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Abstract
Sand fly-parasite and sand fly-host interactions play an important role in the transmission of
leishmaniasis. Vector molecules relevant for such interactions include midgut and salivary proteins.
These potential targets for interruption of propagation of Leishmania parasites have been poorly
characterized. Transcriptomic analysis has proven to be an effective tool for identification of new
sand fly molecules, providing exciting new insights into vector-based control strategies against
leishmaniasis.
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1. Introduction
Leishmaniasis is a vector-borne neglected infectious disease that afflicts 88 countries with an
estimated incidence of two million new cases each year [1]. With expanding endemicity, an
estimated 350 million people at risk and 2,357,000 disability-adjusted life years lost,
leishmaniasis is becoming a worldwide re-emerging public health problem. One intriguing
aspect of leishmaniasis is the wide spectrum of distinct clinical manifestations that include
visceral, cutaneous, mucocutaneous, and diffuse cutaneous leishmaniasis.

Leishmaniasis is sustained through a triad of complex interactions between Leishmania
parasites, the sand fly, and the mammalian host. In vector sand fly species, Leishmania parasites
undergo a complex developmental cycle within the midgut that is necessary for generation of
infectious metacyclics (vector-parasite interface). In addition, the natural mode of transmission
to the mammalian host is by the bite of an infective sand fly. At the bite site, sand flies release
an array of pharmacologic, immunomodulatory, and immunogenic molecules that have
immediate and long-lasting effects on the host (the vector-host interface). The availability of
high-throughput approaches, mainly tissue-specific transcriptomes, has facilitated the
identification of pertinent vector molecules that affect the development of the Leishmania
parasite, its transmission, and its establishment in the mammalian host. This information can
lead to novel strategies for the control of leishmaniasis.
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2. Midgut
2.1. The sand fly-Leishmania molecular interface

The Phlebotomus (Old World) and Lutzomyia (New World) genera include the majority of
anthropophilic sand flies and are the most important vectors of leishmaniasis. Establishment
of a transmissible Leishmania infection within the vector sand fly occurs solely within the
lumen of the midgut. Once a sand fly feeds on an infectious host, it ingests a blood meal
containing Leishmania-infected macrophages, beginning the life cycle in the sand fly (Fig. 1).
Amastigotes are released after rupture of the macrophage and differentiate into several
developmental stages, from flagellated procyclics to infectious-stage metacyclic promastigotes
(Fig 1).

Within the sand fly midgut are numerous natural barriers to parasite development, including
resistance to digestive enzymes, escaping the peritrophic matrix (PM), and binding to the
midgut epithelium. The midgut of a sand fly is therefore a fundamental organ representing a
key target for interruption of Leishmania development and transmission. Despite the
importance of this organ, very few molecules in the midgut of sand flies have been
characterized to date.

2.2. Transcriptomics meets biology
Transcriptomics is a powerful tool for rapid identification of molecules expressed in a whole
organism or particular tissue. Dillon et al. [2] generated 10,203 transcripts using whole
Lutzomyia longipalpis sand flies that combined unfed, blood-fed, and flies infected with a
variety of pathogens including Leishmania, providing a global descriptive repertoire of sand
fly molecules. This was followed by more refined midgut-specific analysis of 2,934 transcripts
from Lu. longipalpis [3] and 1,382 transcripts from Phlebotomus papatasi [4], offering a better
characterization of midgut molecules and revealing for the first time the ability of Leishmania
parasites to modulate vector midgut transcripts.

Following is an account of molecules identified through tissue-specific transcriptomic analysis
that refine our understanding of key biologic processes within the sand fly midgut.

2.2.1. Midgut proteases—Midgut proteases facilitate blood-meal digestion and are likely
to confer some defense against ingested organisms. The presence of Leishmania promastigotes
in the midgut lumen of sand flies has been shown to inhibit proteolytic activity [5,6]. Infections
initiated with Leishmania amastigotes, a more natural mode of infection, also caused a delay
in trypsin and aminopeptidase activity [7]. Until recently, it has been unclear which specific
proteolytic enzymes are regulated by the presence of the parasite, and knowledge of the full
repertoire of sand fly midgut proteases was not available. An expressed sequence tag (EST)
library using whole flies of Lu. longipalpis identified families of proteases such as trypsins,
chymotrypsins, aminopeptidases, and carboxypeptidases [2]. Midgut-specific full-length
cDNA libraries of the sand flies P. papatasi and Lu. longipalpis combined with customized
bioinformatic analysis confirmed that these molecules are midgut proteases [3,4]. They also
identified novel trypsins, chymotrypsins, carboxypeptidases, a serine protease, and an astacin-
like metalloprotease present in the midgut of these vectors [3,4].

