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Summary

U18666A is a cholesterol transport-inhibiting agent that is used widely
to mimic Niemann–Pick type C disease. The effect of U18666A on tumour
necrosis factor (TNF)-a production in mouse macrophage cell line, RAW
264·7 cells and peritoneal macrophages was examined. U18666A induced
TNF-a mRNA expression 48 h after the treatment, and TNF-a production 48
and 72 h after stimulation in RAW 264·7 cells. U18666A accumulated intrac-
ellular free cholesterol in the culture of normal medium but not cholesterol-
free medium. U18666A also induced reactive oxygen species (ROS) generation
in normal medium but much less in cholesterol-free medium. Anti-oxidant
N-acetyl-L-cysteine (NAC) abolished U18666A-induced TNF-a production.
U18666A led to the phosphorylation of p38 mitogen-activated protein kinase
24 and 48 h after the stimulation and the p38 activation was inhibited
in presence of cholesterol-free medium or NAC. A p38 inhibitor reduced
U18666A-induced TNF-a production. Taken together, U18666A was sug-
gested to induce TNF-a production in RAW 264·7 cells via free cholesterol
accumulation-mediated ROS generation.
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Introduction

The pharmacological agent, U18666A (3-b-[2-
(diethylamino)ethoxy]androst-5-en-17-one), is a choles-
terol transport-inhibiting class-2 amphiphile, which is used
widely to mimic Niemann–Pick disease type C (NPC) as a
fatal neurovisceral lipid storage disease of autosomal inher-
itance [1–5]. U18666A induces dysfunction of lipid storage,
and inhibition of cholesterol movement from the plasma
membrane to the endoplasmic reticulum and from the lyso-
some to the plasma membrane [5]. Therefore, free choles-
terol accumulates in late endosomes of the cells treated with
U18666A [6–8] and leads to an impaired cell function
similar to NPC disease.

Chronic exposure of primary cortical neurones to
U18666A causes neuronal apoptosis [9]. U18666A increases
generation of intracellular reactive oxygen radical species
(ROS) [9] and the oxidative damages may lead to neuronal
apoptosis. In NPC disease, the cell death in the brain also
occurs through apoptosis and it seems to be mediated by the
tumour necrosis factor (TNF) receptor superfamily pathway
[10]. Further, the expression of TNF-a mRNA is reported to
increase up to 30–50-fold in the cerebellum of 7–9-week-old

NPC1-deficient mice compared with wild-type mice [10].
On the other hand, macrophages from mice treated with
U18666A have a specific defect in transporting lipoprotein-
derived cholesterol from late endosome to the endoplasmic
reticulum, and are resistant to free cholesterol-induced
apoptosis [11]. Recently, NPC1 is reported to regulate
intracellular cholesterol trafficking and oxidative stress in
macrophages [12]. The precise action of U18666A on
macrophages is not known, although the action on neuronal
cells is studied extensively. The effect of U18666A on the
macrophage function should be clarified in order to under-
stand the involvement of inflammatory response in NPC
disease. In the present work we studied if and how U18666A
induced TNF-a production in mouse macrophage cell line,
RAW 264·7 cells. Here, we report the putative mechanism of
U18666A-induced TNF-a production.

Materials and methods

Materials

U18666A was purchased from Biomol International
(Plymouth Meeting, PA, USA). Oleic acid and N-acetyl-L-
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cysteine (NAC) were obtained from Sigma (St Louis,
MO, USA); (�)-3-hydroxy-3-methyl-5-pentanolide (DL-
mevalolactone) were purchased from Wako (Osaka, Japan).
Antibodies to serine/threonine kinase/protein kinase B
(Akt), p65 nuclear factor (NF)-kB, stress-activated protein
kinase (SAPK)/Jun N-terminal kinase (JNK), p38, extra-
cellular signal regulated kinase (ERK) 1/2 and their phos-
phorylated forms were purchased from Cell Signalling
Technology (Beverly, MA, USA), and anti-b-actin antibody
was from Santa Cruz Biotechnology (Santa Cruz, CA, USA).
SB203508 as a p38 inhibitor and PD98058 as an ERK1/2
inhibitor were obtained from Calbiochem (La Jolla, CA,
USA).

