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ABSTRACT For each pair �n; k� with 1��� k+++ n, we con-
struct a tight frame �¯ª x ª���ä� for L2�Rn�, which we call
a frame of k-plane ridgelets. The intent is to efficiently repre-
sent functions that are smooth away from singularities along
k-planes in Rn. We also develop tools to help decide whether
k-plane ridgelets provide the desired efficient representation.
We first construct a wavelet-like tight frame on the X-ray bun-
dle Øn;k—the fiber bundle having the Grassman manifold
Gn;k of k-planes in Rn for base space, and for fibers the or-
thocomplements of those planes. This wavelet-like tight frame
is the pushout to Øn;k, via the smooth local coordinates of
Gn;k, of an orthonormal basis of tensor Meyer wavelets on Eu-
clidean space Rk�n−k�3 Rn−k. We then use the X-ray isometry
[Solmon, D. C. (1976) J. Math. Anal. Appl. 56, 61–83] to map
this tight frame isometrically to a tight frame for L2�Rn�—
the k-plane ridgelets. This construction makes analysis of a
function f���L2�Rn� by k-plane ridgelets identical to the anal-
ysis of the k-plane X-ray transform of f by an appropriate
wavelet-like system for Øn;k. As wavelets are typically effec-
tive at representing point singularities, it may be expected
that these new systems will be effective at representing ob-
jects whose k-plane X-ray transform has a point singularity.
Objects with discontinuities across hyperplanes are of this
form, for k 5 n 2 1.

1. Introduction

One of the most striking features of wavelet analysis is its
ability to efficiently represent functions that are smooth away
from point singularities. To understand this, consider the func-
tion f0;α�x� = �x�−αw�x� on Rn, where w�x� is a smooth win-
dow of compact support and α + n/2. Now f is smooth away
from 0, and has a square-integrable singularity at the point
x = 0. The coefficients of f in the Meyer orthonormal wavelet
basis are sparse: arranging them in decreasing order of magni-
tude gives a sequence decaying more rapidly than any negative
power of the index. In this regard, the wavelet coefficients of
a point singularity behave similarly to the wavelet coefficients
of a smooth function [such as w�x�]; the sparsity of a wavelet
analysis is in a sense insensitive to the presence of point sin-
gularities.

Sparsity of the wavelet coefficients has implications for the
quality of partial wavelet reconstructions. If we approximate
a function by using just the m-best terms in the wavelet ex-
pansion, and if the coefficients are sparse in the sense just
given, then the L2 error of best-m-term approximation de-
cays rapidly with m—faster than any negative power of m.
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Hence, the fact that wavelet analysis of a point singularity
yields sparse coefficients means that smooth functions with
point singularities can be very efficiently approximated by par-
tial wavelet reconstructions. This fact has significant implica-
tions in data compression and in statistical estimation. (Ex-
tensive references on these implications are given in refs. 1
and 2.)

In dimension n , 1, there is a wide range of singularity
types, point singularities being just one possibility. Consider

fd;α�x� = w�x1; : : : ; xn� · �x2
1 + · · · + x2

n−d�−α/2;
where w is a smooth window of compact support, d �
�1; : : : ; n − 1�, and 0 + α + �n − d�/2. This function has
a singularity along the hyperplane x1 = · · · = xn−d = 0 that
extends a finite distance in the d variables xn−d+1; : : : ; xn. It
may naturally be viewed as a singularity of dimension d. We
may also naturally consider rigid motions of the argument,
producing f̃d;α�x� = fd;α�Ux+b�, where U is a rotation of Rn.

For typical functions of the type f̃d;α, d 6= 0, wavelets do
not yield sparse coefficients as they did with f0;α. For exam-
ple, in R2, an object of type f̃1;1/4 is easily seen to have typ-
ically at least order O�2j� standard wavelet coefficients with
amplitude exceeding 2−3j/4. So the mth largest wavelet coef-
ficient of such an object is often � c · m−3/4 for c , 0; this
is a much poorer decay than the one we saw earlier in the
case of point singularities, where the decay was faster than
any negative power of m. In consequence, m-term wavelet re-
constructions do not approximate such objects with the kind
of efficiency we saw earlier in the case of point singularities.
We can formulate this conclusion more boldly by saying that
wavelets do not efficiently approximate edges in R2. Similar
statements hold in higher dimensions; wavelets do not effi-
ciently approximate discontinuities across surfaces in R3 or
singularities along curves in R3.

We summarize this as follows: wavelets efficiently represent
0-dimensional singularities, but not d-dimensional singulari-
ties, for d = 1; : : : ; n− 1 in dimension n. This leads very nat-
urally to the following problem:

Problem �n; d�: Representation of d-Dimensional Singu-
larities in Rn. Let d � �1; : : : ; n− 1�: Is there a system of rep-
resentation for functions of L2�Rn� (e.g., an orthonormal basis)
that represents f̃d;α and similar objects sparsely?

