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made necessary the imposition of rest periods between 
cycles of therapy—a practice that not only involves 
re-growth of tumour cells, but also growth of selected 
clones resistant to the therapy. Hence, the therapeutic 
success obtained during the first cycles of treatment 
reverts in the direction of growth of more malignant 
metastatic tumours with no therapeutic response.

2.	 DISCUSSION

2.1	 A New Therapeutic Philosophy

A turning point in cancer chemotherapy can be placed 
in the year 2000, when Fidler and Ellis said, “Cancer 
is a chronic disease and should be treated like other 
chronic diseases” 1. Simultaneously, and to avoid the 
problems caused by the traditional chemotherapeutic 
treatments, several groups, including ours, began to 
study a new modality of drug administration that 
Douglas Hanahan called “metronomic therapy”  2. 
That name makes reference mainly to the schedule, 
which consists of chronic, equally spaced, and (gen-
erally) low doses of various chemotherapeutic drugs 
without extended rest periods. The first researchers 
involved in such a proposal, which meant a change in 
the rationale with which chemotherapy is undertaken, 
were Judah Folkman and Robert Kerbel and their 
respective colleagues 3,4. These groups demonstrated 
the antitumour efficacy of some of the most widely 
used chemotherapeutic drugs administered chroni-
cally in low doses as anti-angiogenic agents, therefore 
implying a different cell target. This new concept 
includes the possibility of treating tumours that no 
longer respond to traditional chemotherapy. The 
novelty consisted of a cell target switch (aiming at 
the tumour endothelial cells), together with a change 
in the schedule and dose of drug administration.

2.2	 Metronomic Chemotherapy in the Experimental 
Setting

As with any other experimental therapy, metronomic 
chemotherapy (mct) built its foundations with plenty 
of experimental work, beginning with the pioneering 
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1.	 INTRODUCTION

Chemotherapy regimens reflect a controversy that is by 
now historical: between efficacy in tumour killing and 
lack of toxicity, which way should the scale be tipped? 
On one side is the ability of chemotherapeutic drugs to 
disrupt the dna of tumour cells, rendering them unable 
to replicate and finally killing them, with a befitting 
corollary: “the higher the dose, the better.” On the 
other side is the toxicity expressed at several organ 
sites, which not only diminishes quality of life for the 
patient, but also conspires against a good resolution 
of the cancer treatment, adding more illness to the 
already existing one. The introduction of the maxi-
mum tolerated dose (mtd) in usual treatment protocols 
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work in the Folkman and Kerbel laboratories. Browder 
and colleagues demonstrated that standard chemo-
therapeutic drugs such as cyclophosphamide can also 
be used as anti-angiogenic agents. The administration 
of cyclophosphamide in doses lower than the mtd, at 
shorter intervals and without extended rest periods, 
showed results better than those obtained with the 
mtd schedule in the treatment of two cyclophosph-
amide-resistant tumours, Lewis lung carcinoma and 
the murine mammary carcinoma cell line EMT-6 3. 
They also eradicated the drug-sensitive Lewis lung 
carcinoma and the L1210 leukemia using the same 
therapy. This schedule of cyclophosphamide admin-
istered in combination with a specific anti-angiogenic 
agent (TNP-470) eliminated most drug-resistant 
Lewis lung carcinomas. Nevertheless, despite being 
lower than the mtd, the dose of cyclophosphamide 
was still high, and the experimental animals received 
palliative care to ameliorate gastrointestinal dysfunc-
tion and weight loss.

