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The Jarzynski equality and the fluctuation theorem relate equilibrium free energy differences to
nonequilibrium measurements of the work. These relations extend to single-molecule experiments
that have probed the finite-time thermodynamics of proteins and nucleic acids. The effects of
experimental error and instrument noise have not been considered previously. Here, we present a
Bayesian formalism for estimating free energy changes from nonequilibrium work measurements
that compensates for instrument noise and combines data from multiple driving protocols. We
reanalyze a recent set of experiments in which a single RNA hairpin is unfolded and refolded using
optical tweezers at three different rates. Interestingly, the fastest and farthest-from-equilibrium
measurements contain the least instrumental noise and, therefore, provide a more accurate estimate
of the free energies than a few slow, more noisy, near-equilibrium measurements. The methods we
propose here will extend the scope of single-molecule experiments; they can be used in the analysis
of data from measurements with atomic force microscopy, optical, and magnetic tweezers. © 2008

American Institute of Physics. [DOI: 10.1063/1.2937892]

I. INTRODUCTION

A central endeavor of thermodynamics is the measure-
ment of entropy and free energy changes, for which the prin-
cipal experimental methods are based on the Clausius
inequality.1 One starts with a system equilibrated in one ther-
modynamic state, A, and then perturbs the system, following
some explicit protocol, until the control parameter corre-
sponds to a new thermodynamic state, B. If the temperature
T of the surroundings is fixed, the change in entropy, AS
=Sg—S,, is related to the flow of heat Q into the system:

AS = B0, (1)

where 8=1/kpT and kp is the Boltzmann constant. Note that
we are using natural units of entropy in which the change in
entropy, AS, is dimensionless. Equivalently, the free energy
difference AF=Fz—F,=A(U)-AS/B is related to the work
W done on the system:

AF = (W). ()

Here, we use the sign convention AU=Q+W. The angular
brackets indicate an average over many repetitions of the
same experiment. In macroscopic systems, individual obser-
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vations do not differ significantly from the mean. However,
for a microscopic system, the fluctuations from the mean can
be large and the inequality only holds on average (i.e., not
for individual measurements).

It was recently discovered that equilibrium free energy
differences can also be determined by measuring the work
performed during irreversible transformations, using the
Jarzynskilzf15 and work fluctuation relations.'®'” These the-
oretical insights have been used to determine the unfolding
free energy of a RNA hairpinzfé"g’18 from finite-time, non-
equilibrium experiments, as described in Figs. 1 and 2. We
consider a protocol (labeled as A) that starts with an equili-
brated system and then transforms an external control param-
eter from an initial value A to a final value B in a finite time.
(In the RNA hairpin unfolding experiments, the control pa-
rameter is the distance between the center of the optical trap
and the center of the fixed bead.) This perturbation drives the
system out of equilibrium. Once the protocol ends, the con-
trol parameter is fixed and the system can relax back to ther-
mal equilibrium. One can also run the protocol in reverse,
starting with a system equilibrated with the control param-
eter at B, and then transform the system through the reverse
sequence of intermediate control parameters to A. We label

this conjugate protocol A. Due to the reversibility of the
microscopic dynamics, the probability P( W|AF,,A) of
measuring a particular value of the work during protocol A is

© 2008 American Institute of Physics
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FIG. 1. (Color online) Nonequilibrium work measurements for folding and
unfolding a RNA hairpin (Ref. 2). A single RNA molecule is attached be-
tween two beads via hybrid DNA/RNA linkers. One bead is captured in an
optical laser trap that can measure the applied force on the bead. The other
bead is attached to a piezoelectric actuator, which is used to irreversibly
unfold and refold the hairpin (Refs. 2-11).

related to the work probability density of the conjugate

protocol A by the following work fluctuation
12,4,16,17,19-22
symmetry:
P(+ W|AF\,A) _ HBV-BAR, 3)
P(-WIAFZ.A)

with AF, (=—AF) the change in free energy associated with
the change in the external control parameter in protocol A

(A). This relation immediately implies the Jarzynski
equality'*'**
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FIG. 2. (Color) Typical force-extension curves in the unfolding (solid lines)
and folding (dashed lines) of a 20 base pairs RNA hairpin. Different colors
correspond to different unfolding-folding cycles. The rip in force observed
around 15 pN corresponds to the cooperative unfolding/folding transition.
The area below the force-extension curve is equal to the mechanical work
done on the RNA hairpin. Because the transformations are irreversible, the
work performed varies from one unfolding or refolding measurement to the
next. Drift effects observed in force-extension curves arise from different
causes, including air currents, mechanical vibrations, and temperature
changes.
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(e Py = f dWP(+ W|AF,A)e PV
= f dWP(— W|AF7,A)e PAF = ¢=PAF, 4)

In other words, a Boltzmann weighted average of the irre-
versible work recovers the equilibrium free energy difference
from a nonequilibrium transformation. The Clausius relation
follows by an application of Jensen’s inequality, In{exp(x))
=(x).