2.2.2. Midgut proteases modulated by blood—Comparison of unfed and blood-fed
cDNA libraries demonstrated that most of the transcripts coding for proteases are upregulated
by blood feeding, including one trypsin (PpTryp4), a chymotrypsin (Ppchym2 and
LuloChym3), and two carboxypeptidases (LuloCpepA1 and LuloCpepB) [3,4]. Conversely,
another trypsin (PpTryp1) and a chymotrypsin (LuloChym4) were downregulated by the blood
meal, indicating that not all trypsins and chymotrypsins function in the same manner.
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2.2.3. Midgut proteases modulated by Leishmania—Further comparison of blood-fed
and Leishmania-infected cDNA libraries identified midgut molecules modulated by the
presence of Leishmania parasites [3,4]. The presence of Leishmania in the sand fly midgut was
shown to decrease the abundance (possibly a result of downregulation) of a transcript coding
for a chymotrypsin molecule (Ppchym2 in P. papatasi and LuloChym1A in Lu. longipalpis)
and to increase the abundance (which may be due to upregulation) of a trypsin molecule
(PpTryp1 in P. papatasi and Lltryp2 in Lu. longipalpis) [3,4]. The presence of Leishmania also
appears to modulate the abundance of transcripts expressed after the blood meal has been
digested (5–7 days post-infection). A trypsin-like molecule Lltryp2 was more abundant, while
LuloTryp3 transcripts were decreased by the presence of Leishmania [3]. This was the first
report of the identity of the proteases specifically regulated by the presence of Leishmania
parasites.

2.2.4. Peritrophic matrix—The proliferation and differentiation of the first parasite stages
occur within the PM, a proteo-chitin structure formed to encapsulate the blood meal after
feeding. The PM offers a protected environment during the first hours following ingestion of
a blood meal, as amastigotes are susceptible to killing by digestive enzymes during their
transformation to promastigotes [8]. Promastigotes are released into the lumen of the midgut
following degradation of the PM. Schlein et al. [9] reported the absence of chitinolytic activity
in uninfected P. papatasi midguts and attributed the breakdown of the PM solely to Leishmania
chitinases. This was contested by the demonstration of an active chitinolytic system from the
midgut of blood-fed P. papatasi [10]. The identity of the sand fly chitinase was validated by
transcriptomic analysis. This will permit future studies of its effect on parasite development.
Inhibition of the activity of the sand fly chitinase may prevent degradation of the PM and escape
of the parasites into the midgut lumen. If this is the case, it may represent another attractive
target for a vector-based transmission-blocking strategy.

Similar to chitinase, it is prudent to theorize that the Leishmania parasite may influence other
sand fly molecules such as peritrophins, protein components of the PM, to ensure its escape to
the midgut lumen. Two types of peritrophin molecules have been identified in the midgut
transcriptomes of P. papatasi and Lu. longipalpis: multi-peritrophin domain proteins (PpPer1,
4 domains; PpPer3, 3 domains; and LuloPer1, 4 domains; likely necessary for crosslinking of
chitin fibrils), and single-peritrophin domain proteins (PpPer2, LuloPer2, and LuloPer3) [3,
4].

2.2.5. PM molecules modulated by Leishmania—P. papatasi infected with L. major
downregulated the multi-domain peritrophin (PpPer1), whereas Lu. longipalpis infected with
L. infantum chagasi upregulated the orthologous peritrophin (LuloPer1) [3,4]. The duality of
the PM in Leishmania colonization (early protection from enzymes and the necessity for escape
at a later time point) may provide a third target for transmission-blocking vaccines, either by
disrupting early PM formation or by preventing PM dissociation and parasite escape.

