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Due to the limited sensitivity of many nuclear magnetic resonance �NMR� applications, careful
consideration must be given to the effect of NMR data processing on spectral noise. This work
presents analytical relationships as well as simulated and experimental results characterizing the
propagation of noise by unsymmetric covariance NMR processing, which concatenates two NMR
spectra along a common dimension, resulting in a new spectrum showing spin correlations as cross
peaks that are not directly measured in either of the two input spectra. It is shown how the
unsymmetric covariance spectrum possesses an inhomogeneous noise distribution across the
spectrum with the least amount of noise in regions whose rows and columns do not contain any
cross or diagonal peaks and with the largest amount of noise on top of signal peaks. Therefore,
methods of noise estimation commonly used in Fourier transform spectroscopy underestimate the
amount of uncertainty in unsymmetric covariance spectra. Different data processing procedures,
including the Z-matrix formalism, thresholding, and maxima ratio scaling, are described to assess
noise contributions and to reduce noise inhomogeneity. In particular, determination of a Z score,
which measures the difference in standard deviations of a statistic from its mean, for each spectral
point yields a Z matrix, which indicates whether a given peak intensity above a threshold arises from
the covariance of signals in the input spectra or whether it is likely to be caused by noise.
Application to an unsymmetric covariance spectrum, obtained by concatenating two 2D 13C– 1H
heteronuclear, single quantum coherence �HSQC� and 13C– 1H heteronuclear, multiple bond
correlation �HMBC� spectra of a metabolite mixture along their common proton dimension, reveals
that for sufficiently sensitive input spectra the reduction in sensitivity due to covariance processing
is modest. © 2008 American Institute of Physics. �DOI: 10.1063/1.2975206�

INTRODUCTION

Because NMR measurement time is often limited by the
achievable sensitivity, careful consideration must be given to
the effect of NMR data processing on spectral noise. While
for standard Fourier transform �FT� the effect of noise on
spectra is well understood,1 more recent processing methods
can have advantages, in particular, when the shortening of
measurement time of multidimensional spectra is
essential.2–6 However, many of these methods affect the
noise signature resulting in changes in both the apparent and
the actual sensitivity.4,7

Due to its linear nature, the FT method converts a free
induction decay that includes additive white noise into a
spectrum that is superimposed on a homogeneous noise floor.
This property allows a straightforward assessment of the
signal-to-noise �S/N� ratio by comparing signal intensities to
a summary statistics, such as the standard deviation or the
median absolute value of the noise floor in a peak-free re-
gion. Nonlinear methods, on the other hand, may affect the

noise lying away from a signal peak different from noise on
a signal peak itself and thereby they may improve the appar-
ent but not the actual sensitivity.

Covariance NMR is a recently introduced method for
spectral resolution enhancement of multidimensional
spectra.3 Direct covariance processing endows the indirect
�or donor� dimension�s� of a spectrum with the same reso-
lution and spectral width as the corresponding acceptor di-
mensions, which include the high-resolution detection
dimension.3,5,8 Conversely, indirect covariance maps an indi-
rect dimension of a spectrum onto the direct dimension.9

When the covariance spectrum is symmetric, application of
the matrix square root strongly attenuates or eliminates arti-
facts due to relay effects and chemical shift near
degeneracy.6 In fact, with regularization10 applied as neces-
sary, the covariance transform followed by a matrix square
root leaves the signal-to-noise properties of a spectrum es-
sentially unperturbed.

The covariance NMR concept can be generalized to
pairs of spectra, which has been referred to as “unsymmet-
ric” covariance NMR, by multiplying the matrices belonging
to two spectra along a common dimension resulting in a
spectrum that is generally nonsymmetric.7 Unsymmetric co-
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variance NMR has been demonstrated for small molecule
NMR where it provides a rapid computational approach to
correlate spin resonances for which the experimental mea-
surement of correlations would be very time
consuming.7,11–13 A related concept was introduced in the
context of “hyperdimensional” NMR of proteins14 and exten-
sions have recently been reported for protein backbone as-
signment, such as COBRA �Ref. 15� and Burrow–Owl,16

where pairs of three-dimensional �3D� spectra are combined
to four-dimensional �4D� spectra. It should be noted that,
despite the covariance name, these spectra generally do not
fulfill the mathematical properties of covariance matrices any
longer.