At almost the same time, Klement et al. published 
important work testing the effect of low-dose con-
tinuous chemotherapy as a possible anti-angiogenic 
strategy. Before undertaking in vivo experiments, 
they established, in vitro, a dose of vinblastine that 
showed antiproliferative effect on human umbilical 
vein endothelial cells, but not on human neuroblas-
toma cell lines (SK-NM-C and SK-N-AS). In the 
in vivo model, animals bearing xenografts of both 
neuroblastoma cell lines were treated with low doses 
of vinblastine; or a monoclonal neutralizing antibody 
(DC101) that blocks the function of vascular endothe-
lial growth factor receptor 2 (vegfr2) and, hence, vas-
cular endothelial growth factor (vegf) itself; or both 
agents together. The animals treated with either drug 
alone showed inhibition of tumour growth, an effect 
that did not last. On the other hand, the combination 
treatment induced an initial response similar to that 
in the other treatment groups, and that response was 
followed by long-term tumour regression. The usual 
signs of drug toxicity in mice (for example, weight 
loss, ruffled fur, anorexia, cachexia, skin tenting, skin 
ulceration, or toxic death) were not seen at the doses 
used in the experiment 4. Vacca and colleagues also 
used vinblastine during in vitro testing of the effect 
of non-cytotoxic doses on endothelial cell functions 
involved in angiogenesis and then, in vivo, with the 
chick embryo chorioallantoic membrane model. They 
showed dose-dependent anti-angiogenic activity 5.

These seminal experiments suggested the pos-
sibility that various kinds of tumours may be ame-
nable to chronic treatment, prompting our group, 
and others, to study the efficacy of metronomic che-
motherapy in other tumour models. We focused our 
interest both on the antitumour and anti-metastatic 
effect achieved, and on the toxicity of the treatment. 
We were able to demonstrate that metronomic ad-
ministration of cyclophosphamide at low doses on a 

3-times-weekly schedule eradicated established rat 
lymphomas and sarcomas (10 mg/kg and 5 mg/kg 
body weight respectively). Neither metastatic growth 
nor recurrence at primary sites occurred for 100% 
of the lymphomas and 83% of the sarcomas, and 
no weight loss was observed. At the same time, the 
regimen was devoid of hematologic, cardiac, hepatic, 
and renal toxicity 6.

The experimental work developed in several 
laboratories showed antitumour efficacy and a lack 
of the manifest toxicity of mct in various in vivo 
tumour models in which animals were treated metro-
nomically with diverse agents. Established orthotopic 
multidrug-resistant human breast cancer xenografts 
in scid (severe combined immunodeficiency) mice 
were treated with paclitaxel, vinblastine, cisplatin, 
or doxorubicin alone or in combination with DC101 7. 
Also, DC101 was combined with oral cyclophosph-
amide in a similar model 8 and with doxorubicin to 
treat a human soft-tissue sarcoma xenograft in scid 
mice 9. Metronomic cyclophosphamide was also used 
in a mouse model of pancreatic cancer in combina-
tion with another vegfr2 inhibitor (SU5416) or two 
different inhibitors of matrix metalloproteinases 10. In 
addition, a combination regimen with metronomic cy-
clophosphamide plus uft (a 5-fluorouracil pro-drug) 
showed therapeutic efficacy in a model of advanced 
metastatic breast cancer  11. Interestingly, the ad-
ministration of metronomic cyclophosphamide plus 
low-dose pegylated liposomal doxorubicin achieved 
a high antitumour effect in an experimental mouse 
model of metastatic pulmonary melanoma 12. Also, 
and very importantly, metronomic administration 
of low-dose cyclophosphamide was demonstrated 
to show not only good therapeutic results, but also 
low-grade or absent toxicity in tissues highly sensi-
tive to the toxic effects of mtd regimens 6,13. Several 
common chemotherapeutic drugs such as vinblastine, 
carboplatin, topotecan, and cisplatin were tested 
either alone or in combination with anti-angiogenic 
agents for the treatment of various human tumours 
such as glioblastoma, Wilms tumour, breast cancer, 
and testicular germ cell tumour  14–17. Interesting 
work showed the efficacy of using both metronomic 
therapy and standard-of-care mtd in a so-called 
chemo-switch regimen, suggesting a potential clini-
cal strategy in which standard mtd is followed by a 
novel maintenance regimen 18.