In this note we describe, for each pair �n; k� with 1 � k +
n, a construction of a tight frame for L2�Rn� that is intended
to display the same efficiency of representation of singular-
ities of dimension k � 1 that wavelets exhibit for singulari-
ties of dimension 0. We also sketch arguments suggesting how
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to decide when these tight frames might provide the desired
efficient representations. Our arguments suggest that these
tight frames have the desired sparse coefficient property for
k = n− 1, for any n , 1. They also suggest that, owing to the
structure of Gn;k, the new frames may not have the desired
sparse coefficient property in the cases 1 � k + n− 1, n � 3.
In short, it appears that the constructions given here provide
efficient representations for �n− 1�-dimensional singularities;
and that efficient treatment of lower-dimensional singularities
is a topic for further research.

The viewpoint described in this note derives from extensive
unpublished work conducted over the last few years by Em-
manuel Candès and myself. The article in press (3) and the re-
cent thesis (4) introduced the terminology of ridgelet analysis
and the problem of constructing and applying ridgelet frames.
Candès’ ridgelets are closely related to what we call in the ter-
minology of this paper �n−1�-plane ridgelet frames; his appli-
cations included the potential usefulness of his ridgelet frames
for what we call here Problem �n; n−1�. In that pioneer work,
the convention was adopted that the term “ridgelet” refers
specifically to a ridge function ψa;b;u�x� = ψ�au′x + b�a1/2,
where ψ is oscillatory. Here u � Sn−1 is a unit vector, and the
function ψa;b;u is constant along �n − 1�-dimensional hyper-
planes or “ridges.” The phrase “ridgelet frame” referred to
frames where the individual elements had this structure, for
appropriate �an; bn; un�. Working within that constraint, the
resulting frames were not tight, the ridgelet primal frame el-
ements had to be accompanied by nonridgelet dual frames,
the construction of dual frames was implicit, the properties of
the dual frame elements were not available directly, and the
primal frame elements were not in L2�Rn�.

In one of my articles (available at http://www-stat.stanford.
edu/~donoho/Reports/1998/ridge-lin-sing.ps), I had the idea
to broaden the notion of ridgelet so that, rather than im-
posing the ridge-function form on the elements of an ana-
lyzing system, certain localization properties were obeyed in
a radial frequency 3 angular-frequency domain. Under this
broadened notion of ridgelet, it was possible to explicitly con-
struct orthonormal ridgelet bases in the case k = 1, n = 2 and
also to show that the properties of orthonormal ridgelet coef-
ficients can be identified with the properties of tensor wavelet
analysis of a fractionally-differentiated Radon transform. This
identification was used to show that orthonormal ridgelet co-
efficients are sparse when analyzing certain smooth objects
with linear singularities in R2.

In the present article, we generalize the construction of or-
thonormal ridgelets in k = 1, n = 2 to cases of n , 2 and k
arbitrary. The construction is a generalization of an approach
developed in n = 2, k = 1 because, whereas that case was
based on the properties of the Radon transform, the general-
ization exploits corresponding properties of the k-plane X-ray
transform (5). In particular, we rely on Solmon’s isometry be-
tween X-ray space and real space. In our generalization, we
obtain not orthonormal bases but instead tight frames. We
also show that properties of the k-plane ridgelet coefficients
can be obtained from wavelet analysis of the X-ray transform.
As part of this effort, we obtain new systems of representation,
such as beamlets in n = 3, k = 1. We also obtain implications
for “classic ridgelets” k = n − 1, giving an explicit construc-
tion of tight ridgelet frames for all n � 2, and a method of
analysis that suggests that the �n − 1; n� ridgelet coefficients
of an object f̃n−1;α will be sparse.

2. Coordinates for X-Ray Bundles

Let Gn;k be the Grassman manifold of unoriented k-planes in
Rn (6–8). Letting π � Gn;k be such a k-plane, and π⊥ denote
the collection of x � Rn orthogonal to π, the X-ray of the

function f in direction π at x � π⊥ is (5)

Xf �x;π� =
∫
π

f �x+ y�dy;

where the integral is over y � Rn belonging to π. The X-ray
transform of f is a function on the fiber bundle 8n;k = ��π; x�,
π � Gn;k, x � π⊥�, with base space Gn;k, and each fiber
isomorphic to Rn−k. In this section we develop a collection of
local coordinates on 8n;k.

As a C: manifold, Gn;k has an atlas of charts, ��Nq;χq�; x
q = 1; : : : ;Q�, where each Nq is a neighborhood in Gn;k and
each χq is a diffeomorphism into Rk�n−k�. There is a subordi-
nate partition of unity �wq x q = 1; : : : ;Q�, where 0 � wq � 1,
supp wq � Nq,

∑Q
q=1wq�π� = 1 ∀π, and each wq � C:.

