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The recent development of microfluidic devices allows the inves-
tigation and manipulation of individual liquid microdroplets, cap-
sules, and cells. The collective behavior of several red blood cells
(RBCs) or microcapsules in narrow capillaries determines their
flow-induced morphology, arrangement, and effective viscosity.
Of fundamental interest here is the relation between the flow
behavior and the elasticity and deformability of these objects, their
long-range hydrodynamic interactions in microchannels, and ther-
mal membrane undulations. We study these mechanisms in an in
silico model, which combines a particle-based mesoscale simula-
tion technique for the fluid hydrodynamics with a triangulated-
membrane model. The 2 essential control parameters are the
volume fraction of RBCs (the tube hematocrit, HT), and the flow
velocity. Our simulations show that already at very low HT, the
deformability of RBCs implies a flow-induced cluster formation
above a threshold flow velocity. At higher HT values, we predict 3
distinct phases: one consisting of disordered biconcave-disk-
shaped RBCs, another with parachute-shaped RBCs aligned in a
single file, and a third with slipper-shaped RBCs arranged as 2
parallel interdigitated rows. The deformation-mediated clustering
and the arrangements of RBCs and microcapsules are relevant for
many potential applications in physics, biology, and medicine, such
as blood diagnosis and cell sorting in microfluidic devices.

mesoscale hydrodynamics simulations � microfluidics � microcirculation �
membrane elasticity � erythrocyte shapes

In thermal equilibrium, lipid vesicles and red blood cells
(RBCs) show a rich variety of shapes, depending on the

environmental conditions. These shapes can be understood
quantitatively on the basis of a mechanical and thermodynamical
model of 2D elastic membranes (1–5). The membrane of RBCs
consists of a lipid bilayer (in the fluid state) to which a spectrin
network is attached. This network is responsible for the shear
elasticity of the composite membrane. Under physiological
conditions, RBCs adopt a biconcave-disk shape with constant
area S and volume V, a mean radius R0 � �S/4� � 3.4 �m, and
a reduced volume V/(4�R0

3/3) � 0.6.
The spectrin network enables RBCs to remain intact while

deforming in blood flow through narrow capillaries. Physiolog-
ically, the main effect of RBC deformation is a reduction of the
flow resistance. Recently, it has been found that RBC deforma-
tion also induces ATP release from RBCs, which induces nitric
oxide synthesis and enhances the vascular caliber (6, 7). Thus, the
shape deformation of RBCs in microvessels plays a key role in
the regulation of oxygen delivery. The deformability of RBCs
can be reduced, for example, in diseases such as diabetes mellitus
(8) and sickle cell anemia (9).

The flow behavior of related systems containing deformable
particles with elastic membranes is also interesting, such as
suspensions of elastic microcapsules, which have been suggested
as potential drug carriers (10, 11). Therefore, it is very important
to understand the general problem of ‘‘elastic vesicles’’ in
microcapillary flow. Such a system is characterized by the
bending and shear elasticity of the membrane, the reduced

volume of the vesicle, the volume fraction of vesicles in the
solution, the capillary radius, and the flow velocity.

Under flow, individual lipid vesicles and RBCs show a com-
plex behavior already at high dilution. For example, in simple
shear flow, various dynamic states have been found for lipid
vesicles, such as steady tank-treading, unsteady tumbling, oscil-
latory motion (12–16), and flow-induced shape transitions (17–
19). In narrow capillaries, individual RBCs adopt a parachute
shape at higher flow velocities (8, 20–26).