More recently, a new therapeutic approach was 
proposed, now targeting the multicellular biologic en-
tity of the tumour microenvironment. Blansfield and 
colleagues 19 administered metronomic cyclophos-
phamide plus lenalidomide, an immunomodulatory 
drug, and sunitinib, a tyrosine kinase inhibitor. This 
three-drug combination delayed almost completely 
the progression of tumour growth in xenograft mod-
els of ocular melanoma, colon cancer, pancreatic 
cancer, and cutaneous melanoma.
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2.3	 How Does Metronomic Chemotherapy Work?

Angiogenesis is a normal process that has essential 
roles in development, reproduction, and tissue repair. 
On the other hand, pathologic angiogenesis is closely 
involved in diabetic retinopathy, chronic inflam-
mation, and tumour formation. Angiogenesis plays 
a critical role in the growth and metastatic spread 
of tumours 20. The angiogenic switch occurs when 
levels of angiogenesis stimulators such as vegf and 
basic fibroblast growth factor (bfgf) exceed those of 
angiogenesis inhibitors such as thrombospondin-1 
(tsp-1) 21,22.

In 1971, Judah Folkman first articulated the 
concept of what he called “anti-angiogenic” drugs. 
Based on observations that expansion of a tumour 
mass was limited in the absence of angiogenesis, he 
proposed that treatment with drugs that prevent the 
formation of tumour blood vessels might be able to 
constrain cancer for prolonged periods 23. Since then, 
several direct or indirect angiogenesis inhibitors 
such as bevacizumab, sorafenib, and sunitinib 24–27 
have been developed, stimulating the proposal of 
anti-angiogenic therapeutic schedules. It is worth 
mentioning that inhibition of angiogenesis had al-
ready been demonstrated in animal models by several 
chemotherapeutic drugs such as mitoxantrone and 
bisantrene, and cyclophosphamide, paclitaxel, and 
methotrexate 28–31.

The angiogenic polypeptide vegf is detected in 
many malignant tumours 32. Several in vitro and in 
vivo studies demonstrated that vegf can be considered 
a marker of the angiogenesis process 33–36. Interest-
ingly, a decrease in serum levels of vegf was observed 
in patients with advanced breast cancer treated 
with metronomic low-dose cyclophosphamide  37. 
Similarly, a metronomic chemotherapy regimen of 
weekly platinum and daily oral etoposide in patients 
with high-risk non-small-cell lung cancer showed a 
decrease in vegf levels during treatment 38.

One of the drawbacks for the extended clinical 
use of mct is the fact that the most effective dose 
and schedule have yet to be defined. Therefore, with 
the aim of filling that need, the roles of various sur-
rogate markers of angiogenesis and vasculogenesis 
were studied to understand whether they can be used 
to define the anti-vascular activity of certain drugs 
or drug combinations, and to predict response or 
survival in cancer patients receiving anti-angiogenic 
treatment  39,40. Pro-angiogenic and anti-angiogenic 
serum proteins such as, respectively, vegf and tsp-1 
might act as surrogate markers for monitoring treat-
ment activity 41. In children with recurrent refractory 
solid tumours treated with celecoxib and metronomic 
vinblastine or cyclophosphamide, Stempak and col-
leagues observed substantial inter-patient variability, 
but no significant relationship between stable disease 
or disease progression and the serum concentrations 
of these markers during the course of therapy. These 

findings are not entirely unexpected, because a vast 
number of inducers and inhibitors act in concert to 
tightly regulate angiogenesis 42. Also, in a phase  ii 
study of mct with etoposide and cyclophosphamide 
in combination with daily thalidomide and celecoxib 
for recurrent malignant gliomas in adults, the serum 
and urine levels of vegf, bfgf, endostatin, and tsp-1 
were evaluated. Nonsignificant differences between 
responders and non-responders were found 43. Col-
leoni et al., who studied vegf serum concentrations 
in patients with advanced breast cancer receiving 
metronomic low-dose oral cyclophosphamide and 
methotrexate plus or minus thalidomide, obtained 
opposing results. Compared with baseline levels, 
mean levels of vegf 2 months after treatment were 
significantly lower 37. Moreover, serum level of vegf 
was studied as a prognostic factor in patients with 
recurrent or metastatic squamous cell carcinoma of 
the head and neck treated with metronomic paclitaxel. 
Preliminary results suggested an association between 
vegf and both response and disease stabilization 44.

