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Samuels5,6, Marie-Pierre Dubé4,5
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Medicine, Université de Montréal, Montreal, Quebec, Canada, 6 Centre de Recherche du CHU Ste-Justine, Montreal, Quebec, Canada

Abstract

Background: In families segregating a monogenic genetic disorder with a single disease gene introduction, patients share a
mutation-carrying chromosomal interval with identity-by-descent (IBD). Such a shared chromosomal interval or haplotype,
surrounding the actual pathogenic mutation, is typically detected and defined by multipoint linkage and phased haplotype
analysis using microsatellite or SNP genotype data. High-density SNP genotype data presents a computational challenge for
conventional genetic analyses. A novel non-parametric method termed Homozygosity Haplotype (HH) was recently
proposed for the genome-wide search of the autosomal segments shared among patients using high density SNP genotype
data.

Methodology/Principal Findings: The applicability and the effectiveness of HH in identifying the potential linkage of
disease causative gene with high-density SNP genotype data were studied with a series of monogenic disorders ascertained
in eastern Canadian populations. The HH approach was validated using the genotypes of patients from a family affected
with a rare autosomal dominant disease Schnyder crystalline corneal dystrophy. HH accurately detected the ,1 Mb
genomic interval encompassing the causative gene UBIAD1 using the genotypes of only four affected subjects. The
successful application of HH to identify the potential linkage for a family with pericentral retinal disorder indicates that HH
can be applied to perform family-based association analysis by treating affected and unaffected family members as cases
and controls respectively. A new strategy for the genome-wide screening of known causative genes or loci with HH was
proposed, as shown the applications to a myoclonus dystonia and a renal failure cohort.

Conclusions/Significance: Our study of the HH approach demonstrates that HH is very efficient and effective in identifying
potential disease linked region. HH has the potential to be used as an efficient alternative approach to sequencing or
microsatellite-based fine mapping for screening the known causative genes in genetic disease study.
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Introduction

SNP genotyping technology is developing very rapidly. Phase II

of the International HapMap Project has characterized over 3.1

million single nucleotide polymorphisms (SNPs) with the resulting

SNP density of approximately one per kilobase [1]. High-density

SNP genotyping has gradually become a dominant data source in

molecular genetic and clinical laboratories. Illumina Infinium

Human1M-Duo and Human610-Quad Beadchips and Affymetrix

6.0 GeneChips are currently amongst the most advanced

genotyping platforms. The rapid advances in high-throughput

genotyping technologies require efficient methods which can fully

employ the profound information provided by the high-density

SNP genotype data.

High-density SNP genotype data presents a computational

challenge for genetic analyses. Disease gene mapping methods,

including linkage, haplotyping and association studies, identify

candidate regions containing a disease susceptibility gene by

exploiting the cosegregation of the disease phenotype and markers

in cases as well as the difference of allele sharing between cases and

controls. The determination of haplotype sharing may represent

the future direction of linkage analysis due to its better adaptation

to high-density SNP genotype data [2]. Tools that can make

efficient use of the profound information from high density SNP

genotype become increasingly important.

It is currently still difficult to obtain haplotype information

on a genome wide basis for high-density SNP genotype data

from either a general pedigree or a population. Performance of

haplotype inference methods in a general pedigree relies on

whether enough informative individuals have been genotyped.

Inference of haplotypes from a diploid population is a NP-hard

problem [3]. Many methods have been developed to recon-
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struct haplotypes, including parsimony approaches [3,4],

maximum-likelihood methods [5–8], phylogeny-based ap-

proaches [9,10], and other statistical methods [11,12]. Such

algorithms have been implemented in widely used linkage

packages including Vitesse [13], GeneHunter [14] and Sim-

walk2 [15]. However, for very large pedigrees combined with

large marker genotype data sets, analytical approaches quickly

become computationally intractable, and even sampling

methods such as Simwalk2 are computationally slow and

hardware-intensive. Thus the utility of likelihood based

approaches is still limited.

The non-parametric Homozygosity Haplotype (HH) method

(HH is not homozygosity mapping employed to search for

segments inherited homozygous by descent in inbred recessive

pedigrees) was proposed by Miyazawa et al. [16] recently for a

genome-wide search of shared autosomal segments with high

density SNP genotype data for families or genetically isolated

populations. Rather than formally phasing haplotypes, the HH

approach utilizes a reduced haplotype described by the

homozygous SNPs only. Homozygosity haplotype is easily

obtained by removing all heterozygous SNPs from a sample

data set. The reduced haplotype of each chromosome is then

uniquely phased by the string of the remaining homozygous

SNPs. For patients who inherited the same mutation from a

common ancestor, they share a chromosomal segment identical

by descent (IBD) around the disease susceptibility gene. For

both autosomal dominant and recessive inheritance, patients

should not have discordant homozygous calls in the IBD. In

HH, they share the homozygosity haplotype in the IBD interval.