Given the above thermodynamics preamble, we can re-
phrase the problem of measuring the free energy as follows:
How do we calculate the most accurate, least biased estimate
of the free energy given a finite number of irreversible work
measurements?” **~’ We consider both the statistical error
due to limited data and, for real experiments, the additional
error due to measurement noise. Furthermore, we may wish
to simultaneously combine the data from multiple protocols
connecting the same thermodynamic states.” For example,
in the single-molecule experiment described in Fig. 1, the
same RNA hairpin was unfolded at three different rates, with
each data set providing a different compromise between sta-
tistical and experimental errors.

The Clausius relations are exact equalities only for infi-
nitely slow, thermodynamically reversible transformations,
where the irreversible dissipation is zero. A transformation
that occurs in a finite time provides only an upper bound to
the free energy and a lower bound to the entropy change.
[Since entropy and free energy are state variables, the reverse
transformation, from thermodynamic state B back to A, pro-
vides a lower (upper) bound to the same free energy (en-
tropy) change.] One approach in analyzing irreversible trans-
formations is to directly apply the Jarzynski relation.*!>!%%
However, this identity strictly holds only in the limit of an
infinite number of repeated experiments. For a finite number
of measurements, we again obtain an inequality that only
holds on average,'2 and the free energy estimates tend to be
strongly biased. 303233364043 Because the magnitude of the
bias depends on the protocol, one cannot reliably combine
data from different protocols.44 Moreover, the Jarzynski re-
lation is sensitive to measurement noise and variations in the
experimental setup (e.g., heterogeneity in the attachments
and variable length of tethers). Broadening of the work dis-
tribution leads to a bias in the estimated free energy since
smaller work values contribute more than larger work values
in the exponential average of Eq. (4).

Bennett* laid the foundations for the solution to this
problem in his development of the acceptance ratio method
for free energy perturbation calculations (a technique for
computing free energy changes by simulating infinitely fast
transformations). He realized that an optimal solution re-
quires combining work measurements from both forward and
reverse switches. The acceptance ratio method was later ex-
tended to finite-time switches,17 shown to a maximum like-
lihood free energy method,”®*® related to the problem of lo-
gistic regression,28’38’47’48 and extended to a network of
thermodynamic states connected with many protocols.38 In
this paper, we develop a Bayesian formalism that extends
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these results to provide not only a reliable estimate of the
free energy but also reliable estimates of the statistical un-
certainty. In this formalism, it is straightforward to incorpo-
rate additional prior information about the experiment into
the analysis. In particular, we show how to allow for experi-
mental measurement noise. The magnitude of the noise can
be determined from the data and an error-corrected free en-
ergy estimate recovered. We use this approach to reanalyze a
recent experiment in which a single RNA hairpin was un-
folded and refolded at three different rates using optical
tweezers.”

Il. POSTERIOR FREE ENERGY ESTIMATE

Formally, we require the probability that the free energy
change AF has a particular value, given a collection of work
measurements W, the protocol used for each measurement

(either A or A), and the (fixed) temperature of the environ-
ment 7. Initially, we consider the simplest case, in which
there are two protocols that are conjugate to each other, so
that the work distributions are related by the fluctuation re-
lation Eq. (3). We also assume, for now, that the measure-
ments are error-free.

The essential element in solving this problem is to treat
both the work and the protocol as random variables that are
uncorrelated from one observation to the next.”* We rewrite
the free energy probability density given a single measure-
ment in terms of these variables using Bayes’ rules,
P(A|B)= P(B|A)P(A)/P(B),

P(W,A|AF\)P(AF,)

P(AF,|W,A) = POW.A) . (5)

Since a priori the free energy could be positive or negative
and of any magnitude, the prior distribution of free energy
P(AF,) can be reasonably taken as uniform (see Kass and
Wasserman®® for an in-depth discussion of priors). The de-
nominator, which does not depend on AF,, can be absorbed
into a normalization constant.