However, much less is known about the collective flow
behavior at higher volume fractions of lipid vesicles and RBCs
in confined geometries. The volume fraction of RBCs in human
blood is large, with a hematocrit H � 45%. In microvessels, the
tube hematocrit HT is lower, because of entrance effects from a
larger vessel and the Fahraeus–Lindqvist effect (depletion layer
near the walls), and can be reduced to HT � 10–20% with large
fluctuations (27). At these concentrations, the interaction be-
tween RBCs strongly affects the flow behavior. The flow be-
havior of RBCs at physiological conditions in wider capillaries
(with a tube diameter of several RBC diameters) has been
studied recently by computer simulations (28–30). In contrast,
we focus here on flows in narrow capillaries, where the tube
diameter just exceeds the cell size. Our study is motivated by
recent developments of microfluidic devices (31) that allows the
investigation and manipulation of individual liquid droplets (32)
and cells (8, 9, 33, 34). We used computer simulations to study
RBC-like vesicles, which have the same reduced volume as real
RBCs, but a lower bending rigidity and shear modulus. We
investigated both the clustering of RBC-like vesicles at low
volume fractions and their shapes, arrangements, and flow
resistance at high volume fractions.

Results
We studied the hydrodynamic behavior of RBC-like vesicles in
a narrow cylindrical capillary with a radius Rcap � 1.4 R0. We
considered only the hydrodynamic interaction and excluded-
volume repulsion between RBCs, but excluded attractive inter-
actions and depletion effects; this condition corresponds to RBC
suspensions without fibrinogen and other plasma proteins that
induce RBC aggregation (35). To model RBCs in capillary flow,
we used multiparticle collision dynamics (MPC) (36), a particle-
based mesoscale simulation technique, to describe the fluid
hydrodynamics and a triangulated-network model for the com-
posite membrane (18, 26). The membrane is impenetrable to the
fluid and is characterized by a bending rigidity � and a shear
modulus �. The model RBCs have a reduced volume V*�
V/(4�R0

3/3) � 0.59, where the thermal-equilibrium shape of a
lipid vesicle is a biconcave disk (discocyte) (2, 17).
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We considered pressure-driven flow that is characterized by
the mean flow velocity v0 in the absence of RBCs. Our results are
presented in dimensionless quantities (denoted by *), i.e., length
and time are given in units of the capillary radius Rcap and the
characteristic shape relaxation time � � �0 Rcap

3 /�, respectively,
where �0 is the viscosity of the embedding fluid. Details about
the model and simulation technique can be found in Methods. To
investigate many-body effects in the capillary flow of RBCs, we
considered a number nves of vesicles in tube segments of length
Lz with periodic boundary conditions in the flow direction. We
compared the flow behavior of a single elastic vesicle (nves � 1)
in a short tube segment (corresponding to an infinitely long
tube with a regular array of identically-shaped RBCs) with that
of nves � 6 elastic vesicles in a longer tube segment with the same
or similar volume fraction.

Regular Arrays of RBCs. For nves � 1, the RBC-like vesicles are
located near the center of the capillary because of the hydro-
dynamic lift force (37, 38) near the capillary wall. For low volume
fractions (i.e., large Lz/Rcap), it was shown in ref. 26 that RBCs
retain their discocyte shape for small v*0 � v0�/Rcap, but adopt a
parachute-like shape for large v*0 (see Fig. 1A). For larger vesicle
volume fractions, this transition is strongly affected by the
hydrodynamic interaction between vesicles, because the flow
field near a vesicle is modified by the presence of its periodic
images. For RBC distances L*ves � Lz/nvesRcap � 1.5, the transi-
tion is abrupt at constant v*0 � v*c � 5, and the vesicle shape is
independent of L*ves. However, the transition becomes gradual
for small vesicle distances L*ves � 1.5, and a shallow bowl shape
is observed, because neighboring vesicles partially shield the flow
forces at high volume fractions. The critical distance L*ves � 1.5
is consistent with the theoretical predictions obtained by solving
the Stokes equation for the flow of a periodic array of rigid
spheres (39); here the spheres are hydrodynamically isolated for
L*ves � 2.

Because of the interplay between the rigid motion of the
(deformed) RBCs and the ideally parabolic f low profile of the
fluid, an interesting flow pattern emerges between neighboring
RBCs. In a comoving frame, a vortex appears, which is called a
‘‘bolus’’ (39). This f luid motion is very nicely revealed in our
simulations (see Fig. 2). A similar bolus has been observed
experimentally for RBC flow in glass capillaries by tracking the
motion of small colloidal particles in the fluid (21).