An IBD segment is denoted as a region from a common

ancestor (RCA) in the HH approach. RCA is identified by

comparing the homozygosity haplotypes among patients. The

conventional haplotype analysis of phasing diploid alleles into

haploid alleles is greatly simplified by the idea of homozygosity

haplotype, which allows the HH program to perform genome-

wide analyses in minutes. However, the practical performance

and utility of the HH method have not been extensively

examined.

In this study, the applicability and the effectiveness of the HH

approach in localizing causative genes are presented and discussed

for a series of monogenetic disease projects with high-density SNP

genotype data. A large Canadian family with Schnyder crystalline

corneal dystrophy (SCCD, MIM 121800) for which the disease

susceptibility gene was discovered recently [17–19], was used to

validate the HH approach. We further tested the HH method for

identifying potential linkage to known genes in novel families or

cohorts. When a genetic disease is diagnosed, screening known

causative genes is an important procedure to provide further

clinical service. As one often finds when searching a phenotype in

the Online Mendelian Inheritance in Man (OMIM) database [20],

a disease phenotype is often linked to multiple genes or loci.

Sequencing and analyzing known genes is still time-consuming,

especially when the detected variants have not been published

before. Microsatellite genotyping is often used to detect linkage of

known loci. Genotyping with microsatellites are more labor

intensive and require more detailed analysis in calling the

genotypes. Assuming that patients who have inherited a

susceptibility gene from a common ancestor also share a haplotype

in the genomic interval, the HH approach can be applied to screen

the known causative genes or loci by searching for the shared

homozygosity haplotype. We show that HH mapping correctly

identifies the causal locus for a retinal degenerative disorder, and

excludes linkage to known genes for a cohort with a novel renal

failure phenotype.

Results

Validation of HH using a large family with SCCD
Schnyder crystalline corneal dystrophy (SCCD, MIM 121800)

is a rare autosomal dominant disease characterized by progressive

opacification of the cornea resulting from the local accumulation

of lipids, and associated in some cases with systemic dyslipidemia.

A large multigenerational family (Fig. 1) in Nova Scotia was

ascertained with SCCD. Previously published genetic analyses in

other families suggested linkage of SCCD to an interval on

chromosome 1. Intensive microsatellite fine mapping on 37

informative members of our family confirmed linkage to this

interval, refining it to 1.3 Mbp. The underlying causative gene,

UBIAD1, was identified by sequencing genes of the interval [17].

We utilized the SCCD family to test whether the HH algorithm

could correctly identify the causal locus.

Samples from 10 affected individuals were genotyped with

Illumina HumanHap550 chips. The HH program was first run

with the genotypes of all 10 patients with a cutoff value of 3.0 cM,

which is the recommended cutoff of HH approach [16]. Within

one minute, HH analysis identified a single RCHH (Region with

conserved HH) on chr1: 10,686,402–11,639,887 bp with a total of

175 informative SNPs and an interval size of 953,486 bp (Fig. 2a).

This chromosomal region correctly includes the causative gene

UBIAD1. The defined interval is smaller than the 1.3 Mbp

interval identified previously by fine mapping with customized

microsatellites [17], or the 2.32 Mbp region reported by

Theendakara et al. [21], indicating superior resolution of the

dense SNP marker panel in this instance.

We next sought to determine whether it was necessary to

include all 10 patients in order to identify the correct locus in this

pedigree. According to equation (1), the ratio of RCA shared by

patients decreases with the number of generations removed from

their common ancestor. Therefore, samples from the youngest

generation of different family branches should be more informa-

tive in general. By selecting samples according to this rule, subject

1351 and 1425 (m+n = 10) were selected first, and the HH analysis

result is shown in Figure 2(b). Patients 1351 and 1425 shared a few

other large RCHHs in addition to the largest interval at chr1:

3,539,057–11,973,221 with a size of 8.4 Mbp. Thus two affected

subjects were insufficient to determine a unique genomic location

of the causal locus. By next adding most distantly related

individual, 1438, only two RCHHs were left (Figure 2(c)), and

the largest RCHH on chromosome 1 decreased to 0.9 Mbp. The

second, incorrect RCHH on chromosome 17 could be excluded

by adding any one genotype of other affected individuals. As

shown in Figure 2(d), the only RCHH shared by the four

individuals 1351, 1425, 1438, and 1349 is the same interval as the

one identified using 10 samples. This study of sample subsets

demonstrates that the optimal genotype data set for HH analysis

should be those from the youngest generation or otherwise most

distantly related affected individuals in a pedigree.

Application of HH to identify the disease linked region
for a family with retinal degeneration

Although affected individuals are the most informative for non-

parametric analysis, the statistical functions of HH (see equa-

tion (2) and (3)), which were developed to study multigene diseases

using genotypes of both patients and controls, can be extended to

include unaffected family members. This is similar in spirit to a

family-based association approaches [22–24]. In general, the test

statistics for association analysis may be regarded as a test for the

presence of a difference in allele frequency between cases and

HH and Genetic Mapping
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controls. The HH algorithm can be adapted to treat affected and

unaffected members of a family as cases and controls respectively.