The distribution P(W,A|AF,) is the final undetermined
factor on the right-hand side of Eq. (5). In the absence of
detailed knowledge about the work likelihood for the system
under investigation, we should choose a maximally uninfor-
mative, system independent distribution. If the work were
not conditional on the free energy, we could again assign a
uniform distribution, since a single work measurement could
be positive or negative and of any magnitude. However, we
expect that the work will probably (but not certainly) be
larger than that value of the free energy. Concretely, any
work probability distribution must satisfy the work fluctua-
tion symmetry [Eq. (3)]. We can satisfy this constraint by
first considering the symmetrized distribution
P(W,A|AF,)+P(-W,A|AF5). The work value in this av-
eraged distribution has no a priori preference to be larger or
smaller than the value of the free energy and, therefore, we
can assign a maximally uninformative improper prior:

P(W,A|AF,) + P( - W,A|AF5) = const (6)

However, the work fluctuation relation implies that
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FIG. 3. The standard logistic function, f(x)=1/(1+e™).
P(-"W’—MAFA) = pBW-BAFA\+M | (7)
P(- W,A|AF5) ’

where M,=In P (A|AF,)/P (A|AFR). It follows that

1
P(W,A|AF ) = W. (8)
Note that Eq. (6) is a constraint imposed only to derive a
reasonable, uninformative free energy prior [Eq. (5)]. There-
fore, the constraint need not be respected in practice, else all
work distributions would be logistic [Eq. (8)]. The prior is
used to describe our state of knowledge about the behavior
of the system before we perform any work measurements.
Once we have information about the work distribution, the
posterior free energy distribution becomes peaked and will
converge to a delta function centered at the correct value,
assuming sufficient data and adequate sampling. When the
posterior is sharply peaked, any smooth variation in the prior
will not change the posterior distribution by any significant
amount, and the exact form of the prior becomes largely
irrelevant. Equation (8) was derived in Ref. 28 starting from
a different set of assumptions.
Together with an uninformative free energy prior, we
finally obtain

P(AFA\|W,A) = P (W,A|AF,) = f(BW — BAF + M),
9)

where f(x) is the logistic function (Fig. 3), the cumulative
distribution function of the standard logistic distribution (see
the Appendix, Fig. 4)
1
T+e™

flx) = (10)
Essentially, each measurement of the work provides a soft
upper bound to the free energy change. Measurements made
on the conjugate protocol provide soft lower bounds to the
same free energy. Therefore, combining measurements from
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FIG. 4. The approximation of the standard logistic distribution by the
Gaussian distribution with zero mean and standard deviation \8/r.
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FIG. 5. Posterior free energy given two work measurements, one from each
of two conjugate protocols with values W= * 16. The posterior variance,
7%/3+ 6%/12, is minimized when the rectified work variables coincide and
increases quadratically with separation.

conjugate protocol pairs provides reliable but fuzzy free en-
ergy bounds. This is in contrast to the Clausius inequality
[Eq. (2)] where the average work provides a hard bound to
the free energy change.

Figure 5 illustrates the posterior distribution resulting
from combining two work measurements, one from each of a
conjugate protocol pair, where the measured values are SW
== %6. If the work values are widely separated, then the
posterior free energy distribution is broad and flat. We only
obtain a tight constraint on the free energy if the separation is
less than about 4kzT. The minimum uncertainty for a single
pair of measurements is o= 1.8kzT, which occurs when &
=0.

Assuming that each measurement of the work is inde-
pendent, we can combine measurements by multiplying the
separate posterior distributions together. So far, we have
been considering a single pair of conjugate protocols switch-
ing between two thermodynamic states. However, it was re-
cently demonstrated that we can combine measurements
from many different protocols connecting many different
thermodynamic states in a network of transformations.”®
Each measurement provides a single soft constraint [Eq. (9)],
which we can combine by multiplying the different posterior
distributions:

N

1
PEIW,A) = 1L f(BW, = BAFy + M), (11)
k=1

where W, is the work measured in the kth experiment, per-
formed with protocol A;, AF A is the free energy change
associated with that protocol, C is a normalization constant,
and N is the total number of measurements. In the simplest
case, we have only a single conjugate protocol pair, forward
and reverse. In general, we can have many different proto-
cols (for example, pulling a molecule apart at different load-
ing rates), and different protocols could connect different
thermodynamic states.”™ In  the equation above, F
={F,,F,,F5,...} are the free energies of the initial and final
states of these transformations. At least one free energy F; is
fixed at zero, or some other convenient reference point, since
only differences in free energy are significant.