In fact, we can be much more specific about the local co-
ordinates for Gn;k. An element π � Gn;k can be associated
with the matrices U in the orthogonal group O�n� whose first
k-columns give an orthobasis for π. Gn;k can therefore be
identified with the quotient of O�n� by O�k� 3 O�n− k�, be-
cause any matrix U corresponding to π can be transformed
into another such matrix by multiplication with(

Uk 0
0 Un−k

)
;

where Uk is a k 3 k orthogonal matrix, etc. Finally, by using
the Lie algebra structure of O�n�, this quotient group can be
associated with the exponentials of skew-symmetric matrices

V =
[

0 V0
−V ′0 0

]
; [1]

where V0 is k by n − k; the correspondence π ↔ V is C:
and one-one on a sufficiently small neighborhood Nq, which
in practice may be taken rather large, for example the corre-
spondence is certainly well behaved on all such matrices V of
norm + π/4, say.

Let, for each q, πq be a point in the interior of Nq, and as-
sign to πq a matrix Uq�πq� � O�n� whose first k columns are
an orthobasis for πq. Assuming the neighborhood Nq is appro-
priately small, we can then define a unique skew-symmetric
matrix V = V �π� patterned like Eq. 1 such that

Uq�π� = exp�V �Uq�πq�
gives an orthogonal matrix whose first k columns form an or-
thobasis for π. Thus, defining a vector v � Rk�n−k� by letting
v = ��V0�1;1; : : : �V0�1;n−k; �V0�2;1; : : : �V0�2;n−k; : : : ; �V0�k;n−k�
be a repackaging of the entries of the submatrix V0 of V , we
may take as definition of our local coordinates

v = χq�π�:

This system has the property that χq�πq� = 0.
This local coordinate system for the base space Gn;k allows

us also to define local coordinates on the fiber bundle 8n;k.
With Uq�π� as above, put Uq�π� = �U�q�π� � U⊥q �π�� where
U
�
q is n by k and U⊥q is n by n − k. The columns of U⊥q �π�

make an orthobasis for π⊥. Define, for π � Nq, correspond-
ing variables

u = uq�π; x� = �U⊥q �π��′x
v = vq�π� = entries of submatrix V0 of V :

Then on Nq, the correspondence �π; x� ↔ �v; u� is a C: dif-
feomorphism, and a linear isometry on each n−k-dimensional
fiber (π fixed, v fixed). In this way we have constructed a spe-
cial atlas of charts for 8n;k.
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3. A Tight Frame on X-Ray Bundles

Define now an L2-norm for functions F�π; x� x 8n;k→R by

�F�2
n;k =

∫
Gn;k

∫
π⊥
�F�π; x��2 dxdµ�π�;

where µ is the finite measure on Gn;k invariant under an
orthogonal transformation of Rn, normalized so µ�Gn;k� =
�Sn−1�/�Sn−k−1� (compare ref. 5).

The manifold structure underlying 8n;k allows us to write
this integration as an integration on Euclidean space Rm =
Rk�n−k� 3 Rn−k. We may write, for H�π; x� a function on 8n;k,
Hq�π; x� = wq�π�H�π; x�, so that supp Hq � Nq 3 Rn−k;
then ∫

Gn;k

∫
π⊥
H�π; x�dxdµ�π�

=
∑
q

∫
Nq

∫
π⊥
Hq�π; x�dxdµ�π�

=
∑
q

∫
Rk�n−k�

∫
Rn−k

H∗q�v; u�du Jq�v�dv;

where H∗q�v; u� = Hq�χ−1
q �v�; �U⊥q �χ−1

q �v���′u� is the pullback
of Hq to Euclidean coordinates, and Jq�v� is the change-of-
variables factor guaranteeing∫

Nq

∫
π⊥
Hq�π; x�dxdµ =∫

Rk�n−k�

∫
Rn−k

H∗q�v; u�duJq�v�dv: [2]

The factor Jq is C: and bounded away from zero on the open
set χq�Nq�. Here and below, whenever we have a function G
defined on a neighborhood of a d-manifold, the the function
G∗ induced on some subset of Rd via the local coordinates
will be called the pullback of G to Euclidean coordinates. In
the other direction, whenever we have a function G defined
on a subset of Rd in bijection with a neighborhood in a d-
manifold, the function G∗ induced on the manifold via the
local coordinate system will be called the pushout of G from
Euclidean space to the manifold. For example, below we will
need J∗q�π� A Jq�χq�π��, the pushout of the change of vari-
ables factor from euclidean space to 8n;k. This is a C: function
on Nq bounded away from 0.