Cell culture

The murine macrophage cell line RAW 264·7 was obtained
from Riken Cell Bank (Tsukuba, Japan) and maintained in
RPMI-1640 medium containing 10% heat-inactivated fetal
bovine serum (FBS) (Gibco-BRL, Gaithersburg, MD, USA)
and antibiotics at 37°C under 5% CO2. The medium was
denoted as medium X. RPMI-1640 supplemented with
3% delipidated FBS, 20 mM lovastatin, 50 mM oleic acid and
300 mM mevalonate was used for the cholesterol-free
medium denoted as medium Y. Delipidated FBS was pre-
pared as described elsewhere [13]. Medium Y inhibited cho-
lesterol synthesis almost completely, as described elsewhere
[14]. RAW 264·7 cells were adapted to medium Y by cultiva-
tion with RPMI-1640 containing 3% FBS, followed by 12 h
cultivation with RPMI-1640 containing 3% delipidated FBS.
Peritoneal cells were obtained by washing out the peritoneal
cavity of BALB/c mice (Japan SLC, Hamamatsu, Japan)
with RPMI-1640 medium. The experiment was carried
out under the guide for care and use of laboratory animals,
Aichi Medical University.

Determination of TNF-a production

The cell culture supernatant was collected from the cultures
of RAW 264·7 cells stimulated with or without U18666A
(1 mg/ml) for various times. The concentration of TNF-a
was determined by enzyme linked immunosorbent assay kit
(R&D Systems, Minneapolis, MN, USA). Experimental
results are expressed as the mean of triplicates � standard
deviation (s.d.) in three independent experiments.

Real-time polymerase chain reaction

Quantitative real-time polymerase chain reaction (PCR) was
performed essentially as described elsewhere [15]. RNA
was extracted from cells using the RNeasy mini kit (Qiagen,
Chatsworth, CA, USA). RNA was reverse-transcribed in
ReverTra Ace (Toyobo, Osaka, Japan) with a three-step incu-
bation according to the manufacturer’s instructions, and

quantitative PCR was carried out using SYBR green real-time
PCR master mix (Toyobo) under the manufacturer’s instruc-
tions. Mouse primers were designed as follows: TNF-a (sense:
5′-TGTTGCCTCCTCTTTTGCTT-3′, anti-sense: 5′-TGGTC
ACCAAAATCAGCGTTA-3′); glyceraldehydes-3-phosphate
dehydrogenase (GAPDH) (sense: 5′-TGAAGCAGGCATC
TGAGGG-3′, anti-sense: 5′-CGAAGGTGGAAGAGTGGG
AG-3′) (Invitrogen, Carlsbad, CA, USA). PCR was performed
with ABI PRISM 7700 sequence detection system (Applied
Biosystems, Hamilton, New Zealand) and the PCR conditions
were as follows: 95°C for 10 min and 40 cycles at 95°C for 30 s,
60°C for 1 min. The relative quantitative values of TNF-a
expression in each case were normalized by the expression
levels of reference gene GAPDH. The expression levels of
TNF-a mRNA in each sample are presented as fold increase to
the mean value of the control.

Determination of intracellular free cholesterol

Cellular lipid was extracted with hexane/isopropanol (3 : 2,
v/v) for 30 min and the solvent was evaporated under a
decicator. The amount of free cholesterol was determined
with the Amplex red cholesterol assay kit (Molecular Probes,
Invitrogen), according to the manufacturer’s instructions.
The reaction mixtures were incubated for 30 min at 37°C.
Fluorescence intensity was measured at excitation wave-
length 530 nm and emission wavelength 590 nm with a fluo-
rescence microplate reader. Background fluorescence was
subtracted from each value. The amount of cholesterol
was calculated based on a standard curve with purified
cholesterol.

