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Abstract
The hypoxic response is an ancient stress response triggered by low ambient oxygen (O2)1. It is
controlled by hypoxia inducible transcription factor-1 (HIF-1), whose α subunit is rapidly degraded
under normoxic conditions but stabilized when O2-dependent prolyl hydroxylases (PHDs) that target
its O2-dependent degradation domain (ODD) are inhibited2–4. Thus the amount of HIF-1α, which
controls many genes involved in energy metabolism and angiogenesis is regulated post-
translationally. Another ancient stress response is the innate immune response, regulated by several
transcription factors, among which NF-κB plays a central role5, 6. NF-κB activation is controlled
by IκB kinases (IKK), mainly IKKβ, which are required for phosphorylation-induced degradation
of IκB inhibitors in response to infection and inflammation6. Recently, IKKβ was found to be
activated in hypoxic cell cultures when PHDs that suppress its activation are inhibited7. However,
defining the relationship between NF-κB and HIF-1α has proven elusive. Using in vitro systems, it
was reported that HIF-1α activates NF-κB8, that NF-κB controls HIF-1α transcription9 and that
activation of HIF-1α may be concurrent to inhibition of NF-κB10. We used mice lacking IKKβ in
different cell types to demonstrate that NF-κB is a critical transcriptional activator of HIF-1α in
macrophages responding to bacterial infection and in liver and brain of hypoxic animals. IKKβ
deficiency results in defective induction of various HIF-1α target genes including vascular
endothelial growth factor (VEGF) and elevated astrogliosis in hypoxic mice. Hence, IKKβ provides
an important physiological link between the hypoxic response and innate immunity/inflammation,
two ancient stress response systems.

*Correspondence and requests for materials should be addressed to M.K., Phone: 858-534-1361, FAX: 858-534-8158, Email: E-mail:
karinoffice@ucsd.edu, who is an American Cancer Society Research Professor.
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Hypoxia is characterized by reduced O2 pressure within a tissue and can occur under several
pathophysiological situations including ischemia, cancer and inflammation11. During an
ischemic event, flow of nutrients and O2 to damaged tissues is reduced and HIF-1α activation
leads to induction of genes whose products restore blood supply, nutrients and energy
production, thereby maintaining tissue integrity and homeostasis12, 13. The hypoxic response
is important for proper function of tissue macrophages and infiltrating neutrophils that
encounter low O2 pressure in infected tissues14. HIF-1α was also suggested to promote
expression of inflammatory cytokines, known to be regulated by NF-κB15, in LPS-stimulated
macropahges16 and mediate NF-κB activation in anoxic neutrophils8. However, it was also
reported that hypoxia leads to activation of IKKβ by inhibiting PHDs that negatively modulate
IKKβ activity7. We, therefore decided to critically explore the relationship between IKKβ,
NF-κB and HIF-1α under in vivo conditions using IKKβ-deficient mice and primary
macrophages.

We first examined bone marrow-derived macrophages (BMDM) from either IkkβF/F or
IkkβF/F/Mx1Cre mice challenged with poly(I:C), which induces interferon (IFN) and thereby
drives CRE recombinase expression from the Mx1 promoter to delete Ikkβ in IFN-responsive
cells of the resulting IkkβΔ mice17. BMDM were incubated with Gram positive (group A
Streptococcus, GAS) and Gram negative (Pseudomonas aeruginosa) bacteria. Both species
induced HIF-1α accumulation in an IKKβ-dependent manner (Fig. 1A). Induction of HIF-1
target genes involved in the hypoxic and innate immune responses was also dependent on
IKKβ (Fig. 1B). These genes included Cox-2, which is directly regulated by NF-κB and
HIF-1α, Cnlp, which encodes the murine antimicrobial peptide mCRAMP, whose expression
is not directly responsive to NF-κB18, and Glut-1, a glucose transporter. Moreover, HIF-1α
mRNA was dramatically downregulated in IKKβ-deficient cells even before infection,
suggesting that IKKβ-dependent NF-κB may control HIF-1α gene transcription. We
investigated this possibility by chromatin immunoprecipitation (ChIP) in LPS-stimulated
macrophages and found that the RelA NF-κB subunit is recruited to the HIF-1α promoter,
which contains a classical κB site at −197/−188 bp, conserved between mice and men (Fig.
1C).

As found by Cummins et al.7, we observed that hypoxia activated IKK in macrophages (Fig.
2A), induced IKKα/β and IκBα phosphorylation and promoted IκBα degradation (Fig. 2B).
NF-κB DNA binding to a canonical κB site was also induced by hypoxia (Fig. 2C). Given that
IKKβ and NF-κB are activated by hypoxia we examined whether IKKβ was required for
hypoxia-induced HIF-1α accumulation in macrophages, a response that is thought to be mainly
dependent on inhibition of HIF-1α degradation3, 4. Remarkably, IKKβ was required for
HIF-1α accumulation in BMDM incubated with the hypoxia mimetic desferrioxamine (DFX)
as well as in response to actual hypoxia (Fig. 3A,B). The hypoxia-dependent induction of HIF-1
target genes, such as VEGF and Glut-1, was nearly abolished without IKKβ (Fig 3C).
Expression of HIF-1α, but not HIF-2α, mRNA was also downregulated without IKKβ (Fig.
3C). Similar results were obtained in mouse embryonic fibroblasts (Supplementary Fig 1),
where IKKβ was also required for activation of the HIF-1α promoter upon DFX treatment (Fig.
3D).