We now use the manifold atlas to construct a wavelet-like
frame on 8n;k by a pushout operation from Euclidean space.
With u � Rn−k and v � Rk�n−k� now variables ranging freely
through their respective spaces, define tensor wavelets

ψµ�v; u� = ψδ1;:::;δn−k
�j1;`1;:::;`n−k��u�ψ

ε1;:::;εn
�j2;m1;:::;mM ��v�: [3]

Here the terms in the euclidean variable u, ψδ1;:::;δn−k
�j1;`1;:::;`n−k��u�,

constitute a standard orthonormal basis of Meyer wavelets (9)
for Rn−k having “no coarsest level.” The terms in the angular
variable v, ψε1;:::;εn

�j2;m1;:::;mM ��v�, (M = k�n− k�) constitute a stan-
dard orthonormal basis of Meyer wavelets for Rk�n−k� having
a coarsest level j0.

In detail, for terms in the Euclidean variable u, the scale in-
dex j1 runs through both positive and negative integers, the `i
index spatial locations, and each δi is a binary variable indicat-
ing whether the wavelet will be oscillatory in the ith direction
or not. Individual terms in this system consist of tensor prod-
ucts of Meyer wavelets ψδij1;`i�ui� with the constraint that in
forming each such product, at least one factor must be oscil-
latory.

For the angular variable v, the scale index j2 runs through
j2 � j0, where j0 � 0. The mi index spatial locations and each

εi is a binary variable indicating again whether the wavelet
will be nonoscillatory or oscillatory in that direction. The in-
dividual terms again consist of products of ψεij2;mi

�vi�; at scales
j2 , j0, in each such product, at least one oscillatory factor is
required. However, for j2 = j0 only, all products are allowed,
including products of all nonoscillatory terms. We let the index
µ = �j1y `1; δ1; : : : ; `n−k; δn−ky j2ym1; ε1; : : : mk�n−k�; εk�n−k��.

For q fixed, pushout these wavelets from Euclidean space
to Gn;k via

ψ∗;qµ �π; x� =
{
ψµ�vq�π�; uq�π; x��y π � Nq

0 else :

Note that the behavior of ψ∗;qµ outside of Nq will not be an
issue so that, for example, there is no need for a global defini-
tion of coordinates v�π�. Define frame elements W q

µ �π; x� by

W q
µ �π; x� = �J∗q�π��−1/2ψ∗;qµ �π; x�w1/2

q �π�: [4]

Note that as wq is suported in Nq and J∗q is bounded away from
zero on Nq, there is no difficulty with this definition; it defines
a C: function supported in Nq. For notational convenience,
we will also write Wλ for W q

µ , where λ = �µ; q�.
Theorem 1. �Wλ�π; x��λ is a tight frame for L2�8n;k�y if F x

8n;k → R has finite � · �n;k-norm, then

F =
∑
λ

�F;Wλ�Wλ in L2�8n;k� [5]

and

�F�2
n;k =

∑
λ

�F;Wλ�2: [6]

Proof: Set Fq�π; x� = w1/2
q �π�F�π; x�. The transformation

F 7→ �Fq�q is an isometry from L2�8n;k� to `2�L2�8n;k��:∑
q

�Fq�2
n;k = �F�2

n;k: [7]

[For later use: the transformation �Fq�q 7→ G defined by
G�π; x� = ∑

q w
1/2
q �π�Fq�π; x� is a partial isometry from

`2�L2�8n;k�� → L2�8n;k�, with the composition F → �Fq�q →
G the identity mapping of L2�8n;k� and the composition
�Fq� 7→ G 7→ �Gq� an L2-projection of `2�L2�8n;k��.]

The transformation Fq 7→ ��Fq;ψ∗;qλ J−1/2
q ��λ is an isometry:

�Fq�2
n;k =

∫
Nq

∫
π⊥
�Fq�π; x��2 dxdµ

=
∫

Rk�n−k�

∫
R�n−k�
�F∗q �v; u��2Jq�v�dudv

=
∑
µ

��F∗q · J1/2
q ; ψµ��2:

We remark that, here and below, Jq stands for some C:

extension of the function defined on χq�Nq�, this ex-
tension being bounded and bounded away from zero.
Now let G be a function on Nq � 8n;k with pullback
G∗ to Rk�n−k� 3 R�n−k� and let H be a function on
χq�Nq� � Rk�n−k� 3 R�n−k� with pushout H∗ to 8n;k; from Eq.
2 �G∗J1/2

q ;H� = �G�J∗q�−1/2;H∗�. With G = Fq and H = ψµ,
we get

�F∗q J1/2
q ; ψµ� = �w1/2

q · F · �J∗q�−1/2; ψ∗;qµ �
= �F;Wλ� λ = �q;µ�:

Hence, for each fixed q,

�Fq�2
n;k =

∑
µ

�F;W q
µ �2: [8]

Eq. 6 follows immediately from Eqs. 7 and 8.
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To check Eq. 5, note that