Filipin staining

RAW 264·7 cells were cultured in an eight-well plastic plate
with slides. On the following day U18666A (1 mg/ml) or
vehicle control was added into the cultures and incubated
for a further 24 h. The slides were washed with phosphate-
buffered saline five times and used for the filipin staining
with the cholesterol cell-based detection assay kit (Cayman
Chemical, Ann Arbor, MI, USA) according to the manufac-
turer’s instructions. Digital images were acquired immedi-
ately after filipin labelling under fluorescence microscopy.

Determination of intracellular ROS by
2¢,7¢-dichlorofluorescein diacetate

The amount of intracellular ROS was measured by using
DCF-DA (Sigma). Briefly, RAW 264·7 cells were cultured at
2 ¥ 105/well in a 96-well microplate for 12 h and stimulated
with 1 mg/ml U18666A for various times. After removal of
the culture medium, the cells were incubated further with
the culture medium containing 100 mM DCF-DA at 37°C for
30 min. After twice washing, the fluorescence intensity was
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measured by a fluorescence spectrophotometer at excitation
and emission wavelengths of 485 and 530 nm, respectively,
at intervals of 30 min. The data represent one of the three
experiments and the fluorescence intensity is expressed as
means of triplicate � s.d.

Immunoblotting

Immunoblotting were performed as described elsewhere
[16]. In brief, cells were lysed by adding an equal volume
of a twofold concentrated sample buffer and the cell lysates
were subjected to sodium dodecyl sulphate (SDS)–
polyacrylamide gel electrophoresis using 8–12% gradient
gels. The proteins were transferred electrically to a poly-
vinylidene difluoride membrane and the membrane was
treated with various antibodies, followed by horsera-
dish peroxidase-conjugated goat anti-rabbit or anti-mouse
immunoglobulin G (Santa Cruz Biotechnology). The
protein bands were visualized by a chemiluminescence
reagent (Pierce, Rockford, IL, USA). For reprobing, mem-
branes were stripped with the solution containing 2% SDS,
62·5 mM Tris, pH 6·8 and 100 mM 2-mercaptoethanol
at 50°C for 30 min and treated with corresponding
antibodies. The molecular sizes of the antigens were deter-
mined by comparison with a prestained protein size marker
kit (Invitrogen).

Statistical analysis

Experimental data are expressed as the mean of triplicates
� s.d. in at least three independent experiments. Statistical
analysis based on Student’s t-test was performed for com-
parisons between two experiments. A value of P < 0·01 was
considered statistically significant.

Results

U18666A induces production of TNF-a in
RAW 264·7 cells

The effect of U18666A on TNF-a production in RAW 264·7
cells was studied. RAW 264·7 cells were incubated with
U18666A (1 mg/ml) for 24, 48 or 72 h. There was no signifi-
cant TNF-a production in U18666A-treated RAW 264·7
cells until 24 h after the treatment. Surprisingly, U18666A
markedly induced TNF-a production at 48 and 72 h
(Fig. 1a). There was a long time lag in U18666A-induced
TNF-a production. The effect of U18666A on TNF-a
production in mouse peritoneal cells was also examined.
U18666A induced TNF-a production in peritoneal macro-
phages as well as RAW 264·7 cells 48 and 72 h after the
treatment, although the level of TNF-a was lower than that
of RAW 264·7 cells (Fig. 1a). Subsequently, the time–course
of the TNF-a mRNA expression was examined by real-time
PCR. The level of TNF-a mRNA increased significantly 48 h

after U18666A treatment, although there was no significant
increase in the TNF-a mRNA level within 24 h (Fig. 1b). The
time–course of TNF-a mRNA expression corresponded
to that of TNF-a production. In addition, the effect of
U18666A on the cell viability of RAW 264·7 cells was
determined by an assay with 3-(4,5-dimethylthiazol-2-yl)-
5-(3-carboxymethoxyphenyl)-2-(4-sulphophenyl)-2H-
tetrazolium (MTT) (Chemicon, Temecula, CA, USA). The
MTT assay demonstrated that U18666A exhibited no cyto-
toxic action on those cells 24, 48 and 72 h after U18666A
treatment.

