instructions.
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After staining, multinucleated (�4 nuclei) TRAP-positive

cells were counted as osteoclasts.

Results

Expression of a1b1 integrin and IL-7R on effector
CD4+ T cells

To determine the involvement of a1b1 in T-cell-mediated

osteoclastogenesis, we used effector CD4+ T cells gener-

ated after in vitro activation. These cells express high

levels of a1 integrin, as we and others have previously

shown.19,24,32 After 12 days of activation, almost 78% of

the total cell population stained positive for a1 integrin,

with an average mean fluorescence intensity (MFI) of

25�71 (Fig. 1a). These cells were also found to express

high levels of IL-7R, as 90% of the total cell population

stained positive for the a chain of IL-7R (CD127) with an

MFI of 50 (Fig. 1b; left panel). The expression of IL-7R

detected on human effector CD4+ T cells is in agreement

with reports showing that effector T cells can maintain

significant levels of IL-7R.33–35 The cells were also respon-

sive to IL-7 stimulation, as this led to a significant

reduction in the levels of CD127 on the cell surface

(Fig. 1b, right panel) as previously observed.36

a1b1 integrin and IL-7R up-regulate the expression
and production of RANKL in effector CD4+ T cells

To examine whether a1b1 integrin regulates RANKL

gene expression, we stimulated effector CD4+ T cells

with Coll IV, the ligand of a1b1 integrin, IL-7 or

IL-7 + Coll IV. As shown in Fig. 2a, effector CD4+ T

cells expressed low levels of RANKL mRNA, which

were significantly increased upon stimulation for 6 hr

with IL-7 or with Coll IV. Importantly, the combina-

tion of IL-7 and Coll IV led to a stronger up-regula-

tion of RANKL mRNA levels. As a control, PLL, a

non-integrin-binding ligand, had no effect on RANKL

gene expression and did not affect the IL-7 response.

Similar results were also obtained when the cells were

activated for 24 hr (Fig. 2a). These results indicate that

a1b1 integrin and IL-7R are important regulatory path-

ways of RANKL gene expression in human effector

CD4+ T cells. To determine whether the up-regulation

of RANKL mRNA could also be observed at the pro-

tein level, we measured the levels of RANKL protein by

immunoblot analysis. As shown in Fig. 2(b), IL-7 and

Coll IV increased the protein levels of RANKL and

their combination led to enhanced production of

RANKL.

Similar to other tumour necrosis factor (TNF) ligands,

RANKL also undergoes molecular shedding, leading to

the production of a soluble form that is measured in cell

supernatants.37 We therefore measured the levels of solu-

ble RANKL and, as shown in Fig. 2(c), effector CD4+ T

cells produced detectable levels of soluble RANKL, which

were significantly increased by IL-7 and Coll IV. The

combination of IL-7 + Coll IV also led to a synergistic

production of soluble RANKL. The up-regulatory effect

of IL-7, Coll IV and IL-7 + Coll IV on RANKL gene

expression and production was not a result of augmented

cell proliferation as no changes in cell numbers were

detected in any of the tested conditions (data not shown).

Together these results indicate that ligation of a1b1 with

Coll IV up-regulates the levels of RANKL in human effec-

tor CD4+ T cells and synergizes with IL-7R in this

process.

Activation of effector CD4+ T cells through a1b1 and
IL-7R does not modulate IFN-c production

As activated T cells are known to produce IFN-c, which is

an inhibitor of RANKL-induced osteoclastogenesis, we ver-

ified the expression of IFN-c in effector CD4+ T cells. As

shown in Fig. 3, these cells expressed low levels of IFN-c,

which were not modulated by IL-7, Coll IV or IL-7 + Coll

IV. In contrast, and in agreement with our recent report,23
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Figure 1. Human effector CD4+ T cells express a1b1 integrin and

the interleukin-7 receptor (IL-7R). The expression of these cell sur-

face receptors was determined by fluorescence-activated cell sorting

(FACS) analysis as described in the Materials and methods.

