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Methods

What’s the Risk? A Simple Approach for
Estimating Adjusted Risk Measures
from Nonlinear Models Including
Logistic Regression

Lawrence C. Kleinman and Edward C. Norton

Objective. To develop and validate a general method (called regression risk analysis)
to estimate adjusted risk measures from logistic and other nonlinear multiple regression
models. We show how to estimate standard errors for these estimates. These measures
could supplant various approximations (e.g., adjusted odds ratio [AOR]) that may di-
verge, especially when outcomes are common.

Study Design. Regression risk analysis estimates were compared with internal
standards as well as with Mantel-Haenszel estimates, Poisson and log-binomial regres-
sions, and a widely used (but flawed) equation to calculate adjusted risk ratios (ARR)
from AOR.

Data Collection. Data sets produced using Monte Carlo simulations.

Principal Findings. Regression risk analysis accurately estimates ARR and differ-
ences directly from multiple regression models, even when confounders are continuous,
distributions are skewed, outcomes are common, and effect size is large. It is statistically
sound and intuitive, and has properties favoring it over other methods in many cases.
Conclusions. Regression risk analysis should be the new standard for presenting
findings from multiple regression analysis of dichotomous outcomes for cross-sectional,
cohort, and population-based case—control studies, particularly when outcomes are
common or effect size is large.

Key Words. Multiple regression analysis, logistic regression, nonlinear models,
odds ratio, relative risk, risk adjustment, risk ratio

The health services research literature fails to provide a satisfactory answer to
the question: when outcomes are common (i.e., risk >0.05 in the highest risk
category), how does one best quantify the result of a logistic regression
(Lee 1981; Greenland and Holland 1991; Savitz 1992; Greenland 2004)? The
simple-to-measure odds ratio can deviate greatly from the more intuitive risk
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ratio (Hosmer and Lemeshow 1989; Klaidman 1990; Teuber 1990; Altman,
Deeks, and Sackett 1998; Beaudeau and Fourichon 1998; Rothman and
Greenland 1998; Schwartz, Woloshin, and Welch 1999; Bier 2001). A widely
cited formula (see Table 2, footnote, for the equation) for converting the odds
ratio to the risk ratio oversimplifies the problem and produces confounded
estimates (Zhang and Yu 1998; McNutt et al. 2003). Other nonlinear models
such as Poisson and log-binomial regressions have their strengths and weak-
nesses (Wacholder 1986; Greene 2000; Robbins, Chao, and Fonseca 2002;
McNutt et al. 2003; Cummings 2004; Deddens and Petersen 2004; Zou 2004,
Spiegelman and Hertzmark 2005).

Answering this simple question provides an opportunity to address
a larger practical issue for health service researchers: how to interpret
results from sophisticated nonlinear models so that the reader under-
stands intuitively the meaning and magnitude of the finding. This paper
proposes a general method for estimating risk ratios and risk differences
from nonlinear multiple regression analysis, using the example of logistic
regression. Beyond that it also can serve as a reminder of best practices for
framing data analysis, as well as interpreting and reporting the results when
using nonlinear models.

The fundamental problem driving these issues is how to estimate the
effect of an explanatory variable upon an outcome variable after controlling
for confounding effects. Extensions of this problem include estimating the
effect of the predictor on outcomes within a definable subpopulation, or
alternatively, making predictions at the population level. For these purposes
health service researchers are rarely interested in coefficients from nonlinear
models per se. Logistic regression is popular (Table 1) in part because its
coefficients can be exponentiated into an estimate of the adjusted odds ratio
(AOR) (Hosmer and Lemeshow 1989). Using the example of logistic regres-
sion, this paper demonstrates how to move from a nonlinear model to esti-
mates of marginal effects that are quantified as the adjusted risk ratio (ARR) or
adjusted risk difference (ARD). These are intuitive and easily understood
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Table1: Literature Citations Demonstrating the Frequency of Logistic Re-
gression and Odds Ratio in Preference to Risk Ratio in the Medical Literature*

References References
Search Terms Since 1966 Since 2004 Database
Logistic regression 82,811 32,857 PubMed
Poisson regression 3,326 1,568 PubMed
Binomial regression 716 436 PubMed
Odds ratio 72,943 32,189 PubMed
Adjusted odds ratio 13,346 6625 PubMed
Risk ratio 3,333 1,286 PubMed
Adjusted risk ratio 486 201 PubMed
Logistic regression and odds ratio 23,285 10,042 PubMed
Logistic regression and risk ratio 257 91 PubMed
Multivariate analysis and odds ratio 10,005 4,646 PubMed
Multivariate analysis and risk ratio 512 127 PubMed
Risk ratio and (Poisson regression or 87 53 PubMed
binomial regression)
Zhang and Yu, JAMA (1998) 728 431 ISI Web of

Knowledge

All searches include citations available on April 8, 2008.