We ascertained a large Canadian family with a specific

pericentral retinal disorder (PRD) (Fig. 3). Thirty-four family

members were genotyped with the Illumina HapMap300

beadchip with a total of 318,237 SNPs. We first performed HH

analysis using genotypes of eight definitively affected family

members only, with a pairwise cutoff value of 3.0 cM to search

the candidate RCHHs. As shown in Fig. 4a, the affected-only

analysis identified two large RCHH regions. One was on

chromosome 3 at 128–134 Mbp, the other on chromosome 6 at

151–161 Mbp. We then performed the HH statistical analysis

using both the patient pool and the control pool (Fig. 4b). Of the

two RCHH regions previously defined by affecteds only, the

physically larger region on chromosome 6 lost significance.

Whereas the region at chr3: 128,295,267–133,701,313 became

the most significant candidate locus with the largest 2log10
P value

of 3.35. The region was confirmed later by the whole genome scan

results of two point and multipoint linkage analyses. Two point

linkage analysis was carried out using the MLINK routine of

FASTLINK v4.1P [25,26] with a dominant transmission model:

Penetrance of 0.95, phenocopy of 0.001, and the disease allele

frequency of 0.001. Two point linkage identified 6 regions with

LOD scores .3.0 (Fig. 5a). The extended interval on chromosome

3 was the most consistent one. Multipoint linkage analysis was

carried out using SIMWALK2SNP [15,27,28] version 2.91 with

the same dominant transmission model. Tag SNPs were selected

from the 6 regions using Haploview [29] for multipoint linkage

analysis. The chromosome 3 interval was identified with the

highest LOD score 2.15 of all tested intervals (Fig. 5b). The region

encompasses the gene encoding rhodopsin. A missense mutation in

rhodopsin was detected by direct resequencing as the presumptive

causative mutation in the pedigree. These results demonstrate that

the HH approach can be effectively applied to study monogenic

traits in large families by utilizing the genotypes of both affected

and unaffected family members.

Application to the screening of known causative genes
The whole-genome screening approach was further validated

using a Canadian family ascertained with myoclonus dystonia

(MIM 159900). Three causative genes are known for this genetic

condition: SGCE [30], DRD2 [31], and DYT1 [32]. Direct

sequencing concurrent with our analysis identified a null mutation

in the SGCE gene in affecteds from this family. We tested whether

the HH approach could exclude non-causative genes correctly.

Four patients from the family were genotyped with the Illumina

HumanHap550 beadchips. HH was run first to identify RCHHs

shared among the four patients with a cutoff of 3.0 cM. The

RCHHs are given in Table 1, and the genome-wide mapping of

RCHHs is shown in Fig. 6. The largest RCHH at

chr7:93,168,493–130,965,632 with size of 37 Mb includes gene

SGCE (chr7:94,052,472–94,123,457). No RCHH was found

around the DRD2 (chr11:112,785,527–112,851,211) or DYT1

(chr9:131,616,072–131,626,199) genes. The genotypes of the

genomic regions with DRD2 and DYT1 inside were further

analyzed to examine the effect of genotyping errors on their

exclusion. The genotyping error simulation method (see Methods)

was applied to calculate the reliability of genotype data, the results

are shown in Table 2. The discordant homozygous SNPs (dhSNPs)

of the original genotypes in the regions were permutated to

concordant SNPs. MC simulation was run 10,000 times on the

transformed genotype data with both error model 1 and 2 and a

high error ratio of 0.01. The distributions of the number of

dhSNPs produced by the simulated genotyping errors were then

Figure 1. Pedigree of a family with Schnyder crystalline corneal dystrophy. Genotyped subjects are 1351, 1349, 1429, 1438, 1455, 1425,
1421, 1440, 1448, and 1437.
doi:10.1371/journal.pone.0005280.g001
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Figure 2. Identification of the candidate regions for the family with Schnyder crystalline corneal dystrophy using HH approach. (a)
RCHHs shared by 10 patients. The RCHH intervals are shown in black. Other autosomal regions are shown in grey as background. (b) RCHHs shared by
1351 and 1425. (c) RCHHs shared by 1351, 1425, and 1438. (d) RCHH shared by 1351, 1425, 1438, and 1349.
doi:10.1371/journal.pone.0005280.g002
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fitted with a Poisson distribution (as the example shown in Fig. 7).

Based on the obtained distribution, the P values are all

approximately 0. The simulation results suggest that the dhSNPs

in the original genotype used to define RCHH are reliable.

Consequently, the DRD2 and DYT1 genes were excluded with

high confidence. Thus the HH approach correctly interpreted

unlinked candidate genes, and identified the potential linkage of

SGCE in the meanwhile.