A number of recent experimental observations 
suggest that the growth of some types of cancer 
may depend on vasculogenesis (that is, progenitor 
cell–dependent generation of new blood vessels) 
and not just angiogenesis (that is, mature endothelial 
cell–dependent generation of new blood vessels). Cir-
culating endothelial cells (cecs) are seldom found in 
the blood of healthy individuals (an exception is the 
increase by a factor of 1.5–2 seen in women during 
the active menstrual phase associated with uterine 
vascular remodelling). However, cecs are detected in 
patients with neoplastic, inflammatory, and vascular 
conditions 39. Mature endothelial cells are thought to 
originate by sloughing from the vessel wall. On the 
other hand, the circulating endothelial progenitor cells 
(ceps) that are considered to be an alternative source 
for some of the endothelial cells of newly formed 
blood vessels represent a subset of immature vegfr2-
positive cecs also found in peripheral blood  45,46. 
These cells enter the peripheral blood circulation and 
subsequently incorporate into distal sites of ongoing 
sprouting angiogenesis, where they can differentiate 
into mature endothelial cells 47–49.

The increase of cecs and their cep subsets was 
demonstrated in some preclinical cancer models 50,51 
and also in cancer patients 39. The initial assumption 
was that, unlike tumour cells, cecs would be chro-
mosomally and genetically normal and, therefore, 
genetically stable. That assumption was the rationale 
for the proposal of anti-angiogenic therapy, because 
it was considered that endothelial cells would prob-
ably fail to develop drug resistance 52. However, in 
some melanoma and liposarcoma xenograft models, 
tumour-associated endothelial cells were unexpect-
edly found to have heterogeneous nuclei. Also, a study 
by Streubel et al. in patients with B-cell non-Hodgkin 
lymphoma with specific genetic aberrations showed 
that endothelial cells of the cancer microvasculature 



SCHAROVSKY et al.

Current Oncology—Volume 16, Number 2
10

acquired the same specific chromosomal transloca-
tions 53. It is therefore important to characterize cecs 
and their progenitors with several markers according 
to the tumour types being tested, so as to use them as 
clinical markers of illness evolution.

Several in vitro and in vivo studies showed that 
activated cecs of newly formed blood vessels are 
highly and selectively sensitive to very low doses of 
various chemotherapeutic drugs (methotrexate, pacli-
taxel, vinblastine, 4-hydroperoxycyclophosphamide, 
taxanes, doxorubicin, etoposide, and 5-fluoruracil) 
used alone or in combination with an anti-angiogenic 
drug 7,46,54,55.

The level of ceps was reported to be usable as 
a surrogate marker for angiogenesis and, thus, as a 
biomarker for monitoring targeted anti-angiogenic 
drug activity 56. Accordingly, the dose that causes the 
maximum decline in viable ceps can be considered to 
be the optimal biologic dose 57. High-dose celecoxib 
and metronomic low-dose cyclophosphamide led to 
a decline in cecs and their precursors in patients with 
relapsed or refractory aggressive non-Hodgkin lym-
phoma, suggesting that this combination may be work-
ing by inhibiting angiogenesis, a result that should be 
validated in a larger patient sample 58. Recently, Man-
cuso and colleagues studied the correlation between 
the kinetics of cecs and clinical outcome in patients 
with advanced breast cancer receiving mct. They 
found that cecs were a particularly good predictor of 
disease-free and overall survival after a prolonged 
follow-up of more than 2 years 59. Nevertheless, pa-
tients with refractory solid malignancies treated with 
a fixed daily dose of 50 mg oral cyclophosphamide or 
a daily dose of 50 mg etoposide and 400 mg celecoxib 
given twice daily showed no significant change in 
levels of cecs and ceps. In accord with that result, no 
significant clinical activity was demonstrated. There-
fore, it is possible that changes in circulating cecs and 
ceps could be observed in the setting of more effective 
anti-angiogenic therapies 54. These contradictory re-
sults underline the need to determine the best markers 
of response for each type of tumour.