2.2.6. Epithelial-parasite attachment—Once free of the PM, the procyclic promastigotes
must adhere to the midgut epithelium to prevent its expulsion during defecation of digested
blood. The outer surface of procyclic promastigotes is covered by a dense layer of
lipophosphoglycans (LPGs), glycoconjugates with multiple functions [11]. LPG has been
shown to restrict vector competence of certain sand fly species such as P. sergenti and P.
papatasi as the ligand necessary for parasite attachment to the midgut epithelium [12–14]. A
galactose binding protein, PpGalec, was identified as a relatively abundant transcript from the
unfed midgut cDNA library of P. papatasi and was shown to be the midgut receptor for L.
major [13]. PpGalec, a tandem repeat galectin on the luminal midgut epithelium, binds
specifically to the LPG galactose residues of L. major, facilitating species-specific vector
competence [13]. Additionally, PpGalec was the first molecule identified as a vector-based
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Leishmania transmission-blocking vaccine and provided evidence that blocking parasite
binding to the midgut epithelium abrogated development of a transmissible infection [13]. A
number of putative galectin molecules were identified in whole-fly analysis of Lu.
longipalpis ESTs [2]; however, in the analysis of the Lu. longipalpis midgut-specific
transcriptome, only one low-abundance transcript was identified, which was homologous to a
single-domain galectin (GenBank: ABV60341) [3]. It is unlikely that this galectin acts as a
receptor for L. infantum chagasi in Lu. longipalpis. This sand fly species is considered a
permissive vector supporting mature infections of several different species of Leishmania
under laboratory conditions [15]. Recent work using LPG-deficient L. major parasites
demonstrated that LPG is not required for development of heavy promastigote infections in
the permissive vectors Lu. longipalpis and P. arabicus [16]. The authors hypothesized that N-
acetyl galactosamine-containing glycoproteins on the midgut epithelia of permissive vectors
are ligands to which an as-yet-unidentified parasite lectin receptor binds, allowing full
development of several different Leishmania species [16].

2.2.7. Other midgut proteins modulated by Leishmania—Transcripts coding for
microvilli protein-like molecules from Lu. longipalpis (LuloMVP1, 2, 4, and 5) and P.
papatasi (PpMVP1, PpMVP2) were downregulated in the presence of L. infantum chagasi and
L. major infections, respectively [3,4]. This could be a reflection of their importance in parasite
development. Of interest, these microvilli protein-like molecules represented the most
abundant transcripts from the midgut of these sand fly species [3,4]. These proteins are
approximately 20 kDa with a predicted signal secretory peptide, and their function remains
unknown. Other proteins of unknown function were also modulated by the presence of
Leishmania parasites. These include a protein of 29 kDa (EU124578) from the sand fly Lu.
longipalpis that was more abundant in the presence of L. infantum chagasi [3] and two proteins
from P. papatasi with a predicted molecular weight of 14.5 kDa (EU045347) and 50 kDa
(EU045345) that were less abundant in the presence of L. major parasites [4].

2.3. Vector-based transmission-blocking vaccines
The above shows the power of transcriptomics in identifying midgut molecules pertinent to
sand fly-Leishmania interactions. Functional studies will provide further insight into their
relevance in sand fly biology and as potential targets for use as novel vector-based transmission-
blocking vaccines to control leishmaniasis. The validity of this strategy was demonstrated by
the disruption of L. major transmission through blocking PpGalec, its midgut receptor in P.
papatasi [13].