The selection of the cutoff value and samples is critical in

employing the HH method. We used a family we ascertained with

generalized renal failure as an example to illustrate the selection

procedure. Four patients S1, S2, S3, and S4 from the family (Fig. 8)

were genotyped with Illumina HumanHap550k beadchips. We

tested for linkage of the family to either of two known causative

genes for related renal conditions: PKD1 (chr16:2,078,712–

2,125,900) and PKD2 (chr4: 89,147,844–89,217,952). HH

analyses of the four affected samples taken together showed they

do not share RCHH covering the two genes.

The genotyping error simulation method was applied to study

the error possibilities using 550k genotype data of two affected

subject s1 and s4. The Monte Carlo simulation of genotyping error

was run 10,000 times for each test. As shown in Table 3, the P

values are all lower than 0.001. As a consequence, PKD1 and

PKD2 could be confidently excluded as causal for the phenotype

in this family, which is now undergoing further mapping to

identify a linked causal locus. To demonstrate the selection of

cutoff value and samples, the results of HH analyses with different

subsets of the four genotyped subjects and different RCHH cutoff

values are shown in Table 4. PKD1 and PKD2 could not be

excluded when using closely related sample subsets, e.g. S1-S2

(m = 1, n = 1), or S2-S3 (m = 2, n = 2). However, all subsets with

more distantly related patients, including S2-S4 (m = 3, n = 3) and

S3-S4 (m = 3, n = 3), were successful in ruling out the PKD1 and

PKD2 genes as compared to the full analysis using all four

samples. The results show that the selection of more distantly

related samples would give a higher success rate for the screening

of known causative genes. In addition, the performance of

screening can be improved by adding more genotype data of

affected individuals. For cutoff value selection, the HH analyses

with a small cutoff of 1.0 cM were not able to exclude PKD1 and

PKD2 when the patients were more closely related, e.g. subset S1-

S2, S2-S3 and S1-S3. For the two descendants / patients from a

family with 2#m+n#6, a condition suitable for a general family, a

cutoff of 2.0 cM is recommended for the screening of known

causative genes because the ratio of type II errors in identifying

candidate region to the total length of the RCAs is lower than 0.01

[16]. When the subjects are too closely related, e.g. an affected sib

pair with m+n = 2, it is suggested to genotype more affected

individuals.

Impact of SNP genotyping errors on HH analysis
As other statistical genetics methods, the accuracy of HH

approach is also affected by genotyping errors. Genotype errors

may impact HH results in two ways. Genotype errors may break

down a large RCHH to a few smaller RCHHs or intervals, and

make the RCHH undetectable if the intervals are smaller than the

cutoff value. Second, genotype errors may create a false RCHH.

An interval with discordant homozygous SNPs can be identified as

a false RCHH if all the discordant SNPs are changed to

concordant SNPs by genotyping errors.

For the first possible impact, a genotype error must change a

non-dhSNP (either a non-comparable SNP or a matched

comparable SNP) to a dhSNP (a mismatched comparable SNP).

For a non-dhSNP, when at least one sample is homozygous for the

SNP, there is a half chance to cause an error if an AB call was

changed to AA or BB. Whereas the change of a homozygous call

AA or BB to AB has no effect, the changing to the opposite

homozygous call will cause an error only if other homozygous calls

of the tested samples are also present. Given an error ratio E, the

chance of generating a false dhSNP by genotype error is #E/2.

For the second potential impact, genotype errors may create a

false RCHH by changing all dhSNPs of an interval to non-

dhSNPs. Given an error ratio of E, an interval with total NdhsNP of

dhSNPs for two samples, the chance of creating a false RCHH

by genotype errors is ENdhSNP . The possibility would be lower when

using multiple samples because either all AA or all BB calls should

be changed by genotyping error. The possibility of generating false

RCHH by genotype errors is apparently very low. Therefore, the

major impact of genotype errors on HH analysis is to break down

a large RCHH.

Discussion

In this study, we investigated the applicability and the

effectiveness of HH in identifying genetic disease genes with a

series of monogenetic disorders ascertained in eastern Canadian

populations. We applied HH to identify the known locus using the

genotypes of 10 affected subjects of a family with a rare dominant

eye disease SCCD. HH analysis successfully detected the 1 Mb

shared segment of the affected members with a minimum of four

Figure 3. The pedigree of a family with a progressive retinal degenerative disorder. Genotyped individuals are indicated with red circles
(affected) and blue circles (unaffected).
doi:10.1371/journal.pone.0005280.g003
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samples. This study of sample subsets also demonstrates that the

optimal genotype data set for HH analysis should be those from

the youngest generation or otherwise most distantly related

affected individuals in a pedigree. This suggests that important

upstream efficiencies can be realized in the clinical phase of

genetic studies by the adoption of a sparse recruitment strategy

focused on the most informative individuals. We also explored the

applicability of HH to the family based case and control study.