Unsymmetric covariance NMR involves the matrix
product of two spectra and, thus, is a nonlinear transforma-
tion. As a consequence, the propagation of noise through
unsymmetric covariance processing is fundamentally differ-
ent from FT spectroscopy. This paper demonstrates analyti-
cally, by simulations and by using experimental data how
uniform noise distribution of input FT spectra propagates
through unsymmetric covariance processing in an inhomoge-
neous fashion, thereby endowing different regions of the un-
symmetric covariance spectrum with different amounts of
noise. The analytical relationships developed here provide a
rigorous framework for assessing the sensitivity and experi-
mental statistical errors of peaks in unsymmetric covariance
spectra and they are tested both for simulated and experi-
mental spectra. This work does not address the separate issue
of systematic errors, for example, due to chemical shift de-
generacy, of unsymmetric covariance spectra.

THEORY

Consider two real N1�N2 two-dimensional �2D� FT
spectra represented by matrices A and B that contain addi-
tive noise, where each noise element is an independent, iden-
tical distributed �i.i.d.� Gaussian random variable with zero
mean and standard deviation �A and �B, respectively. Un-
symmetric covariance processing multiplies the two spectra
so that the common �1 dimension is contracted,7

C = ATB . �1�

Equation �1� implies that element Ckl is the inner product of
column k of A with column l of B, where both of these
column vectors have N1 elements.

To determine the signal-to-noise ratio of C we separately
consider a region of signal and different regions of noise. A
region of signal around matrix element �i , j� of C arises
when columns i and j of A and B have one or several peaks
at similar �or identical� positions. The expected signal at
point �i , j� is

Signal = Cij = �
k=1

N1

ÂkiB̂kj , �2�

where Âki and B̂kj denote the noise-free spectral data points
belonging to the noise-affected data points Aki and Bkj,
respectively.

Unlike for FT spectra, the amount of noise in C varies
depending on the spectral region considered. For a peak-free
region around point �p ,q� where only noise is multiplied and
coadded according to Eq. �1�,

Noisefree = Cpq = �
k=1

N1

AkpBkq. �3�

The elements Akp and Bkq are i.i.d. Gaussian distributed.
While products of Gaussian random variables do not follow
the Gaussian distribution,17 statistical tests of computation-
ally generated samples of sums of products of Gaussian dis-
tributed random variables indicate that, for most practical
applications, the sum of N1�25 products is in very good
approximation Gaussian distributed.

We find �see EPAPS supporting information18� that the
sum of products of i.i.d. Gaussian variables of mean zero has
in very good approximation the variance

varfree = N1 · �A
2 · �B

2 . �4�

When Eq. �4� is combined with Eq. �1�, one can define a S/N
ratio,

�Signal/Noise�free = ��
k=1

N1

AkiBkj��	N1�A�B, �5�

for any data point Cij in a “peak-free” region, which is a
region that neither aligns horizontally nor vertically with a
cross peak �note that Aki, Bkj denote noise-affected data
points�.

However, some regions of C contain noise at a level that
is different from the one determined above. These regions
originate from the inner product of a column of B�A� that
contains one or several signal peaks with a column of A�B�
that contains only noise. These regions are located in C
along a column �row� that contains a cross peak. The vari-
ances of these inner products are given by

varcol = N1 · �A
2 · �B

2 + �
k=1

N1

B̂kj
2 �A

2 and

�6�

varrow = N1 · �A
2 · �B

2 + �
k=1

N1

Âki
2 �B

2 .

It follows that the S/N of a column and row that belong to a
cross peak in C centered around point �i , j� is

�Signal/Noise�col j = ��
k=1

N1

AkiBkj�� �A�N1 · �B
2

+ �
k=1

N1

B̂kj
2 �1/2

,

�7�
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�Signal/Noise�row i = ��
k=1

N1

AkiBkj�� �B�N1 · �A
2

+ �
k=1

N1

Âki
2 �1/2

.

