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Abstract
Sex differences in the nervous system come in many forms. Although a majority of sexually
dimorphic characteristics in brain have been described in older animals, mechanisms that determine
sexually differentiated brain characteristics often operate during critical perinatal periods. Both
genetic and hormonal factors likely contribute to physiological mechanisms in development to
generate the ontogeny of sexual dimorphisms in brain. Relevant mechanisms may include
neurogenesis, cell migration, cell differentiation, cell death, axon guidance and synaptogenesis. On
a molecular level, there are several ways to categorize factors that drive brain development. These
range from the actions of transcription factors in cell nuclei that regulate the expression of genes that
control cell development and differentiation, to effector molecules that directly contribute to
signaling from one cell to another. In addition, several peptides or proteins in these and other
categories might be referred to as “biomarkers” of sexual differentiation with undetermined functions
in development or adulthood. While a majority of sex differences are revealed as a direct consequence
of hormone actions, some may only be revealed following genetic or environmental disruption. Sex
differences in cell positions in the developing hypothalamus, and steroid hormone influences on cell
movements in vitro, suggest that cell migration may be one target for early molecular actions that
impact brain development and sexual differentiation.
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The ontogeny of sex differences in the developing brain occurs through genetic and hormonal
influences. Steroid hormone signaling events are involved for many of the sex differences seen
in development [1,2], however, it is also evident that genetic contributions provide another
important factor in determining brain sexual differentiation [3]. Some processes through which
sex differences may emerge include neurogenesis, cell migration, cell differentiation, cell
death, axon guidance and synaptogenesis [4]. Molecular mechanisms underlying these cell
biological processes are varied, but also sometimes converge to particular signaling pathways.
This review presents several molecular players that, from the perspective of cell migration,
might provide key signals for hypothalamic development and sexual differentiation and at some
points may do so interactively.
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Estrogens as direct modulators of cell behaviors in development
The original dogma of steroid hormone dependent brain ‘organization’ or sexual differentiation
assumed that the activation of nuclear steroid receptors initiated genomic signaling events.
Steroid hormones would presumably bind to nuclear steroid receptor superfamily members
(for example, estrogen receptor alpha (ERα) or beta (ERβ) that would act via hormone response
elements at the promoters of select genes to activate or inhibit new protein transcription and
subsequent translation. While this is likely the predominant mechanism of steroid influences,
other molecular mechanisms may also contribute to steroid activated sexual differentiation.
For example, there are many recently identified proteins that are not members of the steroid
receptor superfamily that are thought to bind steroid hormones [5,6]. Many of these steroid
hormone-binding proteins are not located in cell nuclei and have been shown to promote cell
signaling through classical second messenger signal transduction cascades involving either
protein phosphorylation or calcium entry into the cell [7]. Additionally, some events modulated
by steroid hormones take place either too quickly to be regulated by changes in transcription
or cannot be blocked by transcriptional inhibitors [6].

There is increasing evidence that sexually dimorphic brain characteristics may derive, in part,
from genetic sex and/or hormone influences on neuronal migration. In our studies, we have
found several lines of evidence that suggest that gonadal steroid hormones influence the
movements and positions of identified cells in the embryonic brain. Early indirect evidence
came from the discovery of sex differences and hormone dependence of antigen expression in
radial cell fibers within the preoptic area/anterior hypothalamus (POA/AH) of rats [8]. As these
cells are likely important for neuronal migration, we hypothesized that sex differences in the
molecular characteristics of these cells would translate into differences in migration. The first
direct demonstration of sex differences in cell migration within the developing mouse POA/
AH came from an examination of migratory characteristics of randomly labeled cells using the
carbocyanine dye DiI [9]. At the same time, in an avian model, estradiol was also shown to
influence cell movements in brain [10]. More recently, we examined the direct effect of
estradiol on neuron migration in vitro by tracking the movement of fluorescent cells expressing
yellow fluorescent protein (YFP) under the control of a Thy1 promoter in organotypic brain
slices [11]. Estradiol administration caused rapid changes in cell movement characteristics in
a region specific manner, whereas exposure of these cells to dihydrotestosterone did not affect
cell motions or interfere with the subsequent influence of estradiol.