3. Salivary glands
3.1. The sand fly-host molecular interface

In addition to the midgut, salivary glands represent another tissue of significance in the biology
of sand flies as vectors of leishmaniasis. A fact often overlooked is the obligatory co-
inoculation of Leishmania parasites with saliva. This initial brief encounter within the skin of
the vertebrate host is the fundamental reason why saliva is relevant to every transmission event.
In this instance, salivary glands impact the vertebrate host through secretion of a complex array
of pharmacologic compounds that have evolved to facilitate blood feeding [17] but were shown
to be both immunomodulatory (acting on the innate immune system) [18,19] and immunogenic
(inducing an adaptive immune response) [20–23]. This alteration of the host immune status
has important repercussions on survival of the Leishmania parasite and establishment of
disease.
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3.2. The first encounter—sand fly saliva and the naïve host
It has been shown that infection with L. major is significantly enhanced by saliva of the vector
sand fly species P. papatasi and Lu. longipalpis [20,24–26]. The ability of saliva to enhance
Leishmania infection has been attributed to modulation of the host immune system, potentially
through anti-inflammatory properties described for Lu. longipalpis, P. duboscqi, and P.
papatasi [18,19,27,28]. Such activities include downregulation of antigen presentation, co-
stimulatory molecule expression, and nitric oxide production [29–32]. Disease enhancement
by saliva is especially pronounced in the first encounter with a naïve animal, where
immunomodulation is not diluted or ablated by an adaptive immune response to salivary
proteins of a previously exposed host.

3.3 Memories—the host mounts an immune response to salivary proteins
Apart from their inherent pharmacologic, immunomodulatory, and anti-inflammatory
activities, salivary proteins are immunogenic in several different species including humans
[20,23,33–35]. It is important to note that immunity to sand fly saliva induced by salivary gland
homogenate (SGH) injection or by bites of uninfected sand flies was shown to be protective
against Leishmania infection in murine models [20,36,37]. Furthermore, immunization with
two sand fly salivary proteins, maxadilan from Lu. longipalpis and PpSP15 from P.
papatasi, has been shown to protect against leishmaniasis in mice [25,38].

3.3.1. Anti-saliva antibodies—do they play a role?—Interpretation of the significance
of anti-saliva antibodies in leishmaniasis remains troublesome. A positive correlation was
observed between protection from visceral leishmaniasis and intensity of Lu. longipalpis
salivary antibodies [23,35]. Conversely, patients with cutaneous leishmaniasis had higher titers
of anti-saliva antibodies associating them with disease [39,40]. Evidence from murine models
indicates that anti-saliva antibodies are not required for protection, at least against L. major
infection [38]. In that study, B cell-deficient C57BL/6 mice immunized with PpSP15, the
salivary protein from P. papatasi, were protected from L. major infection, suggesting that
cellular immunity observed in the form of a delayed-type hypersensitivity (DTH) response is
sufficient to confer full protection [38].

3.3.2. Cellular immunity—a necessity?—In humans, the presence of a DTH response to
bites of sand flies has been well documented [41]. The significance of this DTH response in
protection from leishmaniasis was first demonstrated in murine models of cutaneous
leishmaniasis and was correlated with the production of IL-12 and IFN-γ [36,38]. Recently, a
subset of human volunteers repeatedly exposed to Lu. longipalpis produced a DTH response
at the bite site. Peripheral blood mononuclear cells isolated from these individuals induced
IFN-γ upon stimulation with sand fly SGH and controlled parasite growth in vitro [42]. This
suggests that the correlates of protection from Leishmania infection demonstrated for rodent
models may apply to humans as well. Nevertheless, outbred populations including humans
probably recognize and mount immunity to different proteins within the saliva. Therefore,
identification of immunodominant salivary proteins that can elicit a Th1-type DTH response
should lead to the discovery of a protective salivary molecule to control Leishmania infection.

3.3.3. How does anti-saliva immunity control Leishmania infection?—Challenged
in the absence of saliva, animals immunized with sand fly salivary proteins do not control
Leishmania infection (Oliveira, unpublished results). These data suggest that the anti-saliva
immune response is not directed against Leishmania parasites. We hypothesize that a DTH
response to saliva affects the initial steps in establishment of Leishmania infection in the
mammalian host. This anti-saliva immune response may alter the type and activation of
macrophages or other host cells that otherwise would silently maintain the parasites. This could
result in direct killing of Leishmania parasites, thus reducing the infective load. Additionally,
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a Th1 anti-saliva immunity may create an environment that accelerates priming of a protective
Th1 anti-Leishmania immunity. Under these circumstances, any protein that induces a Th1
response in the dermis would affect Leishmania infection. The significance of anti-saliva
immunity lies in the fact that, in nature, these sand fly salivary proteins will always be present
at the site of Leishmania deposition during transmission. Indeed, salivary proteins can be
considered ‘non-classical natural adjuvants’.

