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Abstract: Stimulus evoked changes in cerebral blood flow, volume, and oxygenation arise from
responses to underlying neuronally mediated changes in vascular tone and cerebral oxygen metabo-
lism. There is increasing evidence that the magnitude and temporal characteristics of these evoked he-
modynamic changes are additionally influenced by the local properties of the vasculature including the
levels of baseline cerebral blood flow, volume, and blood oxygenation. In this work, we utilize a physi-
ologically motivated vascular model to describe the temporal characteristics of evoked hemodynamic
responses and their expected relationships to the structural and biomechanical properties of the under-
lying vasculature. We use this model in a temporal curve-fitting analysis of the high-temporal resolu-
tion functional MRI data to estimate the underlying cerebral vascular and metabolic responses in the
brain. We present evidence for the feasibility of our model-based analysis to estimate transient changes
in the cerebral metabolic rate of oxygen (CMRO2) in the human motor cortex from combined pulsed
arterial spin labeling (ASL) and blood oxygen level dependent (BOLD) MRI. We examine both the nu-
merical characteristics of this model and present experimental evidence to support this model by exam-
ining concurrently measured ASL, BOLD, and near-infrared spectroscopy to validate the calculated
changes in underlying CMRO2. Hum Brain Mapp 30:1548–1567, 2009. VVC 2008 Wiley-Liss, Inc.
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INTRODUCTION

Functional neuroimaging techniques such as magnetic
resonance imaging (MRI) [Belliveau et al., 1991; Ogawa
et al., 1990] can record changes in cerebral blood flow, vol-
ume, or oxygen saturation that are indirectly related to
neuronal activity and reflect the consequences of both neu-
ral-metabolic and neural-vascular coupling. Although the
ability to image these signals has been invaluable in devel-
oping spatial maps of the functional organization of the
brain, the dependence of measured hemodynamic signals
on both vascular and metabolic function results in ambigu-
ous and potentially nonlinear relationships with the under-
lying electrophysiological and metabolic responses. The
potential use of cerebral oxygen metabolism (CMRO2) as a
more accurate indicator of neuronal activation has moti-
vated the recent development of model-based methods to
extract these estimates from functional MRI (fMRI) or opti-
cal measurements (reviewed by [Buxton et al., 2004]).
The majority of studies that have been performed to esti-

mate CMRO2 by fMRI methods have focused on examin-
ing the magnitude of evoked signals. In many cases, these
studies have used long duration functional stimulation
and steady-state approximations of the vascular and oxy-
gen transport models. In addition, many of these studies
rely on a hypercapnic calibration of the blood oxygen level
dependent (BOLD) signal, as introduced by Davis et al.
[1998], to calibrate the magnitude of signal changes; as
these depend on the baseline physiological and biophysical
properties of the vasculature. However, such studies have
largely overlooked the potential to utilize the temporal dy-
namics of the hemodynamic measurements and the inter-
relationships between the flow, volume, and oxygen-satu-
ration changes, which can reveal information about the
underlying biomechanical properties of the vasculature,
such as vascular transit time, vascular compliance, and
baseline vascular features. Several recent experimental
studies have demonstrated that baseline blood flow, vol-
ume, and venous oxygen saturation can have significant
effects on the relative temporal characteristics of the over-
all hemodynamic changes (e.g., [Cohen et al., 2002; Liu
et al., 2004; Sicard and Duong, 2005]). In light of such ex-
perimental data, we hypothesized that the utilization of
dynamic information from multimodal measurements will
help to characterize flow and oxygen metabolism changes
more accurately by providing additional information about
the properties of the vascular network based on the rela-
tionships of both the temporal evolution and magnitude of
the evoked hemodynamic signals.
Several recent studies have described bottom-up meth-

odologies that use model-based curve-fitting of the hemo-
dynamic response to estimate the underlying vascular and
metabolic states [Deneux and Faugeras, 2006; Huppert
et al., 2007; Riera et al., 2005]. In this work, we extend our
previous model described in Huppert et al. [2007] to use
high-temporal resolution, multimodal measurements to
estimate parameters depicting the vascular biomechanics.