Having established the role of IKKβ in HIF-1 activation in macrophages, we examined its role
in HIF-1 activation in intact mice. DFX administration induced HIF-1α expression in liver of
IkkβF/F mice but not in IkkβΔ mice (Fig. 4A), which lack Ikkβ in both hepatocytes and Kupffer
cells19. IkkβΔ mice also contained less HIF-1α and VEGF mRNA in their livers (Fig 4B). Next,
we examined the role of IKKβ in the response to actual hypoxia. Mice were placed in a chamber
with ambient O2 concentration of 8% (thus mimicking an altitude of 7000 m20). Under these
conditions, we observed hypoxia-induced HIF-1α accumulation in liver (Fig 4C) and brain
(Fig 4D) and in both cases HIF-1α induction was dependent on IKKβ in IFN-responsive cells.
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Furthermore, hypoxia-dependent induction of VEGF protein (Fig 4E) and mRNA (Fig 4F) in
the brain also depended on IKKβ in IFN-responsive cells, which include brain endothelial cells
and microglia21, 22. Surprisingly, IkkβΔ mice exhibited a profound increase in cerebellar
astrocyte activation, marked by glial fibriliary acidic protein (GFAP), relative to IkkβF/F mice
(Fig. 5). This may be due to defective production of VEGF, a cytokine with anti-inflammatory
properties, shown to promote tissue repair23. Microglia produce VEGF24 and astrocytes
express VEGF receptors under ischemic conditions25. VEGF is also a potent neuroprotective
factor26, whose decreased production may potentiate hypoxia-induced neuronal damage and
thereby augment astrocyte activation. This situation maybe akin to the loss of IKKβ in intestinal
epithelial cells, previously found to exacerbate ischemic damage to the intestinal mucosa27.
These results suggest that IKKβ inhibitors may not be useful in treatment of neuro-
inflammatory disorders and that individuals treated with IKKβ or NF-κB inhibitors should not
be exposed to hypoxic conditions such as those associated with high altitude mountain
climbing.

Although early studies had demonstrated induction of HIF-1α mRNA in experimental animals
during development and hypoxia28, 29, numerous in vitro studies led to the current model that
HIF-1α accumulation is regulated predominantly at the post-translational level via inhibition
of O2-dependent PHDs that drive HIF-1α degradation in normoxic cells3, 4. Our results clearly
demonstrate that transcriptional activation of the HIF-1α gene by IKKβ-responsive NF-κB is
of critical importance under pathophysiologically relevant conditions ex vivo and in vivo. Both
macrophages infected with bacteria and mice subjected to hypoxia reveal a pronounced
HIF-1α induction defect upon loss of IKKβ. These results, together with the previous finding
that IKKβ catalytic activity is controlled by O2 sensitive PHDs7 establish NF-κB as a hypoxia-
regulated transcription factor that controls HIF-1α expression and thereby, serves as an
important regulator of the hypoxic response. Previous findings identified a connection between
HIF-1α and innate immunity/inflammation but it was not clear how microbial infection or
inflammation led to HIF-1α activation under normoxic conditions14, 18. The current findings
have far-reaching physiological significance as they indicate the existence of a tight coupling
between two evolutionary ancient stress responses: innate immunity and the hypoxic response.
By controlling HIF-1α activation in macrophages during microbial infections, that may lower
local O2 tension, NF-κB can enhance glycolytic energy metabolism and production of
angiogenic factors, in addition to its well established role in expression of proinflammatory
cytokines, chemokines and anti-microbial peptides. Thus the ability of NF-κB to enhance
HIF-1α expression expands its regulatory potential, leading to more effective execution of the
host-defense response. In turn, the ability of NF-κB to promote HIF-1α activation during
hypoxia expands its prosurvival function, since the HIF-1-dependent hypoxic response is
critical for providing cells and tissues undergoing ischemia with sufficient energy supplies and
allows them to resist cell death.

In summary, our results show that IKKβ is a key regulator of the hypoxic response in vivo, in
particular providing an important homeostatic function to the brain, an organ that is extremely
sensitive to oxygen and glucose deprivation30.