Finding an influence of a sex steroids on cell movements begs the question of the mechanisms
through which they act, as well as which receptor(s) might be activated. There are a number
of candidate proteins that bind estradiol [5,6], although it has been argued that many, if not all,
known non-genomic actions of estradiol can be attributed to the actions of ERα or ERβ acting
at extra-nuclear sites [12]. In early work we localized immunoreactive ERα to cell nuclei in
the same region that we have seen sex differences or hormone influence on cell movements
[9]. To date, however, we have been unable to co-localize ERα specifically to cells whose
movement characteristics are influenced by hormone administration in vitro [11]. The question,
therefore, still remains as to whether expression of ERα or ERβ, below the sensitivity of current
detection methods, exist on neuronal cell membranes during development, or whether other
mediators are involved in transducing estrogen-dependent changes in neuron migration.

For hormones to impact neuronal migration early in development, all necessary signaling
components must be present at appropriate times. The primary steroid effector in the
development of sexually dimorphic features in the rodent brain is hypothesized to be estradiol
[13]. Alpha-fetoprotein (AFP), a steroid binding protein present in both embryonic male and
female rodents, prevents direct access of estradiol to cells in the brain. AFP does not bind
testosterone that is free to enter the brain, where it can be converted to estradiol by cytochrome
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p450-aromatase (AROM). For estradiol signaling to impact neuron migration in the developing
brain, both aromatase activity and proper expression of the downstream signal transduction
components must occur in temporally and spatially specific patterns. For example, sex
differences in basal movement of neurons in vitro were evident in slices derived from brains
at embryonic day (E) 14 [11] and E15 [9], but not E13 [11]. This suggests that alterations of
migratory characteristics may be one of the first influences of gonadal steroids for brain sexual
differentiation. Because administration of estradiol was able to influence cell movements in
slices created on E13, it further suggests that the hormone-responsive machinery might be in
place prior to the initial exposure to steroid hormones that occurs after the formation of the
gonads (around E12.5 in mice).

If sex differences and hormone influences alter cell motions (and thereby migration), then there
should be an increasing number of sexual dimorphisms identified based on the positions of
cells. One example is a sex difference in the location of cells expressing either ERβ or the R1
subunit (GABABR1) of the γ-aminobutyric acid (GABA)B receptor in the POA/AH of mice
at E17 [14]. The location of each subset of cells containing immunoreactive ERβ or
GABABR1 at E17 was sex dependent, even though the total number of cells did not differ by
sex. Immunoreactive ERβ cells were located more ventrally and medially in males than in
females and immunoreactive GABABR1 neurons were located more ventrally in males than
in females. The area in which these differences were noted corresponds to the location where
estradiol was found to decrease the rate and frequency of movement of YFP-positive cells
[11]. In adult mice, the location of cells containing immunoreactive neuronal nitric oxide
synthase (nNOS) appeared to be spread more laterally in the POA/AH of ERα gene disrupted
males compared to wild type [15]. In rats, a sex difference was detected in the location of
immunoreactive ERβ neurons in the anteroventral periventricular nucleus [AVPV; 16]. In this
case, immunoreactive ERβ neurons were located more laterally in males than in females.
Interestingly, this difference was reversed by neonatal orchidectomy of males or estradiol
treatment of females, providing further evidence of steroid hormones directly affecting the
position of specific neurons.

Steroid signaling for cell movements in non-neural cells
There is a long history of rapid steroid hormone signaling and localization of steroid hormone
receptors to compartments other than nuclei [12]. There is also strong evidence of sex steroid
influences on cell movements in non-neural circumstances including cancer metastasis,
angiogenesis, vascular cell remodeling, wound healing and the control of inflammation [17].
For its role in metastasis, estrogen receptor signaling (via ERα) may utilize the actin binding
protein moesin as a key partner for modifying the cytoskeleton to promote migration [18].
Moesin is part of the ezrin-radixin-moesin family of actin binding proteins that has potential
functions in brain development [19], but has not been investigated for hormone interactions in
brain. Estrogenic signaling may not require either ERα or ERβ if estradiol is metabolized to
2-methoxy-estradiol. This metabolite of estradiol has been implicated in altering cell motility,
migration and adhesion by interfering with cytoskeletal function through other mechanisms
[20,21]. Another migratory factor that has sexually differentiated expression is macrophage
migration inhibitory factor (MIF). MIF is a mediator of delayed healing in several species.
Surprisingly, the effectiveness of MIF is sexually dimorphic, and is regulated by steroid
hormones in adulthood [22].
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Other signaling molecules that might mediate hormonal modulation of cell
movements
GABA