F∗q J
1/2
q =

∑
µ

�F∗q J1/2
q ; ψµ�ψµ in L2�Rk�n−k� 3 Rn−k�

because �ψµ� is a complete orthonormal system. As the ex-
tension Jq is bounded and bounded away from zero on all of
Rk�n−k�, we may write

F∗q =
∑
µ

�F∗q J1/2
q ; ψµ�J−1/2

q ψµ in L2�Rk�n−k� 3 Rn−k�:

Hence, from �F;W q
µ � = �F∗q J1/2

q ; ψµ�,

F∗q =
∑
µ

�F;W q
µ �J−1/2

q ψµ

so

w1/2
q Fq =

∑
µ

�F;W q
µ �W q

µ

and from
∑

q w
1/2
q Fq = F we get Eq. 5.

4. Isometry Between X-Ray Space and Real Space

Let F�π; x� be a function on 8n;k, and let F̃�π; ξ� denote the
fiberwise Fourier transform:

F̃�π; ξ� =
∫
π⊥
F�π; x�e−iξ′x dx; ξ � π⊥:

We remark that

F�π; x� = 1
�2π�k

∫
π⊥
F̃�π; ξ�e+iξ′x dξ; x � π⊥

and that

1
�2π�k

∫
�F̃�π; ξ��2 dξ =

∫
�F�π; x��2 dx:

It follows that the mapping &x→ξF = F̃ defines (up to nor-
malization) an isometry from L2�8n;k� to L2�8n;k�. For such
a function F̃�π; ξ� define a new function f̂ �ξ� by

f̂ �ξ� = �ξ�−k/2F̃�π; ξ� [9]

(ignoring for the moment the possibility of misbehavior at ξ =
0). This gives a mapping from L2�Rn� to L2�8n;k�; in fact it is
a multiple of an isometry, as

�F̃�L2�8n;k� =
∫
Gn;k

∫
π⊥
�ξ�k�f̂ �ξ��2 dξ dµ = γ0

n;k�f̂�2
L2�Rn�;

for a constant γ0
n;k (see ref. 5). Label this “polar-to-Cartesian”

operation C: f̂ = C�F̃�. C is, up to a constant factor, an isom-
etry. Now with & denoting the standard n-variable Fourier
transform, define the linear mapping * according to

* = & −1 ◦ C ◦ &x→ξ:

At least formally this is a constant multiple of an isometry.
The inverse mapping is

* −1 = �&x→ξ�−1 ◦ P ◦ & ;

where Pf̂ = F̃ defines a Cartesian-to-polar mapping from
L2�Rn� to L2�8n;k� by

F̃�π; ξ� = �ξ�k/2f̂ �ξ� ξ � π⊥: [10]

An important detail concerns the class of objects f in domain
�* −1� and F in domain �* �. Suppose that F is a function

on the 8n;k bundle which is fiberwise highpass: the fiberwise
Fourier transform F̃�π; ξ� = 0 for �ξ� + �0 for some �0 , 0.
Then certainly Eq. 9 makes sense, and so * is well defined
on F . Similarly, suppose that f is a function on Rn that is
bandlimited in the ordinary sense, i.e., so that f̂ �ξ� = 0 for
�ξ� , �1 for some �1 + :, then Eq. 10 makes sense, and * −1

is well defined on f .
Now consider the tight frame �Wλ�λ for L2�8n;k�. Because

in Eq. 3 we chose to use Meyer wavelets in the u-factor,
the frame elements Wλ obey the fiberwise highpass condition:
W̃λ�π; ξ� = 0 for all �ξ� + �λ and all π, for an �λ , 0 . Hence
the definition

ρλ A * �Wλ�; ∀λ � 3 [11]

makes sense and yields an isometric set in L2�Rn�.
Theorem 2. �ρλ� is a tight frame for L2�Rn�.
Indeed, as �ρλ� is isometric to �Wλ�, it is a tight frame for

span�ρλ�. It remains to check that this span is all of L2�Rn�.
As bandpass functions are dense in L2�Rn�, it is enough to
check that there are no nonzero bandpass functions orthog-
onal to every ρλ; here by bandpass we mean f̂ �ξ� = 0 for
�ξ� 6� ��0;�1� for some 0 + �0 + �1 + :. The isometry * −1

is well defined on such objects; one sees that F = * −1�f �
defines an isometric function in L2�8n;k�; this F is non-null
and the Wλ are complete so that

∑
λ�F;Wλ�2 , 0. But as the

Wλ and F are fiberwise highpass, * is well-defined on ev-
ery Wλ and on F and one sees that term by term we can
justify the equality �F;Wλ� = �* �F�;* �Wλ�� = �f; ρλ�, so∑

λ�ρλ; f �2 , 0. Hence no notrivial bandpass f can be or-
thogonal to every ρλ.