U18666A induces intracellular accumulation of free
cholesterol in RAW 264·7 cells

U18666A is known to accumulate free cholesterol via inhi-
bition of its intracellular transport [4]. Therefore, a possibi-
lity was raised that U18666A induced TNF-a production via
intracellular accumulation of free cholesterol. The effect of
U18666A on free cholesterol accumulation was examined by
cultivation with medium X or cholesterol-free medium Y.
U18666A increased the level of intracellular free cholesterol
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Fig. 1. Tumour necrosis factor (TNF)-a production in

U18666A-treated RAW 264·7 cells. RAW 264·7 cells and peritoneal

macrophages were incubated with U18666A (1 mg/ml) for various

hours. (a) TNF-a production was determined with enzyme-linked

immunosorbent assay. *P < 0·01 versus none (vehicle control).

(b) TNF-a mRNA expression was analysed with real-time polymerase

chain reaction. *P < 0·01 versus 0 h.
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in the culture with medium X but not medium Y 24 h after
the treatment (Fig. 2a). The level of intracellular free choles-
terol increased gradually up to 72 h in the culture with
medium X. Next, the localization of free cholesterol was
examined with filipin III staining. U18666A led to the
intense staining of filipin III at perinuclear regions and the
reduced staining at plasma membranes 24 h after the treat-
ment (Fig. 2b). On the other hand, only the plasma mem-
brane and subcellular organelles were stained positively in
untreated control cells.

U18666A induces the generation of ROS in
RAW 264·7 cells

Cholesterol is an initial source of oxidative stress and triggers
oxidative stress response via generation of ROS [17]. The
effect of U18666A on ROS generation in RAW 264·7 cells
was examined. U18666A markedly caused the ROS genera-
tion 24 h after the treatment. The ROS generation at 48 h
was more than that at 24 h (Fig. 3). To study the involvement
of free cholesterol accumulation in the ROS generation, we

examined U18666A-induced ROS generation in the culture
with medium X or cholesterol-free medium Y. U18666A-
induced ROS generation was markedly prevented in the
culture with medium Y 24 and 48 h after the treatment.

The NAC inhibits U18666A-induced TNF-a
production

In the preceding section, the free cholesterol accumulation
was suggested to trigger the ROS generation in RAW 264·7
cells. A possibility was raised that in U18666A-treated RAW
264·7 cells the ROS generation triggered by free cholesterol
accumulation might lead to TNF-a production. The effect
of NAC on TNF-a production in U18666A-treated RAW
264·7 cells was examined in medium X and cholesterol-free
medium Y. The U18666A-induced TNF-a was abolished
completely by NAC in medium X and Y (Fig. 4), suggesting
the involvement of ROS in U18666A-induced TNF-a
production.

U18666A activates p38 mitogen-activated protein
kinase at the late stage after the treatment

The effect of U18666A on a series of signal transduction on
RAW 264·7 cells was examined to clarify the signal pathway
initiating TNF-a production (Fig. 5a). First, we examined
NF-kB signalling on which TNF-a production is mainly
dependent. p65 NF-kB phosphorylation occurred 1 h after
U18666A treatment and increased gradually up to 12 h. The
phosphorylation of p65 was undetectable at 24 and 48 h.
The NF-kB-related AKT phosphorylation occurred at 1 h.
The highest phosphorylation was seen at 4 h and thereafter it
waned. Next, the effect of U18666A on p38, SAPK/JNK and
ERK1/2 signalling was examined. The activation of p38 was
seen from 1 h to 8 h after U18666A treatment and disap-
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peared temporally at 12 h. The phosphorylated p38 band
again appeared at 24 h and then continued up to 48 h. The
ERK1/2 phosphorylation was detected at 4 h and 12 h after
U18666A treatment. On the other hand, SAPK/JNK contin-
ued from 1 h to 12 h but the phosphorylation at 24 h and
48 h was lower compared with that at 12 h. Moreover, the
effect of NAC or cholesterol-free medium Y on the p38 phos-
phorylation was examined (Fig. 5b). Anti-oxidant NAC and
medium Y inhibited the U18666A-induced p38 activation,
especially 48 h after U18666A treatment.