Although RBCs retain a discocyte shape for small f low
velocities (with v*0 � v*c), hydrodynamic interactions are strong
enough to determine the orientation of the disks for L*ves � 2.5.
With decreasing L*ves, the rotational symmetry axis turns con-
tinuously from a perpendicular to a more parallel orientation
[with respect to the flow (z) direction] (see Fig. 1B). The
inclination angle �	� is essentially independent of v*0, because the
shape deformation caused by flow forces is weak.

RBC Arrangements at High Hematocrit. The main aim of our
simulations, the investigation of clustering and spatial arrange-
ments of RBC-like vesicles in capillary flow, requires more
systems with several particles. We focus on nves � 6 vesicles in a
longer tube segment, again with periodic boundary conditions.
Compared with the results for regular arrays in the previous
section, the flow behavior changes drastically.

We consider first the case of high volume fractions (see Figs.
3 and 4). After switching on a slow flow, the uniformly-tilted
discocytes of Fig. 1B now exist only for a short time, and then
relax into a ‘‘disordered-discocyte’’ phase with random orienta-
tions (see Fig. 3A). In this phase, no significant long-range spatial
correlations are present, whereas transient clusters of 2 or 3
stacked discocytes are observed frequently. The ‘‘aligned-
parachute’’ phase, which is expected from the single-vesicle
simulations (26), remains stable only for large L*ves � 0.85

(corresponding to HT � 0.28/ L*ves � 0.33) (see Fig. 3 B and C).
For high flow velocities and smaller L*ves, a new ‘‘zigzag’’ phase
appears. In this phase, slipper-shaped RBCs form 2 regular,
interdigitated parallel rows. For an isolated RBC, the slipper
shape appears only as a transient metastable state at velocity
near the discocyte-to-parachute transition (26); in contrast, in
the zigzag phase, the hydrodynamic interactions between inter-
digitated vesicles stabilize the slipper shape. A similar zigzag
conformation of slipper RBCs was observed experimentally in
glass capillary (21) and microvessels (20). Of the 3 phases shown
in Fig. 4A, only the aligned-parachute phase is axisymmetric;
therefore, the assumption of axial symmetry in previous calcu-
lations (22–25) is often not justified.

Interestingly, the zigzag phase for nves � 6 produces a larger
pressure drop �P*drp than the periodic parachute phase for nves �
1 under equivalent conditions, as shown in Fig. 4B. Thus, the

Fig. 1. Conformations of elastic vesicles for various densities and mean flow
velocities v*0, for a single vesicle in the simulation cylinder (nves � 1) with
various lengths L*ves. The hematocrit is given by HT � nvesVves/�LzRcap

2 � 0.28/
L*ves, where Vves is the volume of single vesicle. (A) Average asphericity �
�,
which measures the deviation from a spherical shape, as a function of the
mean flow velocity v*0. Here, the asphericity is given by 
 � [ (�1 � �2)2 � (�2 �
�3)2 � (�3 � �1)2]/2Rg

4, with the eigenvalues �1 � �2 � �3 of the gyration tensor
and the squared radius of gyration Rg

2 � �1 � �2 � �3. RBCs transits from the
discocyte (with �
� � 0.15) to the parachute shape (with �
� � 0.05). Simulation
snapshots show the parachute (Lower Left) and bowl (Upper Right) shapes for
v*0 � 7.7 with L*ves � 2.25 and L*ves � 1, respectively. (B) Average inclination
angle �	� for a discocyte vesicle for low flow velocities v*0 � v*c, as a function of
the vesicle distance Lves. The inclination angle 	 measures the deviation of the
vesicle symmetry axis (determined by the eigenvector associated with the
minimum eigenvalue of the gyration tensor) with the flow direction (z axis).
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zigzag phase is stable despite its higher viscous dissipation, which
implies that flow effects are so strong that they drive the system
outside the ‘‘linear-response’’ regime [which is characterized by
minimal entropy production (40)]. The mechanism may be the
destabilization of the aligned-parachute phase caused by thermal
fluctuations, which can be explained as follows. As one vesicle