"Excluding reviews. All searches were edited if necessary to distinguish between odds ratio and
risk ratio. Multivariate regression included terms for multivariable regression.

terms. The method equips the analyst to report results in the terms in which
the research question is likely to be framed.

This approach, we describe, is justifiable by maximum likelihood theory
and thus applicable for all maximum likelihood models. Beyond maximum
likelihood estimates (MLEs), this approach will work with alternative methods
as long as the method is nonlinear and that E{ y|x) is well approximated by the
functional form used. It can be used to estimate the intuitive risk measures—
ARDs and ARRs—not only for the common logistic model, but also for any
other nonlinear model, such as Probit, Poisson, and log-binomial regressions.
This method bridges the sophisticated mathematics underlying nonlinear
models with an intuitive interpretation of the findings. Intuitive measures can
make it easier for the typical analyst to add nuance to their research questions
to take full advantage of these methods’ capacity.

We hope to improve typical practice by clarifying the important steps
for this method, illustrating the range of issues that may be addressed,
illuminating common pitfalls, and advocating a simple way to compute
standard errors. As noted, although our points are more general our examples
focus on logistic regression.
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MATERIALS AND METHODS
Description of Regression Risk Analysis

We describe this method using the example of logistic regression: it can
generate MLEs of the ARR (equation [1]) and the ARD (equation [2]). Con-
ceptually, we define the ARR as the multiplicative increase in risk resulting
from exposure, conditional on covariates. When no effect modification of the
ARR is present, the estimator will be independent of covariates. The ARR is
the ratio of the average predicted risk conditional on all observations being
exposed, to the average predicted risk conditional on all observations being
unexposed. Predicted risk for observation 7is the predicted probability given
covariates X; and parameters f3, as estimated by the logistic regression:
%Zf\il risk;(X;|as if exposed)

ARR = 2= (1)
% > risk;(Xi|as if unexposed)

The sample size is N and the risk for individual i is the probability that the
outcome variable equals one, conditional on the covariates X. The ARD
(equation [2]) is simply the difference between the numerator and the denom-
inator in equation (1):

1 & 1 &
ARD = N ; risk;(X;|as if exposed) — N Z risk; (X;|as if unexposed)

i=1
2)

Sample SAS and STATA programs to calculate these measures with standard
errors are available from the authors upon request.

Theory

It is well understood that the logistic model can calculate an MLE of the
natural logarithm of the odds that the outcome equals one, given values of the
covariates (Hosmer and Lemeshow 1989). The invariance principle of max-
imum likelihood theory states that the algebraic manipulation of an MLE
produces another MLE (Moody, Graybill, and Boes 1963). Because odds and
risk are algebraically related (risk = odds/(1+o0dds)), the logistic model allows
the calculation of the MLE of the risk for any specified combination of values
(SAS Institute 1995). The denominator of equation (1) is the mean of this
calculated risk for each observation when the exposure variable is assumed to
be unexposed and represents an MLE of the unexposed (baseline) risk for a
population whose covariates are distributed as for the observed covariates for
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the entire study population. The numerator in equation (1) represents an MLE
of the adjusted risk among the exposed. This approach is a specific example of
using what are called “recycled predictions.”

Atleast one of the AOR or the ARR must vary with covariates. Although
an idealized logistic model is associated with a constant odds ratio, by in-
cluding interaction terms logistic models can be fit even when the odds ratio is
not constant (Hosmer and Lemeshow 1989). Although including appropriate
interaction terms enhances the model fit, we found that the effect on the ARR
is small unless outcomes are very common in the unexposed population. A
further benefit of the ARR is that when the model includes interaction terms,
the ARR is easier to compute and to interpret than the AOR.