5. Examples

5.1. Beamlets. In dimension n = 3, let k = 1. Then Gn;k

is the collection of all lines through the origin, commonly de-
noted P2. Given a line π, consider the intersection of that line
with S2, the unit sphere in 3-space. This consists of two antipo-
dal points �p;−p�. We may identify π 7 �p;−p�, showing
that S2 gives a double covering of Gn;k.

We work concretely now on the sphere, keeping in mind
the picture that π 7 �p;−p�. For q = 1; 2; 3, consider the
qth polar cap 01

q the region of p � S2 where pq = maxi �pi�,
and the slightly larger cap 00

q where pq �
1
2 ·maxi �pi�. We can

define windows νq so that νq�p� = 1 on 01
q, so that νq�p� = 0

outside 00
q. We can create a partition of unity on P2 by the

recipe σq�π� = νq�p̄q�π��, where p̄q�π� means “the element
p of the antipodal pair associated with π that lies closest
to the qth pole.” Defining then wq�π� = σq�π�/

∑
q′ σq′ �π�,

we have a smooth partition of unity isolating these three re-
gions, i.e., smooth functions wq�π� so that 0 � wq�π� � 1,∑

q wq�π� A 1, ∀π � P2, and so that wq = 1 at lines coming
near the qth pole, reaching zero at lines near the correspond-
ing equator.

For the qth local coordinate system on G3;1, let Uq be a
permutation matrix whose first column has a one in the qth
position, and let Uq�v� = exp�V �Uq. The first column of Uq�v�
defines a smooth bijection from Euclidean coordinates v onto
the qth polar cap. This of course defines a point p = p̄q�π� in
correspondence with a line π which is the same point as that
defined by the rule of the previous paragraph. The second
and third columns of Uq�v� define coordinates for the ortho-
complement π⊥. Letting u be the coordinates of π⊥ in this
coordinate system, we can obtain a tight frame for 83;1 using
Eq. 4. We then realize a tight frame for L2�R3� by applying
the X-ray isometry. To make this more explicit, we have the
frequency-domain formula

ρ̂λ�ξ� = φq;µ0
�π�ψ̂+µ1

��U⊥�π��′ξ�; ξ � π⊥:
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Here the factor φq;µ0
�π� A w

1/2
q �π��J∗q�−1/2�π�ψ�0�µ0 �vq�π�� is

an element of a tight frame on P2, ψ�0�µ0 �v� being a tensor
wavelet on R2; and, with ψ�1�µ1 �u� a tensor wavelet on R2, ψ+µ1

is
a wavelet-like function on R2 defined in the Fourier domain by
ψ̂+µ1
�ω� = �ω�1/2ψ̂�1�µ1 �ω�. Thus λ = �q;µ0; µ1� groups together

the index of the polar cap, the index of the wavelet expansion
on the local coordinates for that cap, and the index of the
wavelet expansion on the euclidean coordinates for π⊥.

The family of induced functions ρλ concentrates “near”
beams, hence they may be called beamlets.

5.2. Classic Ridgelets. Consider again the case n = 3,
now with k = 2 = n − 1, which is the setting for “classic
ridgelet analysis” of ref. 3. Now 2-plane ridgelets should
concentrate near planes in R3, so they might also be called
“platelets.” Each plane in G3;2 may be identified with its
orthocomplement—a line in G3;1; i.e., we are indexing posi-
tion by using π⊥ rather than π. Once again, the sphere S2

provides a double cover and a concrete manifold to work
with. We may use the same polar cap partition of unity
�wq x q = 1; 2; 3� as with beamlets; as π⊥ is one-dimensional,
the implicit function p = p̄q�π⊥� defines a basis for π⊥.
From the tight frame formula 4 we can specialize to the case
at hand, and get a frequency-domain formula for ρ̂λ. For λ
fixed, and hence q fixed, we may write ξ � π⊥ as ξ = p · ω
with p = p̄q�π⊥�, and ω � R, and then

ρ̂λ�ξ� = φq;µ0
�π⊥� · ψ̂+µ1

�ω�;

where, as in the beamlet case, φq;µ0
�π⊥� = w

1/2
q �π⊥� ·

ψ
�0�
µ0 �vq�π⊥���J∗q�−1/2�π⊥� is an element of a tight frame on
P2 [ψ�0�µ0 �v� being a tensor wavelet on R2], and we define ψ̂+µ1

in terms of ψ�1�µ1 , a wavelet on R1, by the frequency-domain
formula ψ̂+µ1

�ω� = ψ̂
�1�
µ1 �ω� · �ω�. So the frequency-domain

structure of the tight frame is of a “spherical wavelet” times
the Fourier transform of a “wavelet on the line.”