moves away from the center by the thermal fluctuations, it slows
down, whereas the fluid flow on the other side increases; this
f low pushes the subsequent vesicle in the opposite direction (see
Movie S1). When this force exceeds the lift force from the wall,
axisymmetric conformations become unstable. Although we did
not observe a 2-phase coexistence at the present condition
(Rcap � 1.4 R0), the parachutes stayed aligned for a short time,
which indicates that this phase would be metastable in the
absence of the thermal fluctuations. Simulations for a smaller
capillary radius Rcap � 1.2 R0 show that the zigzag and parachute
phases can coexist. Therefore, the transition between these 2
(meta) stable configurations is discontinuous at smaller Rcap, but
becomes continuous because of thermal fluctuations at larger
capillary radii.

To investigate the sensitivity of our results to the number of
vesicles in the simulation channel, we have also performed
some simulations with nves � 3, 4, and 5. The results show that
for nves � 6 the results for the pressure drop are well converged.
The zigzag phase is clearly favored by an even number of vesicles.
It is therefore interesting to note that we also found a zigzag
phase for nves � 5; however, in this case one of the vesicles forms
a ‘‘defect’’ in the regular arrangement.

Finally, we want to briefly discuss the effect of the elastic
parameters on the phase behavior. We have to distinguish 2
contributions, the magnitude of the elastic moduli and their
ratio, which is characterized by the Föppl–van Karman number
�R0

2/�. The magnitude of � and � mainly affect the location of
the discocyte-to-parachute transition, which increases linearly
with increasing stiffness, as shown for isolated vesicles in ref. 26
(see Methods for more information). This result can be used to
predict the dependence of the disordered-to-aligned transition in
Fig. 4A on � and �. More subtle is the dependence of the phase
diagram on the Föppl–van Karman number. Vesicle shapes
become more pointed at the rear edge for larger �R0

2/�; however,

Fig. 2. Streamlines (blue) and velocity field (red arrows) of the flow between
2 vesicles, in the comoving frame with the vesicle velocity at L*ves � 2 (HT � 0.14)
and v*0 � 10. A sliced snapshot (black line) of the vesicle is also shown. A flow
vortex (bolus) is seen between vesicles.

Fig. 3. Snapshots of nves � 6 elastic vesicles in the simulation channel. (A)
Disordered-discocyte phase for L*ves � 0.875 (HT � 0.32) and v*0 � 2.5, where
vesicles appear usually as discocytes; the degree of shape deformation in-
creases with increasing v*0. (B) Aligned-parachute phase for L*ves � 0.875 (HT �
0.32) and v*0 � 10. (C) Zigzag-slipper phase for L*ves � 0.75 (HT � 0.37) and
v*0 � 10.

Fig. 4. Phase diagram and pressure drop of dense RBC suspensions in flow.
(A) Phase behavior as a function of average vesicle distance L*ves and mean flow
velocity v*0 for nves � 6. The hematocrit varies between HT � 0.22 and HT � 0.45,
because HT � 0.28/ L*ves. Symbols represent the disordered-discocyte (*),
aligned-parachute (�), and zigzag-slipper (F) phases, respectively. The phase
boundaries are drawn to guide the eye. (B) Pressure drop �P*drp per vesicle for
the aligned-parachute phase (simulations with nves � 1) and the zigzag-slipper
phase (simulations with nves � 6) at the same volume fraction (L*ves � 0.75,
corresponding to HT � 0.37). The pressure drop is given by �P*drp � �PdrpRcap/
�0nvesvm � 8 (v0 � vm)Lz/nvevmRcap, where vm is mean fluid velocity in the
presence of vesicles.
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this should only weakly affect the flow behavior. Indeed, a
comparison of the phase diagrams at high HT for �/kBT � 20,
�R0

2/� � 5.5 and �/kBT � 10, �R0
2/� � 44 yields a quantitatively

similar behavior.

