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Idiopathic-type scoliosis is not exclusive to bipedalism
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Abstract

Human familial/idiopathic-type scoliosis (IS) is a complex genetic disorder for which the cause is
unknown. The curve phenotype characteristically demonstrates pronounced morphological and
developmental variability that is likely a consequence of biomechanical, environmental, and genetic
differences between individuals. In addition, risk factors that affect the propensity for curves to
progress to severity are unknown. Progress in understanding the fundamental biology of idiopathic-
type scoliosis has been limited by the lack of a genetic/developmental animal model. Prior to
consideration of teleosts, developmental idiopathic-type scoliosis has been considered to be exclusive
to humans. Consequently, there is the notion that the syndrome is a result of bipedalism, and many
studies try to explain the deformity from this anthrocentric viewpoint. This perspective has been
reinforced by the choice of animals used for study, in that chickens and bipedal rats and mice
demonstrate idiopathic-type curvature when made melatonin deficient, but quadrupedal animals do
not. Overlooked is the fact that teleosts also demonstrate similar curvature when made melatonin-
deficient. Our characterization of the guppy curveback has demonstrated that non-induced idiopathic-
type curvature is not exclusive to humans, nor bipedalism. We hypothesize that unique
morphological, developmental and genetic parallels between the human and guppy syndromes are
due to common molecular pathways involved in the etiopathogenesis of both phenotypes. We explore
established gene conservation between human and teleost genomes that are in pathways hypothesized
to be involved in the IS syndrome. We present non-induced vertebral wedging as a unique shared
feature in IS and curveback that suggests a similar interaction between a molecular phenotype on the
level of the vertebral anatomy, and biomechanics. We propose that rather than bipedalism per se,
expression of idiopathic-type scoliosis is dependent on normal spinal loading applied along the
cranio-caudal axis that interacts with an unknown factor causing the primary curve. In this regard, a
comparative biological approach using a simplified teleost model will promote discovery of basic
processes integral to idiopathic-type scoliosis in teleosts and humans, and highlight human-specific
aspects of the deformity.

Introduction

Familial/idiopathic-type scoliosis (IS) is a complex genetic disorder that accounts for 80% of
all human spinal curvatures (MIM 181800, Online Mendelian Inheritance in Man). It is broadly
defined as a three-dimensional curve deformity with no known etiology that manifests after
birth and has a propensity to increase in magnitude with growth, until sexual maturity. Curve
magnitude, morphology, rate of and propensity for progression are highly variable among
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individuals, due to biomechanical, environmental, developmental and possibly genetic
variability between individuals.

An understanding of fundamental aspects of the deformity has been limited by the lack of a
genetic/developmental animal model. Before consideration of teleost fishes, all observed forms
of scoliosis in animals have been the result of congenital anomalies, or have been induced in
laboratory animals [1]. Hence, it appears that idiopathic-type spinal curvature is exclusive to
humans, and therefore is alleged to be a consequence of bipedalism [1-6]. Abandoning this
anthrocentric perspective will help advance our comprehension of not only the cause(s) of
curve onset, but also risk factors associated with progression. A comparative biological
approach using a simplified teleost model will promote discovery of basic processes integral
to idiopathic-type scoliosis and highlight human specific aspects of the deformity.

How the choice animal models for IS support the bipedal notion

That idiopathic-type scoliosis has never been observed in any animal other than humans
certainly has encouraged the notion that the deformity is contingent on bipedalism.
Experimentally, scoliosis has been produced using a variety of animals (i.e., rabbit, lamb, goat,
mouse, rat, monkey, dog, pig, chicken). These all have the fundamental goal of producing a
model that is comparable to IS in order to elucidate the etiology, and promote new therapeutic
methods [7]. Methods for induction of scoliosis include dietary deficiency, immobilization,
local procedures (i.e. damage to spinal, neural or surrounding tissues), or pinealectomy.
Ultimately, because they are induced, it remains controversial whether conclusions drawn from
such experiments relate to primary or secondary influences for curvature [7,8].

Because most of the animals used for study of IS are quadrupedal, they have limitations for
research into an etiology that is presumed to be influenced by gravity [7]. The relevance of
bipedalism and gravity to IS pathogenesis has been supported by the fact that pinealectomy
(or melatonin deficiency) can induce spinal curvature in chickens, but not in quadrupedal
mammals unless they are forced to be bipedal [3,9-11]. For example, pinealectomized rats and
mice made melatonin-deficient do not demonstrate spinal curvature as quadrupeds, but do if
their front legs and tail are amputated in order to force them to be bipedal [9,10,12].