(a) Expression of a1b1 integrin. (b) Expression of IL-7R on effector

CD4+ T cells without stimulation (left panel) and upon stimulation

with IL-7 for 8 hr (right panel). The results are representative of

three independent experiments performed with T cells from different

blood donors.
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cells activated via TCR (anti-CD3 mAb) produced high lev-

els of IFN-c, and Coll IV did not modulate these levels

(Fig. 3). Furthermore, and in agreement with previous

findings,11,30,38,39 we found that effector CD4+ T cells

activated or not with IL-7, Coll IV or IL-7 +Coll IV did not

express osteoprotegerin (OPG) (data not shown).

a1b1 integrin and IL-7R up-regulate the
osteoclastogenic function of effector CD4+ T cells

To examine the functional role of IL-7R and a1b1

integrin in T-cell-dependent osteoclastogenesis, we

sought to determine the ability of effector CD4+ T cells

activated with IL-7, Coll IV or both to induce the for-

mation of osteoclasts as measured by the number of

TRAP-positive multinucleated cells. As shown in Fig. 4,

IL-7-activated effector CD4+ T cells significantly

increased the formation of osteoclasts from monocytes

compared with non-activated cells. Furthermore, Coll

IV-activated T cells also increased the formation of

osteoclasts (Fig. 4a,b). Importantly, IL-7 + Coll IV-acti-

vated T cells were the most potent in inducing the

formation of osteoclasts (Fig. 4a,b), indicating that the

synergistic effect of IL-7 and Coll IV on RANKL

expression also occurs at the functional level. The for-

mation of osteoclasts was attributable to RANKL as it

was significantly reduced by recombinant OPG, and

monocytes cultured without effector T cells did not

form osteoclasts (Fig. 4a,b).

As TCR-activated effector T cells produce large

amounts of IFN-c, we investigated whether these cells

have the ability to induce the formation of osteoclasts,

and found that this is not the case (Fig. 5). Interestingly,

activation of effector CD4+ T cells via TCR also induced

RANKL expression, which was also up-regulated by Coll

IV (Fig. 6). Together, these results indicate that activation

of IFN-c-producing effector T cells has the ability to
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does not increase the production of interferon (IFN)-c. Cells were acti-

vated as indicated for 24 hr, and then cell supernatants were harvested

and the production of IFN-c was determined by enzyme-linked immu-

nosorbent assay (ELISA). The results are presented as mean values

from four independent experiments performed in triplicate with T

cells from different blood donors, with standard errors as indicated.
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Figure 2. Interleukin (IL)-7 and collagen IV (Coll IV) induce the

expression of receptor activator of NF-jB ligand (RANKL).

(a) Effector CD4+ T cells were activated with IL-7 (2.5 ng/ml), Coll

IV (20 lg/ml), poly-l-lysine (PLL; 20 lg/ml), IL-7 + Coll IV, and

IL-7 + PLL for 6 or 24 hr. The cells were harvested, total RNA was

prepared and the expression of RANKL was determined by reverse

transcriptase–polymerase chain reaction (RT-PCR) analysis. As a

control, the levels of actin mRNA were also determined. The results

are representative of three independent experiments performed with

T cells from different blood donors. (b) Cells were activated as

indicated for 24 hr and cell lysates were prepared. The expression

of RANKL was then determined by immunoblot analysis. The blot

was stripped and re-probed with anti-actin monoclonal antibody to

ensure equal loading. The results are representative of two indepen-

dent experiments performed with T cells from different blood

donors. (c) Cells were activated as indicated for 24 hr, and then

cell supernatants were harvested and the production of soluble

RANKL was determined by enzyme-linked immunosorbent assay

(ELISA). The results are presented as mean values from three

independent experiments performed in triplicate with T cells from

different blood donors, with standard errors as indicated. Statistical

analysis was carried out using Student’s t-test: *P < 0�05 between

IL-7-treated and untreated samples (med), and between Coll

IV-treated and untreated samples (med). **P < 0�05 between

IL-7 + Coll IV- and IL-7-treated samples, and between IL-7 + Coll IV-

and Coll IV-treated samples.
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induce the development of osteoclasts when cells are acti-

vated through IL-7R and a1b1 integrin.