RBC Clustering in Dilute Suspensions. Next, we investigated the
hydrodynamic interactions between vesicles in a dilute suspen-
sion by simulating nves � 6 vesicles in a capillary of length L*z �
20 (corresponding to HT � 0.084), at f low velocities above the
discocyte-to-parachute transition point, v*0 � v*c � 5. Vesicles
approach each other and form clusters (see Fig. 5). As shown in
more detail below, the physical origin of cluster formation is
2-fold. First, a single, free vesicle flows faster than a cluster of
several vesicles, because it becomes more deformed by the flow
and can stay closer to the center of the capillary. Second, cluster
life time is increased because of hydrodynamic attractions.
Clusters can break up and form new clusters. In most of these
cases, a n-vesicle cluster breaks up into a (n � 1)-vesicle cluster
and a free vesicle, which then rejoins the neighboring cluster (see
Movie S2).

The spatial pair-correlation function G(z*nb) between the
center-of-mass positions of the vesicles along the z direction (see
Fig. 6A) shows several clear peaks of neighboring vesicles in the
clusters. In contrast, hard-sphere particles in thermal equilib-
rium in a 1D channel show hardly any spatial correlations at such
a low volume fraction (41). The nearest-neighbor distance z*nb �
1.1 is slightly below the critical length L*ves � 1.5, where hydro-
dynamic interactions start to affect the vesicle deformation for
nves � 1 (see Fig. 1 A). Thus, the vesicles in clusters hydrody-
namically interact with each other, but separated clusters are
hydrodynamically isolated.

Fig. 6B displays the probability P(ncl) � ncl f(ncl)/	
ncl
n
clf(n
cl),

of finding a cluster containing ncl vesicles, where f(n
cl) is the total
number of clusters of size n
cl that appear during a simulation run.
The probability exhibits a minimum for a 5-vesicle cluster,
because such a cluster can only pair with a single free vesicle,
which has a very short lifetime. Two 3-vesicle clusters, or a 2- and
a 4-vesicle cluster, can exist as pairs, because their mean
velocities are identical or differ only slightly, respectively, so that
they have longer lifetimes than single vesicles. As v*0 decreases
approaching the critical velocity v*c of the discocyte-to-parachute
transition, the shape fluctuations of the vesicles increase. There-
fore, break-up events occur more often and the peaks of G(z*nb)
become smaller (see Fig. 6). Because 6-vesicle clusters disturb
the Poiseuille flow less than 6 separated vesicles, the pressure
drop �P*drp per vesicle in clusters is smaller than for single
vesicles. This is similar to the ‘‘peloton effect’’ for liquid drops
discussed in ref. 32.

For larger flow velocity, v*0 � 10, the peak of the cluster
containing all vesicles in our simulation system becomes very
pronounced. Based on this result, we predict that RBCs in
microvessels will form very large clusters, with large RBC-free

regions in between. This idea is consistent with the experimental
observation that in capillary blood flow in vivo, large temporal
f luctuations of HT are observed (27); long chains of rushing
RBCs are seen in one period, but no RBCs at all are seen in
another period. Also, clusters of a few RBCs have been observed
in RBC flow through glass capillaries (21).

The behavior of vesicles is quite different from that of
spherical colloids in capillary flow for R0 � Rcap/2. Because of the
absence of a lift force (as a consequence of the reversibility of
the Stokes equation), we expect these colloids to move with
different velocities depending on their distance from the wall,
and thus to see jamming when fast particles try to overtake slow
ones. Thus, it is the driving of the system by the external f low in
combination with hydrodynamic interactions and vesicle defor-
mation, which give rise to the novel f low behavior described
above. The intricate interplay between these effects leads to the
cluster-size dependence of vesicle deformation, the focusing of
vesicles in the center of the flow, and the effective hydrodynamic
attractions caused by vortex formation between subsequent
vesicles (see Fig. 2).

Fig. 5. Sequential snapshots of 6 elastic vesicles in dilute suspension (HT � 0.084) at v*0 � 7.7.