Importantly, although never reviewed in orthopeadic studies, pinealectomy in the teleosts
guppy and salmon induces spinal curvature with a physiological response similar to that in
pinealectomized chickens [13-15]. Hence, the conviction that idiopathic-type scoliosis is
exclusive to bipedalism and dependent on gravity has been biased by the selection of animals
used for study.

Background on the curveback guppy

The curveback guppy is the first model for human IS to demonstrate spinal curvature in
otherwise healthy fish that is not induced nor caused by congenital malformation of the
vertebrae [16]. Our characterization of the guppy curveback syndrome has revealed unique
morphological, developmental, and genetic parallels to human idiopathic-type scoliosis (1S).

The guppy is a small live-bearing teleost fish, and offspring are born approximately 3 weeks
after conception. As with humans, the onset of curvature begins at variable ages after birth
(guppy skeleton is completely ossified before birth) and can either stabilize at a moderate
magnitude, resolve to normal or nearly normal, or progress to severity [16-18]. The curve
phenotype is a primary sagittal lordosis of variable magnitude with most individuals exhibiting
a posterior kyphosis, coronal deviation and axial rotation (figure 1). Beyond complex
inheritance, the human and curveback idiopathic-type curvature syndromes share: a female
bias for severe curve magnitude, despite an equal incidence rate among males and females;
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similar variability for curve magnitude and morphology; variable age of curve onset and rate/
propensity for progression; curve stabilization at sexual maturity; the incidence of resolving
curves; and vertebral shape distortion at the apex of severe curves [16].

Hypothesis

Study of the teleost curveback provides an important insight: that idiopathic-type scoliosis is
not a human exclusive deformity. Here we explore the hypothesis that common molecular
pathways are involved in the etiopathogenesis of the guppy and human phenotypes. This idea
is based on the fact that curveback demonstrates so many phenotypic parallels to IS, and that
humans and teleosts share many genes involved in basic biological processes. It is possible
that the same genes in human and guppy idiopathic-type scoliosis are mutated, or it is also
possible that different sets of genes are mutated in guppy and human systems, but that they
affect common molecular pathways. Either way, comparison of the two systems has the
potential to illuminate important biological pathways involved in the maintenance of spinal
stability throughout growth.

An important corollary of our hypothesis is that rather than a consequence of gravity and
bipedalism per-se, the deformity is likely contingent on the interaction of force/loading applied
along the cranio-caudal axis with the vertebral anatomy, in the presence of a genetic
predisposition. An important question that emerges from our hypothesis is whether genes for
idiopathic-type curvature are present in terrestrial animals, but their expression is constrained
by quadrupedal biomechanics, or if indeed the primary etiology is exclusive to humans and
teleosts.

Is the genetic predisposition exclusive to humans?

It is possible that the genetic predisposition and components related to curve progression for
idiopathic-type curvature in guppies and humans are in the same genes or in genes controlling
common genetic pathway(s). The observed phenotypic variation and lack of concordant loci
identified among human linkage studies has suggested that there may be multiple predisposing
genes for IS [19-22]. With complex syndromes such as IS, different polymorphisms in the
same gene or in different genes within the same molecular pathway could cause observed
phenotypic variability [23-26].

Fish share most developmental pathways, physiological mechanisms and organ systems with
humans [reviewed in 27-29]. Comparisons between human and fish genomes have identified
DNA sequences and entire gene networks that have significant functional activity in humans,
many of which are in systems implicated for human IS, suggesting some gene conservation
for genetic factors thought to be involved in the deformity (e.g. osteoblast and chondrocyte
differentiation [30], bone formation [31,32], muscle formation [33], gene regulation [34],
pineal gland (Lhx9) [35], neural development [36], somitogenesis [37], cell proliferation
[38-40], pituitary(pitx) function [41], osteoclast function [42]). These include regulation of
hormones that might be involved in idiopathic-type curvature (based on suggestions from
human studies): e.g. calmodulin and steroidogenesis [43], nutritional regulation of growth
hormone and insulin-like growth factor-1 [44], IGF-binding proteins (IGFBPSs) [45], growth
hormone-releasing hormones and receptors [46], a neuromodulatory role for nitric oxide
[47], thyroid hormones (TH) in bone remodeling [48], thyroid and muscle growth [49], the
midbrain locomotor region (MLR) and descending (reticulospinal) pathways that activate
spinal networks for rhythmic movements such as swimming in fishes, and walking and running
in humans [50,51].
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Physical evidence for shared biomechanical and/or physiological factors