Thirty-four family members from a large Canadian family with a

specific retinal disorder PRD were genotyped with the Illumina

HapMap300 beadchip. With 13 affected samples in the patient

pool and 19 samples in the control pool, HH identified an RCHH

on chr3 with the lowest P value. The interval was confirmed by the

two point and multipoint linkage analyses, and for which the

causative mutation was found by direct resequencing. Clearly the

HH approach can be effectively applied to study monogenic traits

in large families by utilizing the genotypes of both affected and

unaffected family members. HH can also be applied to test known

causative genes or loci quickly for potential linkage. The whole-

genome screening approach was further validated using a

Canadian family ascertained with myoclonus dystonia and a renal

failure cohort. HH correctly detected the potential linkage of

myoclonus dystonia, and excluded the known causative genes for

the renal failure cohort. These applications demonstrate that HH

is an efficient and reliable tool in identifying the potential linkage

for monogenic diseases. In addition, the successful application of

HH to our projects indicates that HH is well suited for founder

populations like those in Atlantic Canada. The population is

Figure 4. Using HH method to identify the candidate regions with both cases and controls for the family with progressive retinal
degenerative disorders. (a) RCHH mapping using the 300K SNP genotypes of eight affected individuals 312, 317, 318, 326, 329, 335, 349, and 360.
The RCHH intervals are shown in black. Other parts of autosomes are shown in grey as background. (b) Densitogram of 2log10

(P) value for the
representative RCHHs shared by patients with the unaffected individuals as controls. The darker the color, the more significant the RCHH is. HH
analysis was run using affected family members as cases, unaffected family members as controls. The subjects used to build the patient pool were
312, 317, 318, 326, 329, 334, 335, 342, 348, 349, 358, 359, and 360, in which 334 and 358 were subsequently re-diagnosed as suspicious unaffected.
Samples in control pool were 276, 277, 309, 310, 314, 315, 328, 330, 331, 332, 333, 336, 344, 352, 353, 355, 356, 357, and 362.
doi:10.1371/journal.pone.0005280.g004
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Figure 5. Linkage analysis results for the family with progressive retinal degenerative disorders. (a) Whole genome scan 2-point linkage
result. (b) Multipoint linkage result on chromosome 3.
doi:10.1371/journal.pone.0005280.g005

HH and Genetic Mapping

PLoS ONE | www.plosone.org 7 April 2009 | Volume 4 | Issue 4 | e5280



considered a geographically isolated population derived from

thousands of ancestors with m = n = 20.

The HH approach is very efficient and easy to implement. In

comparison to other linkage analysis programs, the most

significant advantage of HH is its high computational efficiency.

The time complexity of HH algorithm is O(n2). It was reported that

the calculation for a family with Marfan syndrome that contains

nine subjects is completed in 6 s on a laptop, and another analysis

composed of two pools containing 45 subjects each took 5 min

[16]. All the HH analyses performed in this study were finished in

less than one minute on a computer station with Intel Xeon

3.2 GHz processor. HH analysis can be run on personal

computers. Additionally, HH is easy to implement and use. HH

can be run on Mac with graphical user interface. Most of the work

in implementation involves generating the proper input genotype

data format and the annotation file for a particular SNP chip. HH

is a non-parametric method. Hence there is no need to specify a

complete genetic model. When HH is applied to study a large

family affected with a genetic disease, it is usually not necessary to

genotype many family members because more distantly related

subjects are theoretically more informative in HH analysis. One

may start by genotyping several affected subjects from the

youngest generation, subsequently narrowing the RCHH down

by adding more subjects to the analysis as required.

One feature of the HH method that can be improved is the

usage of cutoff value. In our applications, we found it difficult to

determine an optimal cutoff value. A cutoff value of 3.0 cM was

used by the Miyazawa et al. [16]. In general, there is a tradeoff

between the size of the cutoff value and the ability to correctly

define a single truly linked locus. Miyazawa et al. [16] have

discussed extensively the relationship of cutoff values and the

type I and type II errors in identifying candidate regions. The

average genetic length of the RCAs decreases over generations.

Therefore, more distantly related subjects tend to share smaller

RCA and a smaller cutoff should be used. One possible solution is

running the analyses by gradually reducing the cutoff value until

an RCHH appears. Sometimes a cutoff value 3.0 cM will not

identify any RCHH. On the other hand, the results obtained

using a smaller cuttoff value of 1.0 cM can have many

undistinguishable false positives. The problem can be partly

solved if a significant RCHH can be identified by adding

unaffected subjects as controls. In case no controls can be used, it

is an issue if there are multiple RCHHs without significant

differences in size.

In this study, we analyzed the impact of genotype errors on HH

analysis. The major impact of genotype errors on HH analysis is

breaking down a large RCHH. Several approaches may be useful

to reduce the impact of genotype errors. Miyazawa et al. [16] used

Table 1. List of RCHHs shared by the four patients from a Canadian family ascertained with myoclonus dystonia.