Coll IV potentiates the survival effect of IL-7

Protection of effector CD4+ T cells from IL-2-withdrawal-

induced apoptosis can contribute to their accumulation in

inflamed tissues40,41 and thus to T-cell-mediated tissue

injury, and IL-7 is known to protect T cells from this form

of apoptosis.12,42–44 We therefore investigated whether

ligation of a1b1 integrin with Coll IV also regulates T-cell

survival or potentiates the anti-apoptotic function of IL-7.

Effector CD4+ T cells were activated or not in the absence

of IL-2 with IL-7, Coll IV or IL-7 + Coll IV and their

apoptosis was determined. As shown in Fig. 7, IL-2-starved

effector T cells showed significant cell death after 72 hr, as

nearly 60% of the cells were Annexin V-positive. The pres-

ence of IL-7 reduced apoptosis by 45%; Coll IV by itself

had no effect but potentiated the IL-7 effect. Indeed, IL-

7 + Coll IV reduced apoptosis by 73% compared with the

45% inhibition of apoptosis elicited by IL-7 alone.

Together these results suggest that Coll IV enhances not

only IL-7-induced production of RANKL but also IL-7-

induced survival, suggesting that Coll IV + IL-7 may
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Figure 4. Interleukin (IL)-7- and collagen IV (Coll IV)-activated effector CD4+ T cells induce the formation of osteoclasts. Effector CD4+ T cells

(T) were activated with IL-7, Coll IV or IL-7 + Coll IV or left untreated (med). They were washed and co-cultured with monocytes in the pres-

ence of macrophage colony-stimulating factor (M-CSF). Monocytes cultured alone and monocytes cultured with T cells activated with

IL-7 + Coll IV in the presence of recombinant osteoprotegerin (OPG) are also shown. After 8 days, the cultures were washed and the adherent

cells stained for tartrate-resistant acid phosphatase (TRAP) activity as described in the Materials and methods. (a) Representative images showing

the formation of TRAP-positive multinucleated osteoclast cells. (b) Quantification of osteoclast formation induced by activated T cells. After

TRAP staining, the total numbers of TRAP-positive cells with at least four nuclei were counted. The results are presented as mean values from

three independent experiments performed in duplicate with T cells from different blood donors, with standard errors as indicated. Statistical

analysis was carried out using Student’s t-test: *P < 0�05 between IL-7-treated and untreated samples (med), between Coll IV-treated and
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treated samples, between IL-7 + Coll IV- and Coll IV-treated samples, and between IL-7 + Coll IV- and IL-7 + Coll IV + OPG-treated samples.
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represent an important signalling pathway in the immuno-

pathogenic function of effector CD4+ T cells.

Discussion

The mechanisms by which effector T cells are activated to

induce the formation of osteoclasts are not well under-

stood. In the present study, we have demonstrated that

a1b1 integrin, which is expressed on effector CD4+ T

cells found in inflamed tissues, induces the expression of

RANKL and enhances the formation of osteoclasts, thus

identifying a novel role of a1b1 integrin in T-cell func-

tions. In addition, our results extend the previously

reported osteoclastogenic function of IL-7 in naı̈ve T

cells14 to human effector CD4+ T cells. More importantly,

our results show that IL-7R and a1b1 integrin on these

cells synergize to augment their expression of RANKL,

their ability to induce the formation of osteoclasts and

their survival. Together these results indicate that IL-7R

and a1b1 integrin represent major regulatory pathways

involved in T-cell-mediated osteoclastogenesis.

Our results show that stimulation of IFN-c-producing

effector CD4+ T cells with Coll IV and IL-7 augments the

levels of RANKL but does not affect the expression of

IFN-c; an inhibitor of osteoclast development. This is

correlated with the ability of these activated cells to

induce the formation of osteoclasts. Although they

express basal levels of IFN-c, it is likely that these levels

are insufficient to prevent the formation of osteoclasts.