The variance of the cross peak, which is defined as the vari-
ance of the peak center over multiple identical experiments,
is given by

varpeak = N1 · �A
2 · �B

2 + �
k=1

N1

�Âki
2 �B

2 + B̂kj
2 �A

2� . �8�

Accordingly, the S/N ratio of the peak, defined by the aver-
age peak height �i.e., averaged over multiple experiments�
divided by its standard deviation, is

�Signal/Noise�peak = ��
k=1

N1

ÂkiB̂kj��
N1 · �A
2 · �B

2

+ �
k=1

N1

�Âki
2 �B

2 + B̂kj
2 �A

2��1/2

. �9�

It should be noted that Eq. �9� does not only apply to a signal
peak at location �i , j�, but also to all locations in C where
“noise ridges” intersect. The latter are caused by inner prod-
ucts of columns of A and B that contain signal peaks at
different locations. Equation �8� subsumes Eqs. �4� and �6�
when considering that Âki and B̂kj are zero in the noise col-
umns and rows, respectively �and are both zero in the base-
line noise region�. Thus, Eqs. �8� and �9� quantify the noise
variance and the signal-to-noise ratio for any point in the
covariance spectrum. Equations �8� and �9�, however, as-
sume knowledge of noise-free input spectra, which are ex-
perimentally unattainable. Substituting experimentally mea-

sured Aki and Bkj for their noise-free counterparts Âki and B̂kj

in Eqs. �8� or �9� will thereby result in a biased estimator. On
the other hand, an unbiased estimator for Eq. �8� can be
derived �see EPAPS supporting information18�

varunbiased = − N1 · �A
2 · �B

2 + �
k=1

N1

�Aki
2 �B

2 + Bkj
2 �A

2� , �10�

and the corresponding unbiased S/N ratio �applicable for any
point in the spectrum� is

Zij = �Signal/Noise�unbiased

= ��
k=1

N1

AkiBkj��
− N1 · �A
2 · �B

2 + �
k=1

N1

�Aki
2 �B

2

+ Bkj
2 �A

2��1/2

. �11�

Equation �11� defines a Z matrix whose elements provide a Z
score for testing the hypothesis that the intensity at �i , j�
arises from a signal/signal covariance. If the p value, associ-
ated with Zij via the standard normal distribution, is less than
a critical probability �, the intensity Cij is not likely to arise
due to noise but rather due to covariance of input signals.

Conversely, if Zij is greater than the critical Z value �Zcrit�,
Cij likely arises from a covariance of input signals rather
than noise. Since this hypothesis test is implicitly done for
every point in the spectrum, a modification �see EPAPS sup-
porting information18� is required to control the false positive
rate, such as the Dunn–Sidak correction.19

Taken together, these results show that the noise distri-
bution in an unsymmetrical covariance spectrum is in good
approximation Gaussian with a standard deviation that varies
for different spectral regions. Regions that neither align ver-
tically nor horizontally with any signal peak contain less
noise than a column or row that contains a peak. Generally,

�Noise�peak � �Noise�row/column � �Noise�free, �12�

which implies that the precision of a spectrum is lowest pre-
cisely at the positions of the signal peaks and the cross sec-
tions between noise ridges. This behavior of unsymmetric
covariance processing is in stark contrast to the 2D FT spec-
trum where random noise is evenly distributed over different
regions. The second-most noisy regions are the “noise
ridges” that align with peaks either horizontally or vertically
�while these features are reminiscent of “t1 noise” in 2D FT
spectra, their origin is entirely different�. According to Eq.
�6�, the presence of a very intense signal in the ith column of
A �or the jth column of B� results in increased noise for the
ith row �respectively, the jth column� of C, possibly to the
point where weaker cross peaks, with their intensities poten-
tially further reduced due to noise �Eqs. �8�, �10�, and �12��
in that row �respectively, column�, are obscured.

In the remainder of this section, two alternative ap-
proaches for the reduction of inhomogeneous noise effects
are described, which use either thresholding or maxima ratio
scaling.