Extensions

This method can be extended in important ways. First, it can be applied to
various subpopulations of the data, for example to women, children aged 2-5
years, or for people in the first year of a study. Subgroup analyses may help
answer specific research hypotheses that are not answerable with the entire
sample: the method intrinsically takes into account that covariates may be
distributed differently in different subgroups. For example, what would hap-
pen to traffic accidents if nondrinkers became heavy drinkers, or conversely if
heavy drinkers stopped drinking (the answers may not be symmetric). Second,
the method can be applied to continuous explanatory variables of interest, not
just dichotomous ones. For example, consider age: one could compare people
at their current age with someone 10 years their junior, or compare the risk of
heart attack for persons of two specific ages (e.g., 85 compared with 65). Third,
the method can be extended to interpret the combined effects of changes in
two or more variables that are interacted (Ai and Norton, 2003; Norton,
Wang, and Ai, 2004). Fourth, the method can be applied to any nonlinear
model; regression risk analysis is not particular to logistic regression: it can be
applied more broadly to any nonlinear estimator that provides a good ap-
proximation to how the outcome variable responds to the covariates. One
theoretical justification for this approach is maximum likelihood theory. The
function risk can be any probability function. Therefore, this approach is ap-
propriate for any model with a dichotomous outcome, including probit, gen-
eralized linear models with binomial links, and nonlinear models that can be
estimated with a dichotomous outcome (e.g., log-binomial, Poisson, negative
binomial, and complementary log-log). Although we recognize that health
services research emphasizes logistic (and to a lesser extent probit) models,
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exemplary analysis will include the careful selection—as well as careful anal-
ysis—of the link function.

Standard Errors

Estimates of the ARR or ARD should be reported with standard errors, like all
estimated values. Standard errors can be calculated using numerical methods
such as bootstrapping, or using the Delta method (Greene 2000). There are
several reasons why bootstrapping is generally preferred. Bootstrapping al-
lows for asymmetric confidence intervals appropriate to predictions from
nonlinear models. Bootstrapping takes far less programming time (although
often more computer time), and typically the cost of programming greatly
exceeds the cost of computing. Finally, bootstrapping may be preferred when
the data are adjusted for sampling weights or clustered, two common circum-
stances for which the Delta method is more complex. STATA allows easy
adjustments for weights and clusters in its bootstrapping procedures.

Validation

We validated regression risk analysis using four series of Monte Carlo sim-
ulations all of which incorporated a Bernoulli distribution for the outcome
variable. Each series consisted of multiple data sets of similar form but with
different combinations of adjusted baseline risk and a constant ARR. All
logistic models included interaction terms to produce the most parsimonious
model. Log-binomial and Poisson regressions followed the recommendations
of Spiegelman and Hertzmark (2005). The first two series of simulations
extend the validation technique suggested by Zhang and Yu (1998), using data
sets with three trichotomous confounders and one dichotomous predictor and
one dichotomous outcome variable.

Simulation 1 contrasted regression risk analysis estimates of the ARR
and ARD with Mantel-Haenszel (M—H) estimates in 15 data sets (N = 18,988)
with mild confounding. For each simulation extent of confounding was the
ratio between the crude risk ratio and the ARR (or M-H estimate when
available). Confounding of <10 percent is mild. Baseline risks (Ry) ranged
from 0.01 to 0.6 and risk ratios from 1.5 to 4.0, with the product of the risk and
risk ratio always < 0.9. The second simulation (Table 2A) uses data sets
(N=100,000) with three trichotomous confounders and confounding >25
percent to compare regression risk analysis ARR with AOR, log-binomial
regression, Poisson regression, Zhang and Yu equation, and M—H (Wacholder
1986; SAS Institute 1995; Rothman and Greenland 1998; Zhang and Yu 1998;
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Table2: Simulation Results

Adjusted Risk
Study* Adjusted Risk Ratios' Differences

Baseline Effective  Effective Log- Zhang
Design  Risk RR RD  RRA M-H Binomial Poisson and Yu M-H RRA AOR!