While direct effects of steroid hormones such as estradiol on cell motions might be considered
‘atypical’, the effect of steroid hormones may occur through other molecules that are more
frequently thought to influence cell migration (Figure 1). Several neurotransmitters (including,
GABA, serotonin, dopamine, and endogenous opiates) have been suggested to act as
neurotrophic factors or morphogens in various brain regions [23,24]. Of those molecules that
might be considered major effectors of hormone action, the neurotransmitter GABA might be
particularly important in hypothalamic development [25,26]. The focus of several of our studies
has examined the effects of GABA on the development of hypothalamic nuclear groups,
specifically the ventromedial (VMN) and paraventricular (PVN) nuclei of the hypothalamus.
The distribution of GABAergic elements surrounding these developing nuclei may be essential
for the arrangement of the cytoarchitecture in these regions [VMN, 26; and PVN, 27]. Several
lines of evidence suggest that GABA plays a role in the embryonic differentiation of the VMN.
First, GABA is synthesized in positions that could potentially provide boundary information
for the embryonic VMN [28]. Second, disrupting the steroidogenic factor-1 (SF-1) gene
disrupts the distribution of GABAergic elements that normally surrounds the VMN prior to its
organization [29]. This may partially contribute to the altered distribution of numerous
phenotypically identified cells in the VMN of SF-1 knockout mice [29,30]. Third, activation
of GABAA receptors affected cell movements and the distribution of identified cells in the
region of the VMN [31]. Activation of GABAB receptors also decreased cell movements in
the region of the VMN [32]. Finally, antagonism of GABAB action, either pharmacologically
in vitro or by genetic disruption of the GABAB R1 subunit of the receptor, also affected cell
movement and the distribution of immunoreactive ERα containing cells in the ventrolateral
VMN [33]. Although the specifics of GABAA and GABAB receptor actions may differ, likely
due to differences in their molecular mechanisms, strong indications of morphogenetic roles
for GABA have been characterized in the developing cerebral cortex [34-37].

GABAergic neurons are likely to be direct targets of steroid hormone actions since co-
localization has been noted with both steroid binding [38] and immunoreactive receptors [39,
40]. Perinatal administration of the GABAA receptor agonists muscimol and diazepam have
resulted in sex-related morphological changes in several brain regions [41,42]. In locations
where GABAergic inhibitory input to cells of the PVN has been characterized in adults [43],
there is a large population of cells containing immunoreactive ERα at early ages in
development. These GABAergic cells are likely targets of steroid hormone action, and may
have an important role in the development of the PVN [27].

Nitric Oxide
Another potential molecular effector of differentiation is nitric oxide (NO), which is a product
of the enzymatic conversion of L-arginine to citrulline. NO plays many roles in development
as well as in adulthood. NO has been suggested to help direct cell migration, cell proliferation,
and survival [44-46], which are all important factors for sexual differentiation. Since NO is a
highly reactive molecule that is difficult to isolate in vivo, many studies evaluate nitric oxide
synthase (NOS) expression as an indicator of the location of NO production. NO is produced
by three forms of NOS: neuronal (nNOS), inducible (iNOS) and endothelial (eNOS) [47]. Sex
differences or hormone influences have been found in adults for nNOS mRNA-positive cells
in rats [48,49] and immunoreactive nNOS cells in mice [15,50,51]. We recently examined the
distribution of immunoreactive nNOS containing cells in developing mice and found sex
differences in locations that may contribute to the development of sex differences in
hypothalamic development [52].
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Brain Derived Neurotrophic Factor
Another potential mediator of hormone actions on cell movements during development is brain
derived neurotrophic factor (BDNF). Data from brain regions other than hypothalamus
suggested a role for BDNF in cell migration [53]. It is highly expressed in restricted regions
of the developing hypothalamus [54,55]. The BDNF gene promoter contains a consensus
regulatory region for estrogen receptors [56] and estradiol has been shown to increase the
release of BDNF from specific cell types [57]. BDNF expression specifically in the VMN has
been shown to depend upon circulating gonadal steroids [see figure 1 in 58]. However,
examination of brains from BDNF knockout mice showed no alteration of positions of
identified cells in the region of the VMN [McClellan and Tobet, unpublished observations;
59]. On the other hand, in the same dataset we noted possible changes in immunoreactive
ERα cells in the region of the PVN (McClellan and Tobet, unpublished observations).