SNPs Chromsome Start(SNP) Start(bp) End(SNP) End(bp) Size(bp)

6193 7 rs10243929 93,168,493 rs929731 130,965,632 37,797,140

5156 15 rs12443212 31,309,577 rs11855284 56,476,479 25,166,903

4987 6 rs6914928 95,181,973 rs9398707 123,268,276 28,086,304

3814 1 rs17095322 74,676,941 rs957334 94,801,569 20,124,629

3041 17 rs17644943 62,338,082 rs1622986 75,438,157 13,100,076

2677 4 rs1910739 52,378,364 rs17652284 68,905,652 16,527,289

2534 1 rs12095738 165,746,611 rs2609473 179,602,130 13,855,520

2063 4 rs2911902 37,467,034 rs1051447 48,758,629 11,291,596

1977 11 rs11024074 16,873,795 rs4465366 24,639,693 7,765,899

1915 6 rs7753334 10,403,729 rs214582 18,324,763 7,921,035

1668 2 rs7576924 56,355,325 rs3919602 65,890,044 9,534,720

1234 14 rs4900132 92,029,991 rs8019939 95,934,062 3,904,072

1044 4 rs1878519 8,161,682 rs7688193 13,344,993 5,183,312

962 1 rs2995381 239,115,984 rs6656693 243,402,266 4,286,283

916 7 rs160346 28,532,166 rs917749 31,761,680 3,229,515

786 1 rs10925300 235,283,523 rs1982530 238,365,440 3,081,918

738 1 rs2051086 49,877,788 rs1469344 55,158,755 5,280,968

708 4 rs4694317 71,386,025 rs4859537 76,745,685 5,359,661

668 6 rs10945617 159,872,422 rs1790004 162,302,229 2,429,808

546 6 rs2148943 20,254,160 rs1047953 22,294,843 2,040,684

359 1 rs3767514 199,383,756 rs2741853 200,672,294 1,288,539

346 3 rs11131140 8,650,778 rs2479 9,883,525 1,232,748

327 10 rs11017516 132,538,433 rs7084312 133,703,278 1,164,846

235 20 rs1892318 59,421,464 rs6089695 60,241,421 819,958

204 21 rs914238 45,840,089 rs9979962 46,792,735 952,647

180 18 rs6506336 5,833,069 rs11873891 6,495,597 662,529

62 6 rs1891086 22,330,108 rs4560628 22,559,799 229,692

doi:10.1371/journal.pone.0005280.t001
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a confidence value cutoff to exclude genotype calls with low

confidence. Checking Mendelian inconsistencies can remove some

of the errors if the genotyped samples are suitable for running a

Mendelian test. However, 100% of errors can not be excluded.

Hao et al. [33] studied the genotype errors of GeneChip Mapping

10k array, and found that the average genotyping error rate of this

SNP genotyping technology was about 0.1%. Illumina reported

that the rate of Mendelian inconsistencies of Illumina Human-

Hap550 beadchip is 0.06% [34]. Genotyping errors may or may

not cause Mendelian inheritance incompatibilities, SNP genotyp-

ing error-detection rates have been studied using trio designs, and

it has been estimated that Mendelian incompability errors in

theory may detect no more than 61% of all possible errors [35,36].

The difference between the true and the estimated error rates is

mainly due to errors that are ‘Mendelian compatible’ [37]. As a

consequence, it is estimated that the average genotyping error rate

of the 550k SNP genotyping is close to 0.1%. But the actual error

rate usually varies for different batch of data. The error simulation

method presented in this study, in which a high error ratio of 1.0%

was selected to simulate the effect of potential genotyping errors

under the worst situation for the purpose of screening known

genes, could be an alternative solution.

Conclusions
Our study of the HH approach with Illumina high-density SNP

genotype data from a series of Atlantic Canadian monogenetic

disease projects demonstrates that HH is very efficient and

effective in identifying disease linked and unlinked regions. The

method can be used as an efficient alternative approach to

sequencing or microsatellite-based fine mapping for the research

and clinical diagnosis of genetic diseases.

Methods

Important concepts of HH method
HH. An HH is a haplotype described by only homozygous

SNPs. It is obtained by deleting heterozygous SNPs. Then, the

haplotype of each chromosome is uniquely determined by the

combination of the allelic type in each homozygous genotype.

Comparable SNP. A comparable SNP is a SNP that is

homozygous in two subjects. HH can be compared between two

subjects using the comparable SNPs. The mismatched comparable

SNP has discordant homozygous SNP genotypes in two subjects,

one is AA and the other is BB. We used dhSNP (discordant

homozygous SNP) to represent the mismatched comparable SNP.

Figure 6. Screening of the three known causative genes DRD2, DYT1, and SGCE for a Canadian family with myoclonus dystonia
using HH approach and the genotypes of four patients.
doi:10.1371/journal.pone.0005280.g006

Table 2. The error possibilities calculated using genotyping error simulation method in the screening of the known causative
genes for a family with myoclonus dystonia with the genotype data of four affected individuals.