(A) Simulation 2: 3 trichotomous confounders
0.05 1.51 0.025 151 1.51 1.51 1.51 1.52  0.024 0.025 1.55
0.10 1.50 0.049 1.50 1.50 1.50 1.50 1.54 0.048 0.049 1.59
0.20 1.50 0.101 1.50 1.50 1.50 1.50 1.57  0.099 0.102 1.74
0.40 1.50 0.202 149 1.50 1.50 1.50 1.96 0.198 0.198 3.00
0.05 4.01 0.168 4.03 4.03 4.03 4.03 4.27 0.164 0.168 4.92
0.10 4.00 0.293 4.01 4.01 4.01 4.01 4.57 0286 0.293 6.15
0.20 4.00 0.617 3.98 4.01 4.01 4.02 5.34 0.626 0.621 50.19

(B) Simulation 3: 2 continuous confounders
0.10 1.48 0.05 1.54 NA 1.49 1.50 148 NA 0.05 1.65
0.20 1.50 0.10 1.55 NA 1.55 1.56 1.51 NA 0.11 1.76
0.39 1.51 0.20 1.51 NA 1.52 1.53 143 NA 0.20 2.29
0.59 1.46 0.27 145 NA 1.21 1.51 1.32 NA 0.26 4.73
0.05 2.99 0.10 3.07 NA 3.07 3.06 296 NA 0.10 3.42
0.10 2.97 0.20 3.14 NA 3.26 3.24 3.01 NA 021 4.06
0.20 3.05 040 298 NA 3.23 3.18 2.77 NA 0.39 5.76
0.29 2.87 0.56 2.86 NA 3.16 3.15 251 NA 054 1454
0.19 3.95 0.58 3.83 NA 4.17 4.16 345 NA 056 13.39

Table shows results of Simulations 2 and 3 using logistic regression. Each simulation incorporated
substantial confounding (in each case the crude risk ratio varies from the adjusted risk ratio by
more than 25%). N= 100,000 per data set for Simulation 2 and 30,000 per data set for Simulation 3.
*Study design determines baseline risk, effective risk ratio, and effective risk difference. Effective
risk ratio (RR) and effective risk difference (RD) are defined as the crude risk ratio and risk
difference, respectively, when the simulation is repeated without confounding. Baseline risk is the
risk of a positive outcome for a typical observation in the absence of exposure. It differs from the
crude risk in the absence of exposure.

TRRA is regression risk analysis, the method described in this paper. M—H is the Mantel-Haenszel
estimate of the adjusted risk ratio or the adjusted risk difference. NA indicates that the M-H
estimate is not calculable because of the use of a continuous variable. Log-binomial and Poisson
regressions are performed with SAS software in accordance with recommendations in the liter-
ature (Spiegelman and Hertzmark 2005). Zhang and Yu is the adjusted risk ratio using their

equation: (T = Risky) -(&-)Elgsdls-sﬁr(;tio < Risky) where Risky is the crude risk of having a positive

outcome among the unexposed (Zhang and Yu 1998).
!Adjusted odds ratio (AOR) from the logistic regression including modeled interactions.

Spiegelman and Hertzmark 2005). Regression risk analysis and M-H ARD are
also compared. The standard for this analysis and for the next simulation are the
effective risk measures, defined as the crude risk ratio or difference obtained from
otherwise identical data sets constructed without confounding. The third simu-
lation (Table 2B) includes data sets with two continuous variables as confounders.
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Table 3: Simulation Results: Effect of Sample Size on ARR Precision*: Re-
gression Risk Analysis (RRA), Poisson, and Mantel-Haenszel (M-H) Estimates

Sample Size LRA ARR CI Poisson (¥4 M-H CI
100,000 3.97 [3.87,4.07] 3.88 [3.79,3.98] 4.01 [3.77,4.26]
50,000 4.04 [3.89,4.18] 3.96 [3.83,4.08] 4.31 [3.94,4.71]
5,000 4.11 [3.62,4.60] 4.06 [3.62,4.50] 4.31 [3.22,5.77]
2,500 4.02 [3.36,4.67] 3.87 [3.28,4.46] 3.56 [2.51,5.05]
500 4.09 [2.35,5.83] 3.89 [2.33,5.44] 4.01 [1.67,9.63]
250 3.68 [1.13,6.22] 3.49 [1.46,5.52] 3.00 [0.86,10.41]

*Precision is manifest as the 95% confidence interval (95% CI): All were calculated using STATA.
RRA confidence interval was calculated using bias corrected bootstrapping in STATA.

ARR, adjusted risk ratio; LRA, logistic risk analysis.