Thresholding

The thresholding of regions in A and B in which signals
are not expected �by removing all points in A and B for
which the intensity is close to or below that of the noise
floor� eliminates several of the terms in Eqs. �4�, �6�, and
�10�. Thresholding prior to covariance computation helps to
render the baseline noise of covariance spectra uniform and
also eliminates the additional noise at the intersection of
“noise ridges” where no peak is actually present. This leads
to a clear reduction of the inhomogeneity of the noise in the
covariance spectrum. However, thresholding will not im-
prove the uncertainty of peak heights due to noise, since it
cannot remove the noise superimposed onto the FT peaks
that correlate to yield a covariance peak.

Maxima ratio scaling

Thresholding relies on the measurement of the noise
level and requires some knowledge about the expected peak
heights. Direct multiplication of the input matrices AT and B
according to Eq. �1�, on the other hand, leads to the appear-
ance of noise ridges along the rows and columns of all cross
peaks. These features are caused by the inner product of a
column of A that contains a peak with a column of B that
contains only noise or vice versa. To suppress such effects a
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differential scaling procedure referred to as “maxima ratio
scaling” �mrs�, can be applied by multiplying each element
of C=ATB by the weighting factor

Wij = 1/exp�ln�maxk�Aki�/maxl�Blj��� . �13�

The maxima ratio scaled unsymmetric covariance matrix
Cmrs has elements

Cij
mrs = Wij�

k=1

N1

AkiBkj , �14�

where the weights Wij reflect the magnitude ratio of columns
i and A and j of B. If the columns have a similar maximum
value, which is the case if both columns either contain peaks
of similar intensity or if both columns contain only noise,
Wij �1 and therefore Cij

mrs�Cij. However, if column i con-
tains one or several peaks and column j contains only noise,
or vice versa, Wij �1 and Cij

mrs�Cij, i.e., mrs leads to the
desired reduction of the ridges along the columns and rows
of a cross peak.

MATERIALS AND METHODS

Simulations

In order to test the equations derived in the Theory sec-
tion, numerical simulations of model spectra were performed
where each spectrum has a statistically independent noise
floor and contains a single peak in the same location along
the axis concatenated via covariance. The spectral widths of
both the direct and the indirect dimensions are 2.5 ppm with
N1=32 and N2=128 data points. For the present purposes,
“signal spectra” with a single diagonal peak at 1 ppm and a
full width at half maximum peak height of 12.75 Hz �assum-
ing a 600 MHz resonance frequency to convert from Hz to
ppm� were simulated in the program MATLAB.20 Gaussian
distributed noise floors were generated in MATLAB and added
to the signal spectrum to generate two independent noise and
signal spectra to be combined via unsymmetric covariance
processing according to Eq. �1�.

Experimental

2D 13C– 1H–HSQC and 13C– 1H–HMBC spectra were
recorded at 298 K for a mixture of seven common metabo-
lites at natural 13C abundance, namely, D-carnitine,
D-glucose, L-glutamine, L-histidine, L-lysine, myo-inositol,
and shikimic acid �each at a concentration of 10 mM in
D2O�, on a Bruker AVANCE 800 spectrometer equipped
with a cryogenic probe. The direct 1H dimension of each
spectrum was acquired with 2048 complex points and a spec-
tral width of 8013 Hz. The indirect 13C dimensions were
acquired with 1024 complex points. The 13C spectral widths
of the HSQC and HMBC spectra were set to 50 314 and
32 206 Hz, respectively. For the HMBC spectrum, the “mag-
nitude” spectrum was calculated after FT.21

Both data sets were processed using NMRPipe,22 leaving
each spectrum unapodized in the direct dimension �to be
concatenated via covariance�, while the indirect dimensions

were subjected to exponential-to-Gaussian apodization. The
indirect, unsymmetric covariance calculations, yielding an
HMBC-HSQC covariance spectrum,12 were performed in
MATLAB.