Hamano et al. demonstrated that low-dose cy-
clophosphamide inhibits tumour growth and induces 
selective apoptosis of endothelial cells within the 
tumour vascular bed by up-regulating the endog-
enous angiogenesis inhibitor tsp-1. As compared with 
wild-type tumours, tumours treated with low-dose 
cyclophosphamide showed similar expression of both 
matrix metalloproteinases and basement membrane–
derived angiogenesis inhibitors; tsp-1 expression, on 
the other hand, was significantly increased 60. Bocci 
et al. reported that protracted in vitro exposure of 
endothelial cells to low concentrations of several 
anticancer agents, including microtubule inhibitors 
and an alkylating agent, caused marked induction of 
tsp-1 gene and protein expression. Conversely, an 
increase was detected in circulating tsp-1 in plasma 

of scid mice bearing PC-3 human prostate cancer 
treated with metronomic low-dose chemotherapy 61. 
The antitumour and anti-angiogenic effects achieved 
with the administration of low-dose metronomic 
cyclophosphamide in wild type animals was also 
demonstrated to be lost in tsp-1–null mice 61. It was 
shown that tsp-1 can induce apoptosis of microvas-
cular endothelial cells expressing CD36 62. In vitro 
and in vivo experiments showed that mct induces the 
expression of tsp-1 and that this up-regulation has a 
negative effect on endothelial cell survival 60,61. Taken 
together, these results implicate tsp-1 as a secondary 
mediator of the anti-angiogenic effect of at least some 
mct regimens.

Another mechanism responsible for the antitumour 
effect of mct with certain chemotherapeutic drugs 
could be the stimulation of the immune response, 
because metronomic administration of oral cyclo-
phosphamide in advanced cancer patients induces a 
profound and selective reduction in circulating regu-
latory T cells (Tregs). This effect is associated with 
suppression of Treg inhibitory functions on conven-
tional T and natural killer cells, leading to restoration 
of peripheral T-cell proliferation and innate killing 
activities 63. Furthermore, in an experimental setting, 
our own results support the notion of the involvement 
of the immune system in the antitumour effect of mct 
with cyclophosphamide. Euthymic rats and nude mice 
bearing a rat B-cell lymphoma were treated metro-
nomically with cyclophosphamide. After a short period 
of tumour growth, all treated rats showed sustained tu-
mour regression, an effect that none of the non-treated 
control rats showed. Interestingly, neither treated nor 
control nude mice showed tumour regression, a result 
that could be ascribed to the absence of the adaptive 

figure 1 Mechanisms of action operating in metronomic chemotherapy. 
pmn = polymorphonuclear leukocyte; ctl = cytotoxic T lymphocyte; 
nk = natural killer cell; ceps = circulating endothelial progenitor cells. 
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table i  Clinical studies of metronomic chemotherapy

	 Reference	� Treatment	� Results

�Breast cancer
�Colleoni et al., 2002 65	 Cyclophosphamide plus methotrexate	 2 cr, 10 pr, 8 sd; overall clinical benefit: 31.7%
�Bottini et al., 2006 66	 Letrozole plus cyclophosphamide	 orr: 87.7%
�Colleoni et al., 2006 37	 Cyclophosphamide plus methotrexate,	 Overall response: 20.9% without thal,
		  with or without thalidomide (thal)	     11.8% with thal