The data set for the fourth simulation was designed to assess regression
risk analysis in the context of ceiling effects, when there is limited variation in
the predictor variable at the upper extreme of a single confounding variable.
This could occur when the correlation between a confounder and exposure
are magnified at extreme values of the confounder’s distribution, such as if age
were the confounding variable and daily medication use the exposure. The
proportion exposed will approach 100 percent for the older elderly.

We compared the precision of regression risk analysis ARR, Poisson
regression, and the M—H ARR for random samples of various sizes from a data
set with three categorical confounders (Table 3). Finally, we demonstrated the
effect of omitting interaction terms from the logistic model in two data sets with
one continuous confounder.

RESULTS

In Simulation 1, the absolute value of the difference between the regression
risk analysis and the M—H ARR across the 15 data sets averaged 0.00015
(range 0.000032-0.00036). The largest absolute difference in risk ratio was
<0.025 percent of the M-H risk ratio. ARDs had a mean absolute difference
of 9.76 x 10~ °. We conclude that for simple models with limited confound-
ing, regression risk analysis gives the same answer (within numerical preci-
sion) as M—H, a practical standard for comparison.

In data sets with categorical covariates and substantial confounding
(Table 2A), regression risk analysis, Poisson regression, and log-binomial
regression all produced ratio estimates virtually identical to the M-H estimate.
AOR (Hosmer and Lemeshow 1989) and the Zhang and Yu equation
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(Zhang and Yu 1998) were biased, as is well known (McNutt et al.
2003). Regression risk analysis estimates of ARD closely approximated the
standard.

When confounders were continuous and confounding exceeded 25
percent (Table 2B), a common situation where M-H cannot be estimated,
regression risk analysis retained a high degree of accuracy. Omitted from the
table are a similar number of simulations for which the log-binomial regres-
sion failed to converge. Only the regression risk analysis ARR retained its
accuracy with increasing baseline risk and effect size, and never had conver-
gence problems. Regression risk analysis estimates of the ARD were also
highly accurate. Simulation 4 has no established standard for the ARR
because the nominal risk ratio is limited by ceiling effects at the upper end of
the distribution. Probability theory bounds the product of the baseline risk and
the risk ratio (which equals the exposed risk) at unity, establishing an upper
limit for the ARR estimates. Although the table is not shown, of the methods
discussed, only the regression risk analysis ARR was always plausible. For
example when the baseline risk was 0.33, the maximum plausible ARR
is 3.03: the logistic risk analysis estimate was 1.89, while log-binomial regres-
sion = 3.57, Poisson = 3.55, and Zhang and Yu = 3.72

Table 3 demonstrates the precision of regression risk analysis. The
widths of the confidence intervals (based on 1,000 bootstrapped replications)
are similar to those from Poisson regression. Regression risk analysis appears
to be sufficiently precise to produce meaningful estimates when the sample
size is adequate to use logistic regression (Concato et al. 1995).

We demonstrate the effect of including an interaction term in the logistic
model by analyzing two data sets that were identical except for the adjusted
risk in the unexposed (0.07 and 0.26, respectively). Regression risk analysis
ARRSs were estimated in each set (N ~ 45,000) from two logistic models, one
including interactions and one not. Then each data set was divided into 13
smaller data sets on the basis of the covariate values in order to conduct
separate logistic regressions on each subset to observe the distribution of
AORs for each section of the data. As expected, there was less variation in the
AOR when risk was 0.07 (range 2.9-4.0, coefficient of variation [CV] = 8.4)
than when it was 0.26 (range 5.1-16.4, CV = 39.9). In the first data set the
ARR with and without interactions were almost identical (2.972 versus 2.971,
respectively), suggesting that noninteracted models may be parsimonious
when outcomes are not common. Even with the greater variation of the sec-
ond set the difference between the ARR in the interacted and noninteracted
models was modest (3.01 versus 2.84).
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DISCUSSION

Regression risk analysis is practical and accurate. It can be applied generally to
maximum likelihood models to estimate the intuitive ARR and ARD.

Despite documented confusion in the interpretation of results (Klaidman
1990; Teuber 1990; Altman, Deeks, and Sackett 1998; Bier 2001) logistic
regression and its AOR continue to represent the preferred compromise
for health service researchers when analyzing complex multivariate data.
Although plausible alternatives to logistic regression have been used to good
effect by some analysts, log-binomial regression and Poisson regression have
important limitations and have not been widely adopted by health care
researchers, who continue to prefer logistic regression (Table 1) and our data
confirm flaws with the equation of Zhang and Yu (Zhang and Yu 1998,
McNautt et al. 2003).