Gene Region NSNP NdhSNP
Error Model1 Error Model2

E = 0.01 t = 0.005

DRD2 Chr11:111,851,211–113,785,527 493 77 l= 8.98 l= 4.24

P = 0 P = 0

DYT1 Chr9:130,626,199–132,616,072 480 72 l= 8.76 l= 5.05

P = 0 P = 0

doi:10.1371/journal.pone.0005280.t002
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Region with conserved HH (RCHH). RCHH is a run of

matched comparable SNPs with genetic length longer than a

cutoff value. A RCHH is bounded by either dhSNPs or by the

ends of the chromosome. HH approach searches RCHHs between

each pair of subjects. The overlapped RCHH shared by multiple

subjects is used to predict the presence of region of conserved

ancestry (RCA) or identity by descent (IBD).

RCA sharing. For the two descendants with m and n

generations removed from a common ancestor, the ratio of the

total genetic length of the derived RCA to the entire length of the

autosomes is denoted as RCA(m,n), which can be calculated with

RCA m,n : m§nð Þ~
2{mz1

3=4

2{m{nz2

m§1, n~0

m~1, n~1

otherwise

8><
>:

9>=
>; ð1Þ

Statistics in using patient and control pools. The HH

program also has a statistical method developed to identify

candidate regions for multigene diseases in genetically isolated

populations by comparing the shared RCHHs between the

patient pool and the control pool [16]. In the algorithm, an

autosomal interval is firstly divided into minute regions. The

RCHH shared by the largest number of patients in the patient

pool is then selected as the representative RCHH for each small

region. After that, the numbers of subjects who share the

representative RCHH were counted for both the patient pool

and the control pool. Finally, the significance of each

representative RCHH is calculated. The numbers of subjects

who share an RCHH at a given position on an autosome were

compared between the patient pool and the control pool. The

assumption was made that

u0 ~
P�1{P�2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P̂P� 1{P̂P�
� �

1
n1

z 1
n2

� �r ð2Þ

has a standard normal distribution, where P̂P�1 ~
x1 z 0:5

n1z1
,

P̂P�2 ~
x2 z 0:5

n2z1
, P̂P� ~

x1 z x2z 0:5

n1 z n2 z 1
, x1 and x2 are the

numbers of subjects sharing RCHHs in the patient pool and

the control pool, respectively, and n1 and n2 are the total numbers

of subjects in the patient pool and the control pool, respectively.

The significance of each representative RCHH is expressed with

the P value, which is calculated by

P ~

ð?
u0

1ffiffiffiffiffiffi
2p
p e{x2

2 dx ð3Þ

Figure 8. Pedigree of a family with renal failure.
doi:10.1371/journal.pone.0005280.g008

Figure 7. Histogram distribution of the dhSNPs introduced by
genotyping error. Error simulation was performed on the genotype
data of Myoclonus dystonia patients in region Chr11:111,851,211–
113,785,527 including DRD2 gene. The curve is the fitted Poisson
distribution curve with l= 8.98 (s= 0.03). Genotyping error was
simulated using error model 1 with an error ratio 0.01. Monte Carlo
error simulation was run 10,000 times.
doi:10.1371/journal.pone.0005280.g007
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Genotyping
Samples were genotyped with the Illumina HumanHap300K or

HumanHap550K SNP genotyping beadchips. The Illumina

HumanHap300 chip has a total of 318,237 SNPs, and the

HumanHap550K genotype has a total of 561,466 SNPs.

Genotype data of subjects were transformed to the input format

of HH program.

Implementation of HH
The source code of HH program [16] was obtained from the

author. The source code was modified to customize the output

format of the RCHH list. The revised C source code of the HH

program was compiled with GNU compiler on a Linux-based

operating system Fedora. The parameter LARGEGAP defined in

the header file, which is used to define large gaps like centromere,

was changed from the default value of 300,000 bp to 400,000 bp

to accommodate some non-centromere spaces between two

consecutive SNPs. The SNP annotation file provided by HH

software is for the Affymetrix 500K GeneChips Human Mapping

Array Set. Annotations of SNPs include fields of SNP name,

physical coordinates, genetic distances, and minor allele frequen-

cies. The annotation files for Illumina HumanHap300K and

HumanHap550K SNP genotype were created according to the

requirement of the HH program with the SNP annotations

downloaded from Illumina technical support ftp site. The genetic

distances of SNPs with empty value, inconsistent value, or zero

were interpolated according to the physical coordinates of their

flanking SNPs. The SNP annotations for CEU population were

used in this study.

Method of genotyping error simulation for the screening
of known causative genes

Genotyping Error Model. Two commonly used error

models were implemented. Genotyping error was introduced

randomly in the SNP genotypes of each individual with a given

error rate.