The effect of a p38 or ERK 1/2 inhibitor on U18666A-
induced TNF-a production was examined. SB203580 as
a p38 inhibitor completely prevented U18666A-induced
TNF-a production, whereas PD98058 as an ERK1/2 inhibi-
tor did not affect it (Fig. 6). The addition of SB203580 12 h
after U18666A treatment markedly inhibited the TNF-a
production and the 12 h post-treatment of SB203580 was
effective for TNF-a inhibition.
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Discussion

In the present study we demonstrate that U18666A may
induce TNF-a production in RAW 264·7 macrophage cells
via free cholesterol accumulation-mediated ROS generation.
U18666A is a cholesterol transport-inhibiting class-2
amphiphile, which is used widely to mimic NPC disease
[1–5]. Therefore, U18666A inhibits the intracellular trans-
port of free cholesterol and accumulates intracellular free
cholesterol. The free cholesterol accumulation may cause
ROS generation and the ROS generation triggers oxidative
stress-related p38 activation [18]. The p38 activation is
reported to trigger TNF-a production [18,19]. Thus, free
cholesterol accumulation as the primary action of U18666A
is possible to induce TNF-a production via ROS generation.
This is the first report on U18666A-induced TNF-a
production.

How does free cholesterol accumulation cause the ROS
generation? It is well established that elevated cholesterol
levels are associated with the intensity of oxidative stress
[20]. Further, altered cholesterol metabolism causes the
production of 24s-hydroxycholesterol that may be involved
in ROS generation [12]. Furthermore, U18666A reduces
significantly the intracellular glutathione level, which is
the most abundant intracellular anti-oxidant [21]. The free
cholesterol accumulation by U18666A is possible to cause
ROS generation and further oxidative stress. The inhibition
of ROS generation by cholesterol-free medium Y also
suggests that accumulated free cholesterol is a key factor of
U18666A-induced ROS generation.

U18666A-induced TNF-a production occurs at a late
stage (48–72 h) after the treatment and requires a long time
lag before the production. Considering that TNF-a is pro-
duced 1–2 h after lipopolysaccharide stimulation, the long
time lag is a characteristic of U18666A-induced TNF-a
production. The delay may exclude the possibility that
U18666A activates the signalling initiating TNF-a pro-
duction directly. Rather, it suggests that U18666A-induced
TNF-a production is induced secondarily by the primary
action of U18666A, which inhibits the intracellular free cho-
lesterol transfer. The delay in U18666A-induced TNF-a pro-
duction may be dependent upon the time-period for free
cholesterol accumulation and subsequent ROS generation.

Interestingly, p38 is phosphorylated twice at 1–8 h and
24–48 h after U18666A treatment. The late p38 phosphory-
lation is prevented in medium Y, indicating that it is medi-
ated by free cholesterol accumulation induced by U18666A.
The late p38 phosphorylation is also inhibited by anti-
oxidant NAC, suggesting that it is also dependent upon ROS
production. Based on these findings, the late p38 activation
might be critical for U186666A-induced TNF-a production.
It is also supported by the finding that the addition of
SB203580 12 h after U1866A treatment inhibits TNF-a
production markedly. In addition, the early p38 activation
might be required for free cholesterol accumulation and/or

ROS generation. There is no late activation of NF-kB and
SAPK/JNK 48 h after U18666A stimulation, suggesting that
NF-kB and SAPK/JNK is not involved in U18666A-induced
TNF-a production. It is still unclear the reason why
oxidative stress-responsive NF-kB and SAPK/JNK are not
activated in U18666A-stimulated cells.

U18666A is used widely for the experimental model of
NPC disease as an endosome/lysosomal free cholesterol
storage disorder [4,22,23] and causes neuronal apoptosis
[24]. In NPC disease, the apoptotic cell death in the brain is
mediated by the TNF receptor superfamily pathway [10].
The expression of TNF-a mRNA is reported to increase up
to 30–50-fold in the cerebellum of 7–9-week-old NPC1-
deficient mice compared with wild-type mice [10]. There-
fore, U186666A-induced TNF-a production might be useful
to clarify the pathogenesis of NPC disease.
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