RESULTS AND DISCUSSION

Theory

The signal-to-noise ratio of a covariance peak has ac-
cording to Eq. �9� a characteristic dependence on the S/N
ratio of the input spectra A and B as well as on the size N1 of
the concatenated dimension. Figure 1 shows this dependence
for input spectra A and B that have a single peak represented
by the Kronecker delta function for variable �A and �B. In
Fig. 1�a�, �=�A=�B takes values 0.05, 0.1, and 0.2 corre-
sponding to S/N ratios of 20:1, 10:1, and 5:1, respectively.
For increasing N1, the sensitivity decreases with O�1 /	N1�.
The spectrum with the lowest sensitivity is most strongly
affected for increasing N1, whereas the change in sensitivity
of the highest sensitivity spectrum is relatively modest. Fig-
ure 1�b� shows the situation when the sensitivity of spectrum
A is constant at 20:1 while the S/N of spectrum B takes the
values 20:1, 10:1, and 5:1. The S/N of the resulting unsym-
metric covariance spectrum C steadily decreases with in-
creasing N1 and it has a S/N that is always below that of the
less sensitive input spectrum.

Simulations

Numerical simulations were performed to test the results
presented in the Theory section. The model spectrum A with
S /N=45 �Fig. 2�a�� was unsymmetrically covariance pro-
cessed with a spectrum B that has an identical signal peak as
spectrum A, but a different random Gaussian noise floor with
the same standard deviation. The corresponding unsymmet-
ric covariance spectrum C=ATB, depicted in Fig. 2�b�, dem-
onstrates the presence of an uneven noise floor with noise

FIG. 1. Signal-to-noise �S/N� ratio of a peak arising from the covariance of
a pair of peaks, computed using Eq. �9� as a function of N1 and the S/N ratio
of the input peaks. �a� S/N for the covariance between peaks each having the
indicated �5, 10, and 20� S/N values. �b� S/N for the covariance between a
peak with S /N=20 and a peak with the indicated S/N. Note that the lower
the signal to noise of the weaker peak, the lower the signal to noise of the
covariance peak. However, in the limit where the weaker peak is much
weaker than the stronger peak, so long as N1 is small, the signal to noise of
the covariance peak approaches that of the weaker peak. The sensitivity of
an unsymmetric covariance spectrum, for small values of N1, is not that
much lower than that of the less sensitive of the two spectra subject to
covariance with signal-to-noise values decreasing at most by a factor 21/2

from that of the least sensitive of the two input spectra.
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ridges in the same row and column as the signal peak. The
variances given in Table I quantify the difference between
the relatively low variance of baseline noise in covariance
spectra and the higher variance in noise intensities in the
same column or row as the covariance peak.

Table I gives both idealized variance estimates, calcu-
lated based on Eqs. �4�, �6�, and �8� using noise-free spectra
as well as estimates obtained using Eq. �10�, which demon-

strates the excellent correspondence between theory �both
idealized and using unbiased estimators with simulated noisy
input data� and simulation. Figure 2�c� plots the variance
predicted by Eq. �10� on a point-by-point basis, displaying
the expected “noise ridges” and highest variance at the loca-
tion of the peak itself. Division of the signal by the predicted
variance �Eq. �11�� yields a noise floor that, like the noise
floor in an FT spectrum, is homogeneous �Fig. 2�d��. Figure
2�e� thresholds Fig. 2�d� at the critical Z score of 4.85, as
adjusted by the Dunn–Sidak correction19 for 128�128
=16 384 hypothesis tests, demonstrating that the Z score is
an effective statistic for distinguishing between signal and
noise in the covariance spectrum.

While thresholding eliminates most of the noise along
the noise floor, including the noise ridges �Fig. 2�f��, the
variance in peak height, calculated analogously to the corre-
sponding variance reported in Table I, is 4319 �with a stan-
dard deviation of 661� indicating that thresholding does not
significantly improve the precision of the covariance peak
intensities. For comparison, maxima ratio scaling suppresses
noise ridges �Fig. 3� and yields 5687�886 for the corre-
sponding variance in peak height. Thus, the precision of peak
intensities produced by the mrs method is only slightly lower
than the one obtained by thresholding.