6. Interpretation in X-Ray Space

Again in the setting of general n and k, let F�π; x� be a “suffi-
ciently nice” function on 8n;k and let X∗ be the formal adjoint
of the X-ray transform

�X∗F��x� = γn;k
∫
Gn;k

F�π;π⊥�x��dµ�π�;

where π⊥�x� denotes orthogonal projection of x onto π⊥. The
constant γn;k is chosen so that on sufficiently “nice” pairs F; g
with F � L2�8n;k� and g � L2�Rn�,

�X∗F; g� = �F;Xg�: [12]

Here “sufficiently nice” means, in addition to typical localiza-
tion and smoothness conditions, that F is fiberwise highpass.

Given now a function F�π; x� on 8n;k, let D+;D− be op-
erators defined fiberwise on such functions as follows. With
again F̃�π; ξ� the fiberwise Fourier transform, set

D+F�π; x� = 1
�2π�k

∫
π⊥
eix

′ξ�ξ�k/2F̃�π; ξ�dξ; x � π⊥

and

D−F�π; x� = 1
�2π�k

∫
π⊥
eix

′ξ�ξ�−k/2F̃�π; ξ�dξ; x � π⊥:

Assuming that F is fiberwise bandpass, these expressions make
sense rigorously. Now the Wλ are indeed bandpass on each
fiber, so D5 are well defined on such functions; set

τλ = D+Wλ; σλ = D−Wλy

these are a roughening and smoothing of Wλ, respectively. The
adjoint equation 12 gives immediately the following theorem:

Theorem 3. We have the operator biorthogonality relations

ρλ = X∗�τλ� σλ = X�ρλ�; λ � 3

�ρλ; ρλ′ � = �σλ; τλ′ � = �Wλ;Wλ′ �; λ; λ′ � 3:

If f is a finite sum of ρλ’s then

f =
∑
λ

�τλ;Xf �ρλ

�f�2
L2�Rn� =

∑
λ

�τλ;Xf �2:

In short, the coefficients of the ρλ expansion can be read off
from the τλ analysis of the X-ray transform. As τλ = D+Wλ,
and D+ is self-adjoint on the appropriate domain, we may also
write for such f

f =
∑
λ

�Wλ;D
+Xf �ρλ

�f�2
L2�Rn� =

∑
λ

�Wλ;D
+Xf �2:

So the coefficients can be read off from a fiberwise differen-
tiated version of the X-ray transform. We have the following
commuting diagram:

σλ
X

↗
D−

↖
ρλ

X∗←− τλ
D+←− Wλ

&
↘ ↓&x→ξ

ρ̂λ
C←− W̃λ

7. Analysis of a k-Dimensional Singularity

We now discuss at an informal level the possible effectiveness
of k-plane ridgelets at representing k-dimensional singulari-
ties. Consider the object

f �x� = s�x1; : : : ; xn−k�w�xn−k+1; : : : ; xn�;
where, say, s contains a singularity at x1 = · · · = xn−k = 0 (say
of the form s 7 �x2

1 + · · · + x2
n−k�−α/2 as �x1; : : : ; xd� → 0)

and w is C: of compact support. Section 6 showed that k-
plane ridgelet analysis of f is the same as wavelet analysis
of the fiberwise differentiated Xf �π; x�. And, more or less,
wavelet analysis gives sparse coefficients when an object is
smooth away from a point singularity. Hence we are interested
in the following question: when is D+Xf smooth away from
a point singularity at π = π0, x = 0? If in fact D+Xf has
this property, then we can expect, based on known principles,
for k-plane ridgelet analysis of f to give sparse coefficients,
whereas if D+Xf does not have this property, sparsity of the
coefficients will not follow from known principles.

We consider first the question of smoothness from a
frequency-domain perspective. For the n-dimensional Fourier
transform of f we have

f̂ �ξ� = ŝ�ξ0�ŵ�ξ1� ξ = �ξ0; ξ1�;
where ξ0 = �ξ1; : : : ; ξn−k�, ξ1 = �ξn−k+1; : : : ; ξn�. Now as s
has a singularity at the origin, ŝ is not of rapid decay, but ŵ
is of rapid decay. Defining coordinate projections ξ0�ξ� = ξ0

and ξ1�ξ� = ξ1, we obtain for the fiberwise Fourier transform
of F = Xf

F̃�π; ξ� = ŝ�ξ0�ξ��ŵ�ξ1�ξ�� ξ � π⊥: [13]

We are interested in the question of whether this expression is
of rapid decay as �ξ� → : for π 6= π0. Letting π⊥0 denote the
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subspace ξ1 = 0, it is clear that the expression will not typically
be of rapid decay when π = π0. Indeed, if

∫
w 6= 0, then for

ξ � π⊥0 , ŵ�ξ1�ξ�� = ŵ�0�, so F̃�π0; ξ� = ŝ�ξ0�ŵ�0�, which
fails to be of rapid decay, because ŝ is not of rapid decay.
However, expression 13 will be of rapid decay in ξ provided
that π⊥ contains no nontrivial subspace lying entirely also in
π⊥0 , i.e., provided the minimum angle between the subspaces
π⊥ and π⊥0 is strictly positive. For, under this minimum angle
condition, if we tend to : along any line in π⊥, the factor �ξ1�
tends to :; as ŵ is of rapid decay, this forces ŵ�ξ1�ξ�� to be
of rapid decay on ξ � π⊥; by 13, this means F̃�π; ξ� is of
rapid decay as �ξ� → : in π⊥.