�Orlando et al., 2006 67	 Cyclophosphamide plus methotrexate	 5 cr, 25 pr; 24 (15.7%) with prolonged clinical benefit
�Orlando et al., 2006 68	 Trastuzumab plus cyclophosphamide	 4 pr, 6 sd after 24 weeks; clinical benefit: 46% 
		  plus methotrexate

Malignant vascular tumour
�Vogt et al., 2003 69	 Pioglitazone plus rofecoxib	 2 cr, 1 pr, 3 sd; median pfs: 7.7 months 
		  plus trofosfamide
�Kopp et al., 2006 70	 Trofosfamide	 One case report: cr

Kaposi sarcoma
�Coras et al., 2004 71	 Pioglitazone plus rofecoxib	 One case report: pr and sd for 18 months  
		  plus trofosfamide

Non-small cell lung cancer
�Correale et al., 2006 38	 Platinum plus etoposide	 2 cr, 12 pr, 4 sd; overall response: 58.1%

Glioblastoma
�Kong et al., 2006 72	 Temozolomide	 pfs: 58.3% at 3 months

Lymphoma
�Buckstein et al., 2006 58	 Celecoxib plus cyclophosphamide	 2 cr, 9 pr, 6 sd; orr: 59%;  
			            median response duration: 8.2 months
�Coleman et al., 2008 73	 Prednisone plus cyclophosphamide	 10 cr, 8 pr; orr: 82% 
		  plus etoposide plus procarbazine

Solid tumours
�Young et al., 2006 74	 Cyclophosphamide,	 2 cr, 4 pr, 8 sd; orr: 30%
		  vinblastine plus rofecoxib

Pediatric solid tumours
�Stempak et al., 2006 42	 Celecoxib	 4 sd; orr: 13%

		  plus vinblastine or cyclophosphamide
�Sterba et al., 2002 75	 Radiotherapy plus temozolomide	 3 cr, 3 pr; orr: 75% 
�Sterba et al., 2006 76	 Celecoxib plus 13-cisretinoic acid	 orr: 64% 

		  plus temozolomide plus etoposide
Multiple myeloma

�Suvannasankha et al., 2007 77	 Cyclophosphamide plus thalidomide	 7 cr, 2 near-cr, 13 pr, 8 sd; orr: 86%
		  plus prednisone

Melanoma
�Spieth et al., 2003 78	 Treosulphan plus rofecoxib	 1 pr and sd, 4 sd; orr: 60%
�Reichle et al., 2004 79	 Trofosfamide plus rofecoxib	 1 cr, 1 pr, 2 sd; orr: 21%

		  plus pioglitazone
Head and neck

�Caballero et al., 2007 44	 Paclitaxel	 1 cr, 20 pr; orr: 64%
Ovarian cancer

�Samaritani et al., 2007 80	 Cyclophosphamide	 One case report: pfs time: 65 months
�Garcia et al., 2008 81	 Bevacizumab plus cyclophosphamide	 17 pr; orr: 24%

Prostate carcinoma
�Glode et al., 2003 82	 Cyclophosphamide	 psa level reductions: 9 patients ≥80%, 13 patients:  
		  plus dexamethasone	          50%–79%, 2 patients: <50%; orr: 75%
�Nicolini et al., 2004 83	 Cyclophosphamide	 2 pr, 3 sd; orr: 62.5%
�Lord et al., 2007 84	 Cyclophosphamide	 orr: 34.5%

Colorectal
�Ogata et al., 2007 85	 CPT-11 plus doxifluridine	 Objective response rate: 36%; 

			        median overall survival: 452 days
Renal

�Krzyzanowska et al., 2007 86	 Cyclophosphamide plus celecoxib	 1 pr, 6 sd; orr: 22%

cr = complete remission; pr = partial remission; sd = stable disease; orr = overall response rate; pfs = progression-free survival. 
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immune response 64. As a consequence, the aforemen-
tioned data support the notion that a metronomic regi-
men with cyclophosphamide not only affects tumour 
angiogenesis, but also exerts its therapeutic effect 
mediated by the immune system.