Distortion of vertebrae at the apex of curvature is considered an important component of the
human phenotype that has not been observed in other animals unless it is induced. It is broadly
suggestive of an unknown physiological dysfunction involving asymmetrical loading (the
details of which are a subject of speculation) the spine during growth that directly affects the
vertebral body growth plates, so that longitudinal growth of a vertebral body is modified
[reviewed in 52]. Because the non-induced phenotype is (without consideration of teleosts)
exclusively human, it has generated many hypotheses that are difficult to test [reviewed in
53]. Symptomatic distortion of apical vertebrae may provide valuable perspective regarding
the interaction between a molecular phenotype on the level of the vertebrae and biomechanics.
Therefore, study of vertebral distortion has involved simulation of the phenotype by bracing
in rat and cow tails or tethering in goats or rabbits [54-58]. Importantly, the question of to what
extent curvature is due to altered biomechanics and growth and how much is due to a more
primary etiology cannot be answered only using physical simulations in induced models.

In both humans and guppies primary loading on the spine is along the cranial-caudal axis. In
simplified terms, normal loading on human vertebrae is from the weight of the head and gravity
coupled with the loading associated with bipedalism (i.e. standing and walking); in guppies,
from swimming through the dense medium of water coupled with the force associated with the
tail-beat motion. In guppies, non-induced distortion of apical vertebrae is similar to that
observed in human IS, in which vertebral bodies are compressed on the concave side of a curve
[16,59-61]. An important question in both the curveback and human phenotypes is whether
the vertebral bodies are compromised so that they are less capable of handling normal cranio-
caudal loading (i.e., failure of mechanotransdution), or if the vertebral bodies are normal, but
there is excessive/pathological force on the vertebrae sufficient to cause distortion (i.e.,
dysfunctional growth). There are hypotheses to support the idea that the predisposing defect
may involve vertebral bodies [62-65], and also there are hypotheses to support that there may
be excessive force on the vertebrae from growth related dysfunctions [66-68].

Consequences of hypothesis

One of the main insights of the curveback model is that idiopathic-type scoliosis is not exclusive
to bipedalism. We hope that such a consideration will provoke new ideas regarding which
components of the syndrome are primary or initiating, and which are secondary (complicating,
or risk factors associated with the propensity for curve progression), and how these factors
might interact. Human and guppy biomechanical similarities might elucidate essential
components of idiopathic-type curvature, and differences between the two animals may offer
the opportunity to specify which aspects of IS are indeed exclusive to humans.

Comparative studies of guppy and human physiology and curve phenotypes might direct
hypotheses regarding how biomechanics can interact with intrinsic aspects of curve etiology
(i.e. genetic and molecular aspects) and/or progression (i.e. growth related aspects).
Hypotheses regarding the relative contribution of factors such as tallness/length [69-73], dorsal
shear force [1], pelvic association [74-76], or posture [77-81] can be critically evaluated by
comparison to the anatomy of curveback.

With complex human syndromes that involve interactions among genetic, physiological, and
environmental forces, a successful experimental approach is to first identify genes and
molecular pathways in amodel animal with a similar phenotype [82-85], and we have presented
one for IS, the guppy curveback. Once genes involved in the etiology of curveback are
identified, we can determine whether mutations in these genes are correlated to the human IS
phenotype. An important question that then can be answered is whether the genetic
predisposition to idiopathic-type curvature is common to all vertebrates but not expressed in
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quadrupeds because of biomechanical constraints, or if unique mutations in the human lineage
have lead to this prevalent syndrome.
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Figure 1. Example of curveback phenotype

A and B: Sagittal profile of a normal (A), and curved (B) adult female curveback guppy. C:
Coronal profile of the same female as shown in B. Photos taken on euthanized fish with digital
camera (Kodak Easyshare Z612) under 3X magnification on a light table (scale shown in mm).
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