Methods
A detailed methods section is available in Supplementary Information. To delete Ikkβ in
IkkβF/F/Mx1Cre mice, 250 μg poly(I:C) (Sigma) was injected i.p. 3 weeks prior to hypoxia
exposure or isolation of myeloid cells17. To induce hypoxia in vivo, mice were placed in a
special chamber where N2 and O2 were injected to achieve an O2 concentration of 8±0.1%.
This was controlled by the Oxycycler hydraulic system (Model A44x0, BioSpherix, Redfield,
NY, USA) and ANA-Win2 Software (Version 2.4.17, Watlow Anafaze, Watsonville, CA,
USA). Control mice were kept in the same room but under normal atmospheric O2 and were
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exposed to the same level of noise and light during the duration of each experiment. After 24
hrs of exposure to normoxia or hypoxia, mice were sacrificed and their livers and brains were
rapidly removed and frozen in liquid N2 or OCT using a dry-ice/isobutanol bath.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. IKKβ is required for microbial-induced HIF-1α expression in macrophages
a) BMDM from either IkkβF/F (IKKβ+/+) or poly(IC)-injected IkkβF/F/Mx1-Cre (IkkβΔ;
IKKβ−/−) mice were incubated with either with GAS or P. aeruginosa (MOI of 10 for 4 hrs).
HIF-1α expression was analyzed by immunoblotting. b) RNA was extracted from BMDM
incubated with GAS and gene expression was analyzed by quantitative (Q) RT-PCR. Results
are averages of 3 separate experiments done in triplicate. Values were normalized relative to
18S rRNA. c) ChIP was performed with an anti-RelA antibody using fixed and sheared
chromatin isolated from RAW264.7 mouse macrophages incubated with or without LPS. The
HIF-1α promoter fragment, which contains a κB site at −197/−188 bp, was detected by PCR
amplification.
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Figure 2. Hypoxia activates the NF-kB pathway in macrophages
RAW264.7 mouse macrophages were incubated with or without LPS or cultured under hypoxia
(O2 = 0.5 %). a) At the indicated time points of LPS stimulation or hypoxia, IKK activity was
measured by an immunocomplex kinase assay using GST-IκBα as a substrate. b) Cell lysates
were prepared and IKKβ and IκBα phosphorylation and abundance were analyzed by
immunoblotting. c) Nuclear extracts were prepared at 2 hrs post-LPS or -hypoxia and NF-κB
DNA binding activity was examined by a mobility shift assay. Antibody inhibition was
performed using an anti-RelA antibody.
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Figure 3. IKKβ regulates hypoxia-induced HIF-1α and target genes in mouse macrophages
a) BMDM from IkkβF/F (IKKβ+/+) or IkkβΔ (IKKβ−/−) mice were incubated with
desferrioxamine (DFX) for 4 hrs. HIF-1α, HIF-1β and IKKβ expression were analyzed by
immunoblotting. b) BMDM were obtained as above and cultured under hypoxia (O2 = 0.5%
for 4 hrs). HIF-1α expression was analyzed by immunoblotting. c) BMDM were treated as
above and mRNA expression was analyzed by Q-RT-PCR. Results are averages of three
separate experiments done in triplicates. p<0.05: *, vs normoxic Ikkβ+/+ cells; #, vs hypoxic
Ikkβ+/+ cells. d) MEF from either Ikkβ+/+ or Ikkβ−/− embryos were transfected with a luciferase
reporter gene driven by the HIF-1α promoter. After 36 hrs the cells were incubated for 3 hrs
with DFX. p<0.05: *, vs normoxic Ikkβ+/+ cells; #, vs hypoxic Ikkβ+/+ cells.
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Figure 4. IKKβ regulates HIF-1α expression in hypoxic mice
IkkβF/F (CRE-) or IkkβΔ (CRE+) mice were treated with DFX (600 mg/Kg). After 15 hrs, livers
were removed for protein (a) and RNA (b) analysis. a) HIF-1α and IKKβ expression was
analyzed by immunoblotting. b) Expression of HIF-1α and VEGF mRNA was examined by
Q-RT- PCR (n=3). p<0.05: *, vs normoxic CRE- mice; #, vs DFX-treated CRE- mice. c,d)
IkkβF/F and IkkβΔ mice were kept under normoxia or hypoxia (O2 = 8%) for 24 hrs and
HIF-1α expression was analyzed by immunoblotting of liver (c) or brain (d) extracts. e) VEGF
expression in brain of mice from above experiment was analyzed by ELISA. p<0.05: *, vs
normoxic CRE- mice; #, vs hypoxic CRE- mice. f) VEGF and HIF-1α mRNA expression was
analyzed by Q-RT-PCR of total brain RNA. p<0.05: *, vs normoxic CRE- mice; #, vs hypoxic
CRE- mice (n=3).
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Figure 5. IKKβ deficiency results in increased astrogliosis in brains of hypoxic mice
Mice of the indicated genotypes were kept under normoxia or hypoxia (O2 = 8%) for 24 hrs.
After this period the mice were perfused with a fixative and the brain was collected and frozen.
Brain sections at the cerebellar region (10 μm) were stained with an antibody against GFAP
(an astrocyte marker). Magnification x20.

Rius et al. Page 10

Nature. Author manuscript; available in PMC 2009 June 5.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