Figure 1 summarizes the mechanisms of action 
operating in metronomic chemotherapy. Briefly, the 
two fundamental processes induced by the tumour 
that enable its growth and progression are angio-
genesis (involving the growth of new blood vessels 
from pre-existing vessels or from ceps) and escape 
from the immune response. The antitumour and 
anti-metastatic effects of metronomic chemotherapy 
would be achieved through several mechanisms, in-
cluding inhibition of ceps, anti-angiogenic activity, 
and depending on the tumour and the drug or drugs 
administered, direct cytotoxic action on tumour cells 
or stimulation of the immune response, or both.

2.4	 Is Metronomic Chemotherapy a New 
Therapeutic Option in Clinical Oncology?

The novel therapeutic approach of mct is emerging in 
the era of targeted cancer treatment. To date, several 
articles have been published reporting the use of mct 
in phase i or ii trials with drugs such as cyclophos-
phamide, doxorubicin, capecitabine, thalidomide, 
5′-deoxy-5-fluorouridine, etoposide, paclitaxel, 
methotrexate, and prednisone, among others, with 
encouraging results.

The first work using mct in a clinical setting was 
published in 2002. Colleoni and colleagues evaluated 
the clinical efficacy of low-dose methotrexate and 
cyclophosphamide in heavily pretreated breast cancer 
patients, obtaining significant efficacy with minimal 
toxicity 65. Table i summarizes the clinical data re-
ported since that publication. Some of the tumour 
types involved in the relevant studies were breast 
cancer  37,59,65–68,87, non-small-cell lung cancer  38, 
lymphoma 58,73, pediatric solid tumours 42,75,76, mela-
noma 78,79, and prostate carcinoma 82–84. The results 
so far obtained, some of which are very encouraging, 
clearly indicate that mct is worthy of further clinical 
evaluation.

In an interesting study, Bocci et al. performed a 
pharmacoeconomic evaluation of metronomic cyclo-
phosphamide–methotrexate and a number of other 
novel phase ii regimens for the palliative treatment of 
metastatic breast cancer and concluded that the mct 
scheme could reduce health care costs, especially 
those associated with the combined use of the new 
highly expensive molecularly targeted therapies 87.

The preliminary evidence of disease stabilization 
obtained in patients with varying and progressing 
tumours, and the low toxicity profile registered when 
mct regimens are administered, are supporting mct 
implementation in the clinical setting with a predicted 
result of increased survival and life quality.

3.	 CONCLUSIONS

The data so far obtained induced us and other authors 
to begin a changing of our way of thinking about 
cancer treatment. To date, the aim of chemotherapy 
has been to achieve complete tumour suppression, 
a goal reached only exceptionally. Tumour elimina-
tion has been elusive, and metastasis accounts for an 
important part of this failure. We now know that all 
tumour cells cannot be consistently eliminated by 
high dosing schemes. The repeated administration of 
mtd, which induces important remissions, is gener-
ally followed by recurrences with the development 
of tumours even more malignant.

We can now focus on cancer therapy from a dif-
ferent angle. With low-dose chemotherapy, it may be 
possible to obtain a therapeutic effect in the clinical 
setting similar to that obtained experimentally. Should 
this hypothesis prove true, great progress will have 
made toward the solution of the cancer problem. On 
the other hand, present knowledge of tumour biol-
ogy creates the recognition that tumour presence is 
not incompatible with patient survival. Therefore, it 
might not be necessary to aim for complete tumour 
eradication. A change from the apparently remote 
therapeutic objective of killing all tumour cells to 
the more pragmatic objective of diminishing tumour 
burden as much as possible and maintaining that di-
minishment over time can now be considered. This 
goal might be achieved by administering drugs in a 
low-dose metronomic schedule over time.

It is foreseeable that the knowledge acquired in 
the experimental field of mct, plus the increasing ex-
perience that is being obtained in the clinical setting, 
will spark a change in the way in which basic and 
clinical researchers design their therapeutic protocols 
against cancer.
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