The M, terms compensate for a difference in the prob-
ability of observing a forward or reverse protocol from a
conjugate protocol pair. In the absence of detailed prior in-
formation about the work distributions, it is best to pick each
member of a conjugate pair equally often.*” However, the
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difficulties of real world experiments may result in unequal

numbers of forward and reverse measurements. In such

cases, we can estimate a reasonable value for M, from the
. . k

number of observations, N,, obtained from each protocol:

P(A|AF,) Ny+1
n ~In

My=1 .
A Ni+1

(12)

The additional “+1” is a pseudocount which regularizes the
frequency estimate. It can be justified as a Laplace prior on
the probabilities.so’51 Note that without this regularization,
Eq. (12), and thus also Eq. (11), would become invalid in the
single sample limit. With the addition of the pseudocount,
the probability distribution in Eq. (11) may still only produce
one-sided bounds (for example, when there is no protocol
that ends in a certain state, one has, at best, an upper bound
for the free energy of that state). However, we could recover
a finite free energy posterior distribution if we were to use a
more informative free energy prior in Eq. (11).

The experimental measurements of the work values can
typically be considered to be uncorrelated. However, when
the measurements or simulation results are correlated, the
maximum likelihood or Bayesian estimates may need to be
modified to result in an optimal estimate of the free energy.48
In the absence of a general-purpose formulation for corre-
lated work measurements, the estimators discussed in this
paper are likely to underestimate the errors.

The Bayesian free energy posterior is an optimal esti-
mate in the sense that it uses all of the available data and
makes the fewest possible assumptions. We can, in principle,
improve the estimate by incorporating additional information
either by using more informative priors or by adding addi-
tional assumptions, for example, by assuming that the work
distribution is smoothly varying,45 or that it can be param-
etrized in terms of a particular functional form.*

In many practical cases, the posterior distribution of AF
quickly converges to a normal one as a consequence of the
central limit theorem. We can summarize this posterior dis-
tribution with a point estimate and reasonable error bounds,
for example, the posterior mean free energy and 95% confi-
dence intervals. The posterior mean will coincide with the
maximum likelihood, and the confidence interval will be =2
standard deviations.

lll. EXPERIMENTAL ERRORS

The preceding analysis does not include the possibility
of experimental errors, an omission that we now address,
since real experiments are not ideal and real measurements
can be inaccurate.

We initially assume that the instrument error can be ad-
equately described as additive white noise with zero mean
and standard deviation o. Since we do not know the magni-
tude of the noise, we estimate the joint distribution of the
free energy and the noise, then integrate out the noise to
obtain a final free energy estimate:
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FIG. 6. The approximation of the sigmoidal function g(x; e, o) [Eq. (AD)]
by the logistic function f(x;y)=1/[1+exp(—x/7y)], where y=\1+mad>/8
[Eq. (A7)]. The absolute difference between the functions is always less than
0.02.

P(AF,|W,A) = f P (AF,,0|W,\)do. (13)

Let us write W=w+ €, where W is the observed work value,
w is the true work, and € is the measurement error. Using Eq.
9), we get

+o0

P(AF),a|W,A) f(BW = Be— BAF \ + M\)N

X (€;0,0)de. (14)

Here, N(x;u,o) is a Gaussian distribution with mean u and
standard deviation o [see Eq. (A3)].

This convolution of a logistic function and a Gaussian
distribution generates a new sigmoidal function, illustrated in
Fig. 6. This function does not have a simple closed form, but
fortunately, it can be closely approximated by a reparam-
etrized logistic distribution,

P(AF),a|W,A) ocf(i(,(;w- BAF, + MA)>, (15)

where the parameter y=11+mB%0%/8 essentially acts as a
correction factor to the work fluctuation symmetry. (The
mathematical details are given in the Appendix.)