3.4. Sand fly salivary gland transcriptomics
Transcriptomics represent a rapid and efficient method to identify the most abundant secreted
proteins from salivary glands of pertinent vectors of disease. Use of sand fly salivary gland
transcriptomics resulted in the identification of complete sets of secreted salivary proteins from
glands of several relevant vectors of cutaneous (P. papatasi, P. duboscqi) [38,43] and visceral
(P. argentipes, P. ariasi, P. perniciosus, and Lu. longipalpis) leishmaniasis [44–46]. This is
of particular significance since the sequence of the sand fly genome is not yet available.

3.4. Transcriptomics and anti-saliva immunity
The potential of anti-saliva immunity in protecting against leishmaniasis represents an
untapped approach that may result in production of better vaccines. Through transcriptomic
analysis, customized bioinformatics, and high-throughput DNA vaccination, we were able to
screen complete repertoires of highly abundant salivary proteins in search of Th1 DTH-
inducing molecules [45,47,48].

The salivary gland transcriptome of P. papatasi identified two DTH-inducing molecules that
produced contrasting protective (PpSP15) and exacerbative (PpSP44) outcomes of L. major
infection [47]. This study demonstrated that not all DTH-inducing molecules are protective
and that some produce a Th2 profile that is exacerbative [47]. It also validated the
transcriptomic approach for identification of protective molecules by corroborating the
protective nature of PpSP15 against L. major infection in mice [47]. The contrasting immune
responses to PpSP15 and PpSP44 provided the first evidence that anti-saliva immunity alters
the environment in the skin hours following sand fly bites. This could favor or hinder the
establishment of Leishmania parasites, depending on the nature of the salivary protein [47].
Another testament to the value of transcriptomics is the demonstration that immunity to a
defined salivary protein (LJM19), identified from the salivary transcriptome of Lu.
longipalpis [46], protected from the fatal outcome of visceral leishmaniasis in hamsters [48].
The systemic protection from L. infantum chagasi conferred by immunization with LJM19
further alludes to the effect of anti-saliva immunity on priming a Th1 anti-Leishmania immune
response.

Despite the powerful protection observed in rodents immunized with salivary proteins, their
mode of infection (injection of SGH and parasites) challenges their efficacy under field
conditions. It is prudent to test these promising vaccine candidates by a more natural route of
transmission (bites of experimentally infected sand flies).

3.6. Comparative salivary gland transcriptomics
When considering sand fly salivary proteins as potential anti-Leishmania vaccines, further
information is needed regarding the diversity or similarity of these proteins among different
sand fly species and populations. Comparative transcriptomic analysis of salivary glands from
different sand fly species revealed the presence of both common proteins and genus-specific
salivary molecules [44]. Among the salivary proteins shared by at least by five different sand
fly species, including two different genera (Phlebotomus and Lutzomyia), are the PpSP15-like
proteins, apyrases, yellow-related proteins, antigen 5-related proteins, PpSP32-like proteins,
33-kDa proteins, D7-related proteins, and an endonuclease. The level of similarity between
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these proteins among different species indicates that salivary vaccines may work at the species
level or even within a single genus [44]. This is further supported by the high level of
conservation observed in salivary proteins from P. duboscqi sand flies at the ends of its
geographic distribution (Mali to the west and Kenya to the east). Conserved regions included
the predicted MHC class II T cell epitopes of PpSP15-like, D7-related, PpSP32-like, antigen
5-related, apyrase, and yellow-related salivary proteins [43].

4. Overall conclusion
The genomes of P. papatasi and Lu. longipalpis are currently in their infancy. This underlines
the value of tissue-specific transcriptomics as a powerful approach for identification of vector-
based, salivary gland- and midgut-specific, vaccine candidates against leishmaniasis.
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Fig. 1.
Lifecycle of Leishmania parasites within the sand fly. Promastigote forms: 1, amastigote; 2,
procyclic; 3, nectomonad; 4, haptomonad; 5, leptomonad; 6, metacyclic. (Adapted from
Schlein Y., Leishmania and sandflies: interactions in the life cycle and transmission. Parasitol
Today 1993;9:255–8.)
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