Fig. 6. Pair distribution function G(z*nb) (A) and cluster-size probabilities
P(ncl) (B) in dilute suspension with HT � 0.084. The black and red solid lines
represent data v*0 � 7.7 and 10, respectively. Results are obtained from
simulations with nves � 6 vesicles. The dotted line in A represents the pair
distribution function of only the nearest-neighbor vesicles at v*0 � 10. In B,
vesicles closer than 2.5 Rcap are defined to belong to the same cluster.
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Summary
We have shown that mesoscale hydrodynamics simulations re-
veal a complex flow behavior of RBC-like vesicles in microchan-
nels. This type of cell f low study in silico can be used in the future
to address many questions in microfluidic flows, such as the
dependence of flow properties on the channel geometry or
changes in flow behavior caused by disease-related variations of
the membrane elasticity.

Methods
Mesoscale Hydrodynamics. MPC (36) is a particle-based hydrodynamics
method, where fluid is described by point-like particles with mass m and
number density ns. The MPC algorithm consists of 2 alternating steps: a free
streaming of particles and a collision step where the particles are first sorted
into the cells of a cubic lattice with lattice constant a, then the particle
velocities, relative to the center-of-mass velocity of the cell, are rotated by an
angle of �/2 about a randomly chosen axis. The momentum and energy are
conserved. We use a fluid density ns � 10/a3 and a capillary radius Rcap � 8 a,
which implies that the number of fluid particles is �200,000 for the largest
systems studied.

Membrane Model. Each elastic vesicle is modeled as a collection of 500 vertices
interconnected by 2 triangular networks of bonds (3, 5, 26), a fixed network
whose bonds are harmonic springs, and a dynamically triangulated network
(1) whose bonds undergo ‘‘flips.’’ The elastic, fixed network models the
spectrin cytoskeleton of a RBC, whereas the fluid, dynamic network models
the viscous lipid bilayer (18). The membrane vertices have an excluded-volume
interaction through a repulsive potential. The minimum distance between
vertices on 2 different vesicles is lmin � 0.77 a, which is larger than that between
2 vertices on the same membrane (lmin � 0.67 a) to prevent interpenetration
of 2 neighboring vesicles. The bending and shear modulus of RBCs have been

measured to be �/kBT � 50 and �R0
2/kBT � 104, respectively, where kBT is the

thermal energy (42). These elastic parameters of RBCs are affected for various
diseases (8, 9). We consider the more general case of elastic vesicles in
microcapillary flow. In this study, we mainly used �/kBT � 20 and �R0

2/kBT �
110, corresponding to a Föppl–van Karman number �R0

2/� � 5.5, which is
sufficient to produce parachute shapes in flow at higher flow velocities
(26). We have also studied the flow behavior of vesicles with elastic moduli
�/kBT � 10 and �R0

2/kBT � 440, corresponding to a Föppl–van Karman
number �R0

2/� � 44.

RBCs in Flow. The MPC fluid particles are scattered off the capillary walls or the
membrane triangles via a bounce-back rule that produces no-slip boundary
conditions (18). The volume and surface area of the vesicle are fixed by a global
volume-constraint potential and a local area-constraint potential. The error
bars are calculated from several independent simulation runs that started
from different initial conditions. The results are independent of the initial
conditions. With a RBC radius of R0 � 3.4 �m and the viscosity �0 � 10�3 Pas
of water, we obtain Rcap � 4.6 �m and a characteristic velocity Rcap/� � 4 �m/s.
The other parameters were the same as described in ref. 26.

A gravitation force mg is used to generate flow along capillary (z) axis,
which corresponds to a uniform pressure gradient �z P � �mnsg. In the
absence of elastic vesicles, this field yields a mean flow velocity v0 �
mnsgRcap

2 /8�0.
For an isolated elastic vesicle, the transition velocity from discocyte to

parachute depends linearly on the elastic bending and stretching forces (26),
vm

c �/Rcap � 0.1 �R0
2/� � 4, where vm is mean fluid velocity. Fluids inside and

outside of the vesicle have the same viscosity �0 and do not penetrate the
membrane. We chose parameters to keep the Reynolds number low, Re � 1,
in all simulations (26).
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