This has also been reported with naı̈ve T cells stimulated

with phytohaemagglutinin,45 suggesting that IFN-c-

producing effector CD4+ T cells can induce the formation

of osteoclasts when they are activated with stimuli that
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Figure 5. T-cell receptor (TCR)-activated effector CD4+ T cells do

not induce the formation of osteoclasts. The cells were activated with

anti-CD3 monoclonal antibody in the presence or absence of colla-

gen IV (Coll IV). The cells were washed and co-cultured with mono-

cytes in the presence of macrophage colony-stimulating factor

(M-CSF). After 8 days, the cultures were washed and stained for

tartrate-resistant acid phosphatase (TRAP) activity as described in

the Materials and methods. The results are presented as in Fig. 4(b).
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Figure 6. Activation of effector CD4+ T cells via the T-cell receptor

(TCR) and a1b1 integrin also augments the production of receptor

activator of NF-jB ligand (RANKL). The cells were activated or not

with anti-CD3 monoclonal antibody, collagen IV (Coll IV) or both

stimuli. After 24 hr, cell supernatants were harvested and the pro-

duction of soluble RANKL assessed by enzyme-linked immuno-

sorbent assay (ELISA). The results are presented as in Fig. 2(c).

Statistical analysis was carried out using Student’s t-test: *P < 0�05

between anti-CD3 + Coll IV- and anti-CD3-treated samples.
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the cells were also cultured in the presence of IL-2. After 72 hr, cell

apoptosis was determined by Annexin V/7AAD staining and fluores-

cence-activated cell sorting (FACS) analysis. The results are presented

as mean values from three independent experiments performed in

triplicate with T cells from different blood donors, with standard

errors as indicated. Statistical analysis was carried out using Student’s

t-test: *P < 0�05 between IL-7-treated and untreated (med) samples.

**P < 0�05 between IL-7 + Coll IV- and IL-7-treated samples.
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limit the production of IFN-c. This possibility is also sup-

ported by our finding that effector CD4+ T cells activated

through the TCR were unable to induce the formation of

osteoclasts, despite the fact that these cells also produce

RANKL. These results are in agreement with previous

studies showing that activation of T cells via the

TCR, which leads to the production of high levels

of IFN-c, interferes with their ability to induce osteoclasto-

genesis.9–11

We also examined whether activation of effector T cells

through the TCR and IL-7R and a1b1 integrin enhances

their osteoclastogenic function. We found that simulta-

neous activation of effector T cells via IL-7R and TCR led

to slightly increased production of both IFN-c and

RANKL, and Coll IV/a1b1 slightly enhanced IL-7R +

TCR-mediated production of RANKL but not IFN-c.

However, these cells were still unable to induce the for-

mation of osteoclasts because of the high levels of IFN-c
produced by these T cells (data not shown). These results

further indicate the importance of the IL-7R/a1b1 inte-

grin pathway in T-cell-mediated osteoclastogenesis.

Although Th1 cells have been associated with the patho-

genesis of RA, an autoimmune disease associated with

bone resorption, it was not possible to measure significant

levels of IFN-c in the synovial tissue.46 This suggests that,

in the synovial tissue, these T cells can be activated with

pro-inflammatory signals that do not lead to the produc-

tion of high amounts of IFN-c, such as through a1b1

integrin and IL-7R, as proposed herein. In this context,

a1b1 integrin is expressed on effector CD4+ T cells infil-

trating the synovium and has been implicated in the

development of RA.25–28 Furthermore, synovial T cells

from patients were also shown to express IL-7R.47 IL-7 is

an important cytokine in T-cell development and survival

and is produced by stromal cells found in the extracellu-

lar compartment of many tissues.12 Importantly, IL-7

levels are augmented in chronic inflammatory diseases

such as RA, and IL-7 has been implicated in the activa-

tion of synovial T cells48 and in the induction of bone

loss in vivo.13 Therefore, our study strongly suggests that

a1b1 integrin and IL-7R could represent two major sig-

nalling pathways implicated in the regulation of T-cell-

mediated bone loss associated with RA. Our results

further support the notion that activation of effector

T cells can occur independently of the TCR,49–51 espe-

cially in chronic inflammatory diseases such as RA, where

cytokines and, as shown herein, ECM proteins can be

critical in driving the activation of effector T cells.