The simulations described above were repeated with a
S/N ratio of 7 for both input spectra �Fig. 4�. Because varfree

�defined by Eq. �4�� scales with �A
2 ·�B

2 while the additional
noise present in varcol and varrow scales with �A

2 and �B
2 ,

FIG. 2. Noise propagation through unsymmetric covariance. �a� Simulated
�noisy� input spectrum A with S /N=45. �b� Covariance spectrum ATB,
where B has the same signal peak as A and the same noise level. �c� The
variance calculated using Eq. �10� at each point of the covariance spectrum.
�d� Z matrix calculated according to Eq. �11�. �e� same as �d� after setting all
elements to zero with a S/N ratio less than Zcrit �4.85�, the Z score belonging
to the critical p value for which Dunn–Sidak correction yields a spectrum-
wide �=0.01. �f� The covariance spectrum produced by thresholding by
setting all elements of A and B less than 3� to zero prior to covariance. In
�a�, �b�, �d�, �e�, and �f� the cross peak is truncated to highlight noise fea-
tures: the actual peak heights are 44, 2112, 33, 33, and 2101, respectively.

TABLE I. Variance of noise intensities in a simple unsymmetric covariance spectrum: simulation vs theory.

Locationa

Variance in simulationb Theoryc

Mean Std. dev. Exampled Idealized Mean Std. dev.

Free �noise� 32.1 1.10 31.3 32 32.1 11.3
Row 2150 265.3 2579 2174 2159 109.5
Column 2167 320.2 1936 2174 2185 93.3
Peak 4341 679.2 0 4316 4315 150.6

aVariance measures var�location� defined in the Theory section.
bStatistics given for varfree, varrow, and varcol represent averages over 10 000 simulations.
cIdealized theory uses the signal spectra to calculate var�location�. Additionally, var�location� is calculated using Eq.
�10� and then taking the mean �and standard deviation� for all points in the given location over the simulations
performed �100 replications for varfree, varrow, and varcol and 100 rounds of 100 replications for varpeak�.
dVariances for the simulation displayed in Fig. 1.

FIG. 3. Covariance of simulated spectra �as described in text� subjected to
maxima ratio scaling �mrs�. The peak is truncated and has an actual height
of 2059.
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respectively, decreased signal-to-noise results in less pro-
nounced noise ridges �Fig. 4�b�� than are seen in Fig. 2. The
chosen S/N ratio yields a covariance peak with S/N �esti-
mated by Eq. �11�� of 5, which is just above Zcrit �Fig. 4�d��
and only slightly lower than the input S/N ratio of 7. The
mean local noise estimated by Eq. �10� for varfree, varrow, and
varcol are 6.25�104, 1.42�105, and 1.63�105, respectively,
which closely match the variances directly calculated from
the covariance spectrum �6.21�104, 1.37�105, and 1.94
�105, respectively�. Together with Table I, these results

demonstrate the applicability of Eqs. �10� and �11� in esti-
mating the signal-to-noise ratio of covariance spectra over a
wide S/N range.

Experiment

The variance of the measured spectral intensities in a
peak-free region of the HMBC �A� spectrum is 58.5 while
the variance of intensities in a peak free region of the HSQC
spectrum �B� is 108.8. Equation �4� predicts a variance of
2.61�107 for regions of the unsymmetric HMBC-HSQC co-
variance spectrum �C=ATB� that do not align �either by row
or column� to covariance peaks. The region of the covariance
spectrum, representing the covariance of the peak free re-
gions of the HSQC and HMBC spectra used to evaluate the
noise levels of those input spectra, has calculated intensities
with a variance of 2.69�107, which differs by less than 5%
from the predicted variance. Such a minor discrepancy may
result from “colored noise” effects.23

Table II compares noise variances calculated according
to Eq. �10� for two randomly selected covariance peaks,
which are �1� the lysine C�–C	 cross peak at
�24.12,41.76� ppm and �2� the carnitine C
–C� cross peak
at �45.66,66.79� ppm. Equation �10� predicts noise generally
within 5% of the expected variance in noise intensities. The
S/N values for peaks 1 and 2 roughly correspond to the S/N
values of their associated traces in the FT spectra subject to
covariance �Table III�.