Having proceeded this far, we no longer need to assume
that the errors are a result of white noise. Instead, we will
treat y as the principal experimental error factor directly,
without reference to an explicit error model or to the stan-
dard deviation of the noise, o. For example, a systematic
miscalibration of the work measurement or an incorrect ther-
mostat would also result in a nonunit . In such cases, y
could be less than 1. Therefore, we allow 7y to be any posi-
tive number. We introduce an uninformative prior for v,
P(y)=1/7v. This distribution is scale invariant and follows
given only that 7y is positive and a priori of unknown
magnitude.50 We can now average over the free energy to
obtain the posterior distribution of the error correction factor
7y or average over the error correction factor to obtain the
posterior free energy estimate corrected for instrument error,

+

~11r
Y k

1
P(AF\|W,A) =~
C'Jo

1
X(;(ﬂwk_BAFA"'MA))d% (16)

where C’ is a normalization constant. Note that instrument
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FIG. 7. (a) Histograms of work measurements for folding and unfolding an
RNA hairpin at three different rates. Observations are binned into integers
centered at 1kzT intervals. These data correspond to Fig. 2 of Collin ez al.
(Ref. 2) Note that Eq. (3) predicts that the folding and unfolding work
distributions cross at the free energy change. (b) The posterior distribution
of the error correction factor y [Eq. (16)]. (c) Posterior free energy derived
from the data in (a), both with [solid line, Eq. (16)] and without [dashed
line, Eq. (11)] correction for measurement noise. Notice that the correction
is substantial for the slowest experiment (1.5 pN/s) and minor for the inter-
mediate rate, and the corrected and uncorrected posteriors are indistinguish-
able (at this scale) for the fastest rate. The most reliable free energy estimate
is obtained by combining the three separate noise-corrected free energy
posterior distributions.

error, and thus, the distribution of 7y, will vary with the pro-
tocol. One could construct a complex hierarchical prior48 for
the experimental error factors that would feed information
about the typical scale of the errors from one protocol to the
next. In this work, we find it sufficient to estimate y inde-
pendently for each protocol and obtain a final posterior:

P(FIW,A) =[] P(AF,|W,A). (17)
A

Here, as in Eq. (11), F={F,,F,,F5,...} are the free energies
of the initial and final thermodynamic states.

Another potential source of errors arises from unin-
tended variations in the experimental procedure from one
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TABLE I. Summary of results graphed in Fig. 7. Ny; and Ng: number of unfolding and refolding work mea-
surements at each pulling rate, respectively. AF: posterior mean free energy estimate with 95% confidence
intervals, both corrected and uncorrected for measurement error. y: posterior mean estimate of the noise

correction factor, with 95% confidence intervals.

AF AF
Ny Ng (uncorrected) (corrected) y
1.5 pN/s 127 129 109.8 0.4 109.8 0.8 2.70£1.00
7.5 pN/s 384 383 110.3+0.3 110.3*£0.3 1.11£0.17
20 pN/s 699 696 110.0=0.3 110.0=0.3 1.00+£0.14
Combined 110.1+0.2

measurement to the next. For example, we may intend to
forcibly unfold a RNA hairpin in a particular time, but each
experimental run may be slightly faster or slower than an-
other. Instead of an experiment being described by a single
protocol, each measurement is made with a similar but
slightly different procedure (e.g., due to hysteresis effects of
the actuators on the mechanical response). However, if a
protocol variation has the same probability both forward and
reverse, then the factor M, [Eq. (12)] does not change. Con-
sequently, if the variations in protocol are statistically the
same for the conjugate forward and reverse protocol pairs,
then that variation has no effect on the free energy estimate.

IV. APPLICATION AND DISCUSSION

Figure 7 shows the result of applying the Bayesian free
energy estimate to data from the single-molecule RNA pull-
ing experiments reported in Ref. 2, both with and without
noise correction. This data set is particularly useful to illus-
trate the previous analysis, since it represents three distinct
protocols; i.e., the same RNA hairpin is unfolded at three
different rates: slow, medium, and fast. The free energy
change is the same in each case; we can see that this is
qualitatively true by noting that the forward-reverse work
histograms all cross at roughly the same value of the work.
The experimental noise is expected to accumulate during a
single experiment, and so we expect the data from the fastest
pulling rate to be contaminated with the least measurement
error. This is indeed what the Bayesian error analysis finds: y
approaches 1 as the pulling rate increases.