Cyclic AMP Response Element Binding Protein
It is interesting to note that several signaling systems already highlighted to be important for
sexual differentiation may converge on the phosphorylation of the cyclic AMP response
element binding protein (CREB). CREB phosphorylation in hypothalamic cells has been noted
for sex differences [60,61] and hormone influences [62]. The site of CREB phosphorylation
may play an important role in the activity of CREB binding protein and its ability to influence
gene transcription. Historically, phospho-CREB (pCREB) represents phosphorylation at serine
133; however, calcium influx can induce phosphorylation of CREB at two additional locations
(Ser142 and Ser143), along with serine 133, which then inhibit pCREB interaction with CREB-
binding protein [63]. During development, GABA may influence calcium influx and therefore
downstream phosphorylation of CREB and pCREB activity. Treatment with the GABAA
agonist, muscimol, induced a sex difference in pCREB, which was blocked by an L-type
voltage gated calcium channel blocker nimodipine [64]. The identification of this effect
highlights calcium influx as an interesting target for sexual differentiation via GABA signaling
[65]. GABA signaling also affects expression of BDNF and nNOS via CREB dependent
mechanisms [65,66]. In turn, BDNF may drive CREB dependent gene expression in a NO
dependent manner [67]. This complex interaction of signal transduction pathways is impacted
by gonadal steroid hormones at all levels, supporting the hypothesis that these pathways may
play an important role in the modulation of sex specific differences in neuron migration during
development.

Sexual Dimorphisms Following Disruption of Normal Development
While a majority of sex differences are a direct consequence of hormone actions, some may
only be revealed following either genetic or environmental disruptions. Identification of these
sexual dimorphisms allows both insight into the mechanisms behind normal brain
development, and potential side effects of disruption on adult phenotypes. Although there are
a number of indications of sex differences in PVN regulation and function [68,69], there are
relatively few findings of sexual dimorphism (based on cytoarchitecture or anatomy) in the
perinatal or adult PVN. One of the few demonstrations of sexual dimorphism in the PVN is a
difference in the number of corticotropin releasing-hormone (CRH) containing neurons in the
brains of human subjects. Men had more immunoreactive CRH neurons than women in the
PVN, and men, but not women, had a significant increase in the number of immunoreactive
CRH neurons with age [70]. We recently noted an additional sex difference in the PVN of mice
in regards to the positioning of cells containing immunoreactive ERα that was only revealed
when GABAB receptor signaling was impaired [27]. Some sex differences in the PVN may
only become apparent during specific physiological states or under circumstances of altered
development.

Tobet et al. Page 5

J Neuroendocrinol. Author manuscript; available in PMC 2010 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



CONCLUSION
Sex differences in the positions of cells in the developing hypothalamus and steroid hormone
influences on cell movements in vitro suggest that cell migration may be one target for early
molecular actions that impact brain development and sexual differentiation. A potential
relationship exists between steroid hormone signaling and various other signaling molecules
described above (NO, GABA, BDNF, and CREB). Future experiments will be important for
directly testing the interactions of these signaling molecules as they relate to hypothalamic
development.
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Figure 1.
This schematic diagram depicts several signaling systems that may contribute to sexual
differentiation of the vertebrate diencephalon. Estradiol (E2) synthesized via the aromatase
(Arom) enzyme may bind estrogen receptors (ER’s) located in cell nuclei or estrogen binding
proteins (EBP; that may or may not be identified ER’s) found in cell membranes. E2 signaling
through ER’s may influence the transcription of genes involved in nitric oxide (nitric oxide
synthase; nNOS) or GABA synthesis (glutamic acid decarboxylase; GAD). In turn, the end
products, NO and GABA, may diffuse locally to influence neighboring cells or form molecular
gradients to impact cells at greater distances. E2 signaling through ER’s may also influence
brain derived neurotrophic factor (BDNF). The arrows between cells indicates the hypothesis
that cells which synthesize nNOS, BDNF, and GAD may also interact with each other to
influence the migration and cell positions of neurons in the developing preoptic area (except
BDNF) and hypothalamus (see text for specific evidence). Aromatase may be localized in a
separate cell type as depicted in the diagram, or be co-localized in one of the other cell types.
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