As is the case with simulated data, the increased noise in
the same column/row of covariance peaks is visible upon
plotting of covariance spectra �Fig. 5�a��, which shows the
enhancement of noise in the same column and row as the
�45.66,66.79� ppm cross peak in the covariance spectra as
well as enhanced noise along the same row or the same col-
umn as other peaks. Some of the peaks leaving such ridges in

FIG. 4. Noise propagation through unsymmetric covariance. �a� Simulated
input spectrum A as in Fig. 2 with S /N=7. �b� Covariance spectrum ATB,
where B has the same signal peak as A and the same noise level. �c� Z
matrix calculated according to Eq. �11�. �d� same as �c� after setting all
elements to zero with a S/N ratio less than Zcrit �4.85�, cf. Fig. 2. �e� The
covariance spectrum produced by thresholding by setting all elements of A
and B less than 3� to zero prior to covariance. �f� Covariance of simulated
spectra subjected to maxima ratio scaling �mrs�. In each panel, the cross
peak is truncated to highlight noise features: the actual peak heights are 48,
2387, 5, 5, 2170, and 2246, respectively.

TABLE II. Variances of column/row noise and peak intensity for two covariance peaks.

Experimenta Theoryb Relative error �%�c

Column Row Column Row Column Row

Peak 1d 9.56�109 1.30�1010 7.56�109 1.24�1010 26.5 5.1
Peak 2d 4.63�109 3.32�109 4.69�109 3.44�109 1.4 3.5

aVariances calculated from intensities �in indicated, peak-free locations relative to the center of the peak at
hand� in the covariance spectrum obtained by multiplying an experimentally measured HMBC and with a
corresponding HSQC spectrum.
bValues obtained from Eq. �10�.
cDifference between experiment and theory relative to the theoretical value.
dPeaks in locations indicated in text.

TABLE III. Expected signal-to-noise ratios for two covariance peaks.

Covariancea HSQCb HMBCb

Peak 1c 437 664 492
Peak 2c 294 346 258

aExpected S/N ratio according to Eq. �11�.
bS/N ratio �peak intensity divided by standard deviation of measured inten-
sities in a representative peak free region� for maximally intense peak con-
tributing to the given covariance peak in the indicated spectrum.
cPeaks in locations indicated in text.
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the depicted region of the covariance spectrum are located in
distal regions of the spectra, which are not displayed in Fig.
5�a�. �Note that Eqs. �6� and �10� do not predict any attenu-
ation of the noise “ridges” with increased distance from a
peak along a column or row.�

Consistent with the simulations shown in Figs. 2�f�, 3,
and 4�e�, thresholding the input spectra or maxima ratio scal-
ing during the covariance process strongly suppresses noise
ridges as seen in Figs. 5�e� and 5�f�. Thresholding does not
affect the peak height, while mrs reduces the peak height by
a factor ��2�, which is much smaller than ridge suppression
��10�. The 3� threshold used in generating the covariance
spectrum shown in Fig. 5�e� is the same as that used in the
simulation shown in Figs. 2�f� and 4�e�. Increasing this
threshold would further attenuate the ridges at the risk of
removing true signals from the input spectra and hence at-
tenuate or eliminate true peaks in the resulting covariance
spectrum.

Figures 5�b� and 5�c� display the variance calculated by
Eq. �10� and the Z score calculated by Eq. �11� on a point-
by-point basis. Figure 5�d� thresholds the Z score by its criti-
cal value of 5.85, as adjusted via the Dunn–Sidak correction
for 2048�2048 hypothesis tests. The only points in the de-

picted region of the unsymmetric HMBC-HSQC covariance
spectrum with signal to noise above the critical value are
those associated with peak 2.