Qualitatively, the effect of instrument noise is to broaden
both the forward and reverse work distributions. This broad-
ening tends not to significantly change the crossing point, but
it does increase the overlap between the conjugate distribu-
tions. Therefore, ironically, the instrument error does not
greatly change the free energy estimate, but it does signifi-
cantly (and erroneously) reduce the calculated error bars.
Fortunately, the noise invalidates the fluctuation theorem,
and the magnitude of that violation allows us to estimate the
magnitude of the instrument errors and to extract noise-
corrected free energy estimates with meaningful error
bounds.

A useful feature of this error analysis is that we can use
the correction parameter y as a measure of how well the
experiments have confirmed the work fluctuation relation
[Eq. (3)]. For the fastest pulling, highest quality data, we find
that y=1=0.14; in other words, the fluctuation relation is

confirmed to within 14% at the 95% confidence limit. Al-
though more accurate constraints can be obtained by
performing experiments on systems with simple
potentials,39’53757 this is the best available experimental data
for irreversibly switching a complex system.z’58 We can also
use the interrelation between the noise and the correction
factor (y=V1+ 77',3202/ 8) to estimate the measurement accu-
racy needed to improve this result. For example, if we wish
to confirm the fluctuation relation to better than 1%, then the
work must be measured to better than ZikBT accuracy,
which is well within the limits of modern optical tweezer
instruments.

The quantitative effect of the noise corrections to AF can
be seen in Fig. 7(c) and Table 1. The noise correction makes
a substantial difference to the free energy confidence interval
for the slowest data, but very little difference to the posterior
mean free energy or the error bounds for the faster data. Note
that the free energy considered in this analysis includes un-
folding the RNA hairpin and stretching the DNA/RNA
handles; deconvoluting the contributions of the handles in-
troduces additional uncertainty not considered here. >
Having applied the instrument noise correction, we can
safely combine the posterior free energy estimates from the
three different protocols to obtain a combined estimate of
AF=110.1+0.2kgT. This result is a substantial improvement
over the best, single protocol, maximum likelihood estimate,
AF=110.2*+0.6kgT, extracted from the same data.

In summary, we have presented a Bayesian formalism
for estimating free energy changes from nonequilibrium
work measurements. The formalism compensates for instru-
ment noise and combines results from multiple experimental
protocols. The method is widely applicable and could be
used in the analysis of single-molecule experimental data
from optical tweezers, atomic force microscopy, or magnetic
tweezers. Together with advances in single-molecule traps
and use of multiple experimental setups (e.g., changing bead
sizes, trap power, or the length of the handles), it will aid in
extending the scope of single-molecule experiments.
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APPENDIX: APPROXIMATE CONVOLUTION OF A
LOGISTIC FUNCTION WITH A GAUSSIAN
DISTRIBUTION

We are interested in the function
+00

glx;a,0) = fx+ e;a)N(€;0,0)de, (A1)

—o0

the convolution of a logistic (or Fermi) function

1
fx;@) = ———7~=-+_tanh——, (A2)

1+e

with a Gaussian (or normal) distribution with zero mean and
standard deviation o

(x_“)z). (A3)

1 (
[ expl —
\27a? P 20°

The function g(x; @, o) does not have a simple, closed form.
However, as is illustrated in Fig. 6, it can be reasonably
approximated by a reparametrized logistic function:

gxsa,0) = flx:;y), (A4)

where vy is a function of o and o. We fix y by requiring
equality of the derivative at the origin, since, for our pur-
poses, it is more important to minimize the errors around the
origin than elsewhere. The value of g(x; a, o) at the origin is
%, the same as f(0; y). Note that

1
w0 2y+2ycosh(x/y)

Nx;p,0) =

1
=—, (AS)
x=0 47

d
Ef(x; )

and, therefore,

d
y'= 4—g(x;a,0)
dx

x=0

:4f_x ( diif(x+ € q) .

+00 1 )
=4 —_—— ;o)de. A6
fx (2a+2a cosh €/« Me;o)de (46)

)N(E;O')de

The expression inside the bracket is a logistic distribution,
which is closely approximated by the Gaussian distribution
./\/(E;O,a\/m'r) (see Fig. 4). These parameters ensure that
the two distributions agree exactly at the origin. Therefore,
our problem reduces to a straightforward Gaussian integral:

y! z4f %e;O,a\/E)N(E;O,U)dE»
—00 W
/ T

For a=-1/, we recover the case of white noise discussed
in the main text.
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