A detailed review of the literature finds mathematically similar
approaches in the statistics (“predictive margins”) and economics (“recycled
predictions”) literature, but without original citation, validation, or mathe-
matical justification (Oaxaca 1973; Breslow 1974; Lee 1981; Lane and Nelder
1982; Manning et al. 1987; Lee 1994; Ruser 1998; Graubard and Korn 1999;
DeLeon, Lindgren, and Rogers 2001; Basu and Rathouz 2005; Sommers
2006; Allen et al. 2007). To our knowledge, this paper provides the first em-
pirical validation of the mathematics and does so in terms that are relevant to
applied researchers. The methods are not commonly employed in the health
services research literature and their capacity to adjust risk ratios and risk
differences has not been clearly articulated.

Our proposed approach makes these very sophisticated tools more
readily available to the typical health service researcher. This method offers a
final common pathway to link the analytic approach to various research
questions. Because the research question dictates how the results are inter-
preted, this characteristic can improve the range, nuance, and accuracy
of research findings. This approach simplifies the researcher’s task regardless
of whether they define one or more populations of interest, for example, to
predict the effect of smoking cessation on women, current smokers, and/or a
hypothetical population in which everyone smoked.

We hope that this paper improves typical practice by defining a
clear approach, illustrating the range of issues that may be addressed, illumi-
nating common pitfalls, and advocating a simple way to compute standard
errors. Although our examples focus on logistic regression our points are
more general.
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Limitations

Regression risk analysis can be used when there is sufficient information to
estimate a population risk, i.e., in cohort, cross-sectional and population-based
case—control studies with dichotomous outcomes, but not in simple case—
control designs. Computing the ARR or ARD for different subsamples may
reveal policy relevant differences in the effect of the predictor variable for
specific subpopulations.

These methods are theoretically derived and empirically validated using
Monte Carlo simulations. Monte Carlo simulations are excellent for demon-
strating the accuracy of these methods, but lack the narrative power of real
world data. The authors reanalyzed Behavioral Risk Factor Surveillance
Survey data originally reported by Mehrotra et al. (2004): the two odds ratios
reported in the abstract, 3.6 for the odds of reporting arthritis if the respondent
had class III obesity and 2.8 as the odds for making an attempt to lose weight
when the respondent reported that their doctor advised them to do so,
corresponded to ARRs of 1.81 and 1.38, respectively, illustrating the practical
value of regression risk analysis.

Conclusion

Building upon epidemiological (Lee 1981, 1994; Wilcosky and Chambless
1985; Flanders and Rhodes 1987; Greenland 2004) and statistical (Moody,
Graybill, and Boes 1963; Hosmer and Lemeshow 1989; Concato et al. 1995)
foundations, we introduce regression risk analysis, a theoretically derived ap-
proach to estimating ARDs, ARRs, and their standard error. From the familiar
logistic regression or other multiple regression models, regression risk analysis
accurately adjusts risk ratios and risk differences for confounding whether con-
founders are categorical or continuous. The ability to calculate standard errors
and confidence intervals makes statistical testing possible. Regression risk
analysis is sufficiently precise to analyze data sets of modest size: it is practical.

Regression risk analysis offers an intuitive approach for obtaining risk
measures directly from multiple regression analysis. It should change the
norms for reporting health care research. We advocate its use whenever
researchers might otherwise present odds ratios or other approximations to
estimate effect size. Regression risk analysis can be used for all types of studies
for which the population risk can be measured, including population-based
case—control studies. In cases where outcomes are common for at least some
combinations of covariates, regression risk analysis should replace the use of
AORs completely.
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Derived from maximum likelihood theory, regression risk analysis is an
elegant solution to a longstanding problem in health care research. Although
the most sophisticated analysts have generally found solutions for estimating
these values, regression risk analysis makes available to the general research
population a general and accessible method. Because these measures can be
calculated from the familiar logistic regression model, we expect that health
care researchers will accept it enthusiastically. For the first time, the general
research community and consumers of research alike will be able to have an
intuitive and accurate discussion of the findings of complex multivariate data
analyses for dichotomous outcomes. The adoption of regression risk analysis
will substantially increase the odds that the magnitude of an exposure’s effect
will be communicated clearly.
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