Slightly more elaborately, we may see the same thing in the
X-ray domain rather than the Fourier domain. For the X-ray
transform of f we have the fiberwise convolution

F�π; x� =
∫
π⊥
s�Ax��A�−1

·w�B�x− x′���B�−1dx′; x � π⊥; [14]

where the convolution takes place in the fiber π⊥, and the
mappings A = A�π;π0�, B = B�π;π0�, satisfy

A�π⊥ → A0�π⊥0 as π → π0

B�π⊥ → 0 as π → π0:

Here A0 selects the first n − k components in the standard
basis. Also, �A�−1 refers to the determinant of the matrix
of dim�π⊥� by dim�π⊥� representing A x π⊥ → Rn−k; �B�−1

refers similarly to the mapping B x π⊥ → Rk. The mapping B
may not be of full rank if π⊥ contains a line in π⊥0 , in which
case we interpret the degenerate expression w�B�x−x′���B�−1

as a suitable generalized function, obtained by the obvious
limiting process through full rank matrices B̃→ B.

Under the minimum angle condition, B will be of full rank,
w�B�x− x′���B�−1 will be nondegenerate and C:, and we can
see that F�π; x� is C: on that fiber, because we may push
all differentiations in x over to this nondegenerate w factor.
If the minimum angle condition is violated, B is degenerate,
and w�B�x − x′���B�−1 behaves as a generalized function in
certain slices, so we lose the ability to push all differentia-
tions over to the w factor. As a result, F is not C: on such a
fiber.

Now if k = n − 1, the question of comparing π⊥ and π⊥0
is merely a question of comparing one-dimensional subspaces.
In such a case, if π 6= π0 then the minimum angle condition
is met. Hence, if k = n − 1, F�π; x� is C: whenever π 6= π0;
it has a pure point singularity at π = π0, x = 0.

Hence, for k = n− 1, k-plane ridgelet analysis amounts to
a wavelet analysis of a function with a point singularity. In di-
mension n= 2, k= 1, additional calculations show that wavelet
coefficients of such a function will be sparse. We expect similar
findings here; so it seems likely that n−1-plane ridgelets solve
Problem�n; n− 1� of the introduction for all n , 1.

If 1 � k + n− 1 and n � 3, in comparing π with a nearby
π0 we may very easily have π⊥ 6= π⊥0 while at the same time
the minimum angle between the two subspaces is zero. In that
case, F̃�π; ξ� will not be of rapid decay in certain directions
in the fiber, and F�π; x� will not be C: in the fiber. Hence the
function F�π; x� will fail to have C: behavior in x not only at

π = π0, but also along certain sections (curves or surfaces) in
Gn;k originating from π0.

Although wavelet analysis can yield sparse coefficients for
point singularities, we know of no precedent to suggest that
it can yield sparse coefficients on functions with nonsmooth
directions in certain sections originating at a point. This is not
to say that sparsity is ruled out, but that if it holds, it must
involve rather delicate analysis.

8. Discussion

We have constructed tight frames of k-plane ridgelets, mo-
tivated by the possibility that they might allow efficient rep-
resentation of d-dimensional singularities in Rn. The analytic
machinery of Sections 6 and 7 suggests that we are in a posi-
tion to now make progress on the following questions:

Q1. Can the tight frames of �n − 1�-plane ridgelets de-
veloped here indeed give sparse representations of functions
f̃n−1;α?

Q2. Can the tight frames of k-plane ridgelets developed
here give sparse representations of f̃k;α when 1 � k + n− 1?

Q3. If the answer to Q2 is negative, will some other con-
struction be found to solve Problem(n,d) for d + n− 1?

In effect, we know the full story on questions Q1–Q3 for
n = 2, where really only Q1 makes sense; from additional
calculations, the answer to Q1 is affirmative in dimension n =
2. Going next to n = 3, all three questions make sense, and
are both interesting and challenging. The analytic machinery
of Sections 6 and 7, and the experience with an analogous
machinery in dimension n = 2 suggests that the answer to Q1
is probably yes, and the answer to Q2 may well be no.

Affirmative answers to Q1 and Q2 are expected to have ap-
plications in a range of disciplines. Already in the case n = 3,
the names “beamlets” and “platelets” suggest potential areas
of application.
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