In addition to T cells, osteoblasts also produce RANKL

and induce the formation of osteoclasts. In this regard, it

was recently demonstrated that adhesion of human osteo-

blasts to collagen type I (Coll I) also up-regulates RANKL

and the induction of osteoclasts.52 Together with ours,

these studies identify cell–ECM interactions as important

not only in cell adhesion but also in the regulation of

bone resorption. We previously demonstrated that liga-

tion of a2b1 integrin with Coll I reduces TCR- and doxo-

rubicin-dependent expression of RANKL in Jurkat T

cells.30 We have also shown that a2b1 integrin enhances

the production of TCR-dependent production of IFN-c 23

and, similar to Coll IV, we found that anti-CD3 + Coll

I-activated effector T cells also do not induce the forma-

tion of osteoclasts (data not shown). However, although

Coll I enhanced IL-7-dependent RANKL expression in

human effector CD4+ T cells, it did not enhance their

ability to induce the development of osteoclasts (data not

shown). The mechanisms underlying the effect of Coll I

in the context of IL-7 co-stimulation are currently

unknown but are not due to the up-regulation of IFN-c.

Additional experiments are required to determine how

Coll I modulates T-cell-mediated osteoclastogenesis.

Although a2b1 integrin is expressed along with a1b1

integrin on effector/memory T cells, its blockade had only

a minor effect on the development of arthritis compared

with the blockade of a1b1 integrin.27 Thus, these studies

suggest that a1b1 integrin may be more important than

a2b1 integrin in the regulation of T-cell-dependent bone

loss.

Both Coll IV and IL-7 are present in the bone tis-

sue,48,53 and IL-7 has previously been shown to increase

the adhesion of T cells to ECM proteins including Coll

IV.54 Thus, during bone resorption, IL-7 can increase the

adhesion of effector T cells to Coll IV, which will result

in their retention in the bone tissue and to the synergistic

production of RANKL. Subsequently, this will lead to the

development of osteoclasts either from monocytes

recruited from the periphery or from myeloid cells of the

bone marrow, which will ultimately lead to bone erosion.

In addition to the up-regulation of RANKL, our results

also show that a1b1 integrin enhances the pro-survival

function of IL-7. While Coll IV had no effect on IL-2-with-

drawal-induced apoptosis of effector CD4+ T cells, it did

enhance the protective effect of IL-7. This form of apopto-

sis occurs during the contraction phase of the immune

response and protection from it has been suggested to be a

critical step in the development of memory T cells as well

as in the persistence of activated T cells during chronic

inflammation.40,41 Our results may help to explain why

synovial T cells, which were shown to be resistant to apop-

tosis, manage to survive in the inflamed synovium, where

only minor amounts of IL-2 were detected.55,56 The role of

IL-7 in T-cell survival and in the development of T-cell

memory has been well studied.12,43,44 However, recent

studies indicate that IL-7R alone is not sufficient for the

efficient survival of effector T cells and their differentiation

towards memory T cells.35,57 In contrast, a1b1 integrin has

been implicated in the protection of effector T cells from

apoptosis during influenza infection.58 The results of the

present study suggest that it is highly possible that the

functional interaction between these two receptors may be
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the key for long-term survival of effector/memory T cells.

Thus, our results suggest that, during chronic inflamma-

tion associated with bone loss, IL-7R and a1b1 integrin

signalling pathways can rescue effector/memory T cells and

promote bone resorption through the up-regulation of

RANKL expression.

Our findings strongly suggest that b1 integrins can also

provide signals that are co-stimulatory to cytokine signal-

ling. A recent study showed that a1b1 integrin synergizes

with the TNF II receptor in protecting effector CD8+ T

cells from Fas-induced apoptosis.21 Thus, in addition to

TCR signalling, integrins can be important modulators of

cytokine signalling in T cells.

In summary, we have identified a new signalling path-

way composed of a1b1 integrin and IL-7R that contrib-

utes to T-cell survival and to T-cell-mediated

osteoclastogenesis. Further investigation of the signalling

mechanisms underlying the effects of IL-7 + Coll IV is

likely to provide new insights into how T cells contribute

to the T-cell-mediated bone erosion seen in autoimmune

diseases.
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