CONCLUSION

A chief utility of signal-to-noise comparisons is in deter-
mining whether or not a particular intensity is a signal of
potential interest or whether it can be explained as random
noise. For a Gaussian noise distribution, the signal-to-noise
ratio corresponds directly to a Z score for testing such a
hypothesis. In Fourier transform spectra, the homogeneity of
the noise floor allows for a simple evaluation of the standard
deviation of the noise distribution by computing statistics
over a spectral region that is void of peak signals. When
applied to nonlinearly processed datasets, such as the unsym-
metric covariance spectra discussed here, it can lead to spec-
tral distortions and the emergence of false peaks. Such peaks
are most likely to occur at the intersection of noise ridges
caused by strong signal peaks in the input spectra.

For two FT input spectra A and B whose noise floor
standard deviations �A and �B have been determined by stan-
dard methods, an unbiased S/N ratio matrix Z can be calcu-
lated for each point in the unsymmetric covariance spectrum.
Because Z has a homogeneous noise distribution, its noise
interpretation is analogous to the one of a FT spectrum. In
fact, the S/N ratio of an unsymmetric covariance peak is
generally quite close in value to the S/N ratios of the FT
peaks whose covariance gives rise to that covariance peak.

From a statistical perspective, the Z matrix provides a Z
score for each spectral point, which translates into a prob-
ability that a given Zij intensity represents an actual signal as
opposed to random noise. This feature puts the unsymmetric
covariance Z matrix on the same quantitative footing as its
input FT spectra.

Alternatively, the inhomogeneity of the baseline noise in
unsymmetric covariance spectra can be eliminated by thresh-
olding, at the risk of eliminating weak cross peaks that are
true, or by maxima ratio scaling. Application of the mrs
method ensures that the covariance between two columns,
one containing a peak and the other containing only noise, is
smaller than the covariance between two columns that both
contain noise. The mrs method, however, also scales down
covariance peak intensities. A strong noise ridge in an un-
symmetric covariance spectrum derives from a strong input
peak. The mrs method reduces ridge intensity by scaling
down such strong input peaks, which also reduces the inten-
sity of covariance peaks associated with strong noise ridges.
Thus, to a first approximation, mrs leaves apparent S/N ratios
of peaks unaffected.

Unsymmetric covariance processing has generally lim-
ited consequences for the sensitivity. For example, a homo-
nuclear 13C or 15N spectrum obtained via unsymmetric co-
variance has a sensitivity nearing that of proton-detected
NMR rather than the sensitivity experimentally available
with 13C or 15N direct detection, confirming previous assess-
ments of indirect/unsymmetric covariance processing.9,13 In
addition, thresholding, maxima ratio scaling, or Z-matrix
analysis provide effective means for the suppression of ridge

FIG. 5. Selected spectral region taken from an experimental unsymmetric
HSQC-HMBC covariance spectrum of metabolite mixture using different
processing schemes. �a� Covariance spectrum computed according to Eq.
�1�. �b� The variance calculated, by Eq. �10� at each point in the covariance
spectrum. �c� Z matrix calculated according to Eq. �11�. �d� as �c�, after
setting all elements to zero having a S/N ratio less than Zcrit �5.85�, the Z
score belonging to the critical p value for which Dunn–Sidak correction
yields a spectrum-wide �=0.01. �e� Spectrum computed using thresholding
at 3� applied to the input HMBC and HSQC spectra. �f� Spectrum com-
puted using maxima ratio scaling according to Eqs. �13� and �14�. In �a�, �c�,
�d�, �e�, and �f�, the cross peak �corresponding to peak 2 in text and tables�
has been clipped: the maximum amplitude of this peak is 263 ��a� and �e��,
294 ��c� and �d��, and 144 �f�.
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artifacts in the final unsymmetric covariance spectrum based
on minimal assumptions, namely, that the Gaussian noise of
the spectra subjected to covariance processing are known.

The Z-matrix formalism presented in this work provides
a general link between standard multidimensional FT spec-
troscopy and covariance NMR. It enables one to quantify the
sensitivity of covariance spectra and to evaluate whether co-
variance intensities arise from noise or from covariances be-
tween input signals, thereby helping NMR spectroscopists to
optimize the acquisition and analysis of datasets subjected to
this type of processing.
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