Model 1. The model was first introduced by Lincoln and

Lander [38], which is widely used [39–41]. The model assumes a

uniform distribution of errors over the available genotypes at a locus.

For SNP genotype, the penetrance function of genotyping error is

P ojGð Þ~
1{E,

E=2,

o~G

o=G

� �

In which, o is the observed genotype of a SNP, G is the underlying

genotype, the genotype error rate is e. The error rate is the same for

all possible underlying genotypes.

Model 2. This model uses mean error rate per allele to

quantify genotype errors [33,35,37]. In the random error model, it

is assumed that the average probability of misclassifying allele A or

B to B or A is equal, which can be denoted as

P A Bjð Þ~ P B Ajð Þ~ t:

In which, t is the allelotyping error rate. Thus, the penetrance of

error genotype follows

P AB AAjð Þ~ P AB BBjð Þ~ 2t { 2t2,

P AA ABjð Þ~ P BB ABjð Þ~ t { t2,

and

P AA BBjð Þ~ P BB AAjð Þ~ t2:

t can be approximated to E/2 when t is small [33].

Table 3. The error possibilities calculated using genotyping error simulation method in screening known causative genes PKD1
and PKD2 for a family with renal failure with the genotype data of patient s1 and s4.

Gene Region NSNP NdhSNP
Error Model1 Error Model2

E = 0.01 t = 0.005

PKD1 Chr16:1,125,900–3,078,712 277 9 l= 1.72 l= 0.79

P = 7.73e–5 P = 1.60e–7

PKD2 Chr4:88,217,952–90,147,844 388 15 l= 2.47 l= 0.98

P = 5.81e–8 P = 2.17e–13

doi:10.1371/journal.pone.0005280.t003

Table 4. The effect of using subsets of the affected
individuals (s1, s2, s3 and s4) and different cutoff values in the
screening of the known causative genes PKD1 and PKD2 for a
family with renal failure.

Samples Cutoff 1.0 cM Cutoff 2.0 cM Cutoff 3.0 cM

PKD1 PKD2 PKD1 PKD2 PKD1 PKD2

s1, s2; m = 1, n = 1 2 2 + 2 + 2

s2, s3; m = 2, n = 2 2 + 2 + + +

s1, s3; m = 2, n = 2 2 2 + + + +

s1, s4; m = 3, n = 3 2 + + + + +

s2, s4; m = 3, n = 3 + + + + + +

s3, s4; m = 3, n = 3 + + + + + +

s1, s2, s3 2 + + + + +

s1, s2, s4 + + + + + +

s2, s3, s4 + + + + + +

s1, s3, s4 + + + + + +

s1, s2, s3, s4 + + + + + +

‘+’ indicates no RCHH shared by patients is found flanking the gene, and
suggests the gene is excludable; ‘2’ indicates an RCHH is found flanking the
gene. m and n are the number of generations of the two patients descended
from their common ancestor.
doi:10.1371/journal.pone.0005280.t004
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Statistics of genotyping error. An RCHH will be broken

down if genotyping errors change non-dhSNPs to dhSNPs.

Furthermore, the RCHH will not be identified if the resulted

segments are smaller than the cutoff in genetic distance. As a

result, the causative gene will be excluded mistakenly because of

the impact of genotyping error. To investigate the possibility of this

type of error, Monte Carlo (MC) simulation was used to simulate

the influence of genotyping error.

First, the genotype of all tested samples in the region with a

known causative gene was modified by replacing the dhSNPs with

non-dhSNPs; thus the modified genotypes had consistent homo-

zygosity haplotype. Given a gene/loci at chrN with start position

at P1(bp) and stop position at P2 (bp), the region with a known

gene/loci is defined as on chrN, starting at P2-1.0 Mb, and ending

at P1+1.0 Mb. Then, the MC simulation was performed on the

modified genotypes with the selected genotyping error model and

error rate. After a large number of runs of MC simulation on each

individual’s genotype, the distribution of the number of dhSNPs

created by genotyping errors was analyzed using the Poisson

distribution with the probability density function in equation (4).

The Poisson distribution is discrete, and has only a single

parameter l that is both the mean and the variance.

Pr Y ~ k ljf g~
e{llk

K !
for k ~ 0,1,2, . . . ð4Þ

The possibility of the observed dhSNPs generated by genotyping

error was calculated according to equation (5). The P value, the

possibility of getting N number of dhSNPs generated by

genotyping error in a region without dhSNPs is

Pr Y § N ljf g~ 1{
XN{1

k~0

e{llk

k!
: ð5Þ

The error simulation results, i.e. the number of dhSNPs for each

run, can be imported to R [42] to calculate the possibility of

getting N number of dhSNPs by genotyping error. If the possibility

is very low, e.g. P,0.001, that is, the dhSNPs in the region are not

likely created by genotyping error. Consequently, the genotype

and HH results are reliable.
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