We find that this approach allows us to estimate dynamic
changes in CMRO2 from measurements of blood flow and
BOLD evoked changes by using our vascular model as the
basis for a nonlinear inverse problem. We present three
examples to demonstrate the advantages and limitations of
the inverse problem by examining (i) the local sensitivity
and stability of the inverse problem, (ii) the global robust-
ness of the parameter identification procedure, and (iii) the
application of our model to experimental data. In the ex-
perimental data, we estimate relative CMRO2 changes
from blood flow and BOLD responses measured during
the performance of a brief motor task activity as measured
by pulsed arterial spin labeling (ASL) imaging. Finally, we
compare the results of this analysis of fMRI signals with
the analysis of measured changes in blood flow, volume,
and oxygen saturation obtained using simultaneously
measured fMRI and near-infrared spectroscopy (NIRS)
data.

METHODS

Overview of Model

In our dynamic model, evoked changes in the vascular
tone and the cerebral metabolic rate of oxygen (CMRO2)
are estimated by the inversion of a nonlinear model that
describes the changes in blood flow, volume, and oxygen-
ation in response to the driving forces as schematically
depicted in Figure 1A. Our approach is similar to that dis-
cussed in previous works [Deneux and Faugeras, 2006;
Huppert et al., 2007; Riera et al., 2005]. Our model can be
divided into three components: (i) a dynamic forward
model that describes the physiological response of the vas-
cular system to flow and CMRO2 changes (sections ‘‘vascu-
lar forward model’’ and ‘‘oxygen transport forward
model’’); (ii) the observation model that describes the bio-
physics of the fMRI or optical measurement process (sec-
tion ‘‘hemodynamic observation models’’); and (iii) the
inverse model that estimates values of the input states and
parameters via a measurement variance weighted least-
squares fit of experimental data (section ‘‘the vascular
inverse model’’). The details of this forward model have
been presented previously. [Huppert, 2007; Huppert et al.,
2007].

Vascular forward model

The vascular component of this model is derived from ba-
sic principles of fluid mechanics and is based on the flow
and volume changes within a system consisting of a dilating
arteriole, two compliant vascular windkessel compartments
and a constant volume compartment that models the pial
veins as depicted in Figure 1B and is summarized in Table
I. Briefly, the blood flow between each vascular compart-
ment (Fn21,n) is derived from the gradient of the hydrostatic
pressure (Pn) between the compartments and the vascular
resistance of the blood vessels (Rn). The vascular resistance
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is inversely related to the diameter of the blood vessels
according to Poiseuille’s law [Washburn, 1921] and thereby
related to vascular volumes. A decrease in arterial resist-
ance drives an increase in blood flow. The resulting hydro-
static pressure between the vascular compartment and the
surrounding tissue (Psurround) causes an increase in the vas-
cular blood volume (Vn). As the capillary and venous vascu-

lar compartments expand against the surrounding tissue,
the extra-vascular space resists compression that gives rise
to a saturation of the volume expansion function. Thus, the
vascular capacitance (Cn) decreases as a function of the
pressure gradient between the compartment and the sur-
rounding tissue [Mandeville et al., 1999b]. In the aforemen-

Figure 1.

Schematic outline of the vascular model. A vascular forward

model (Panel A) based on a multicompartment Windkessel

(Panel B) and oxygen transport model (Panel C) is used to esti-

mate the changes in blood flow, volume, and oxygenation in the

arterial, capillary, and venous compartments. The model of he-

modynamic signals is evoked by underlying changes in vascular

tone via arterial vasodilatation and changes in the cerebral meta-

bolic rate of oxygen (CMRO2). Observation models depicting

the biophysics of the optical and fMRI techniques relate the in-

ternal states of the model to the measurable hemodynamic

responses, which are compared with experimental data.

Figure 2.

Optical imaging setup. In this figure, we illustrate the setup used

for NIRS recordings. Further details can be found in [Huppert

et al., 2006b]. Panel (A) shows the location of the optical probe

over the motor cortex for a example subject. The ‘‘1’’ indicate

the locations of the light source fibers and ‘‘o’’ indicate the de-

tector fiber positions. In Panel (B) is shown a coronal cross-sec-

tion of the subjects anatomical MRI with the fiber positions and

measurement sensitivity profiles (contour plot) overlain as

described in Huppert et al. [2006a]. The BOLD response (thresh

held at P < 0.05) is also overlain on the anatomical image. The

dotted line in Panel A shows the approximate location of this

slice. In Panel (C) is shown the averaged evoked hemoglobin

responses from the performance of the motor task. The loca-

tions of the axis indicate the originating pair of source and de-

tector positions for the plotted response.
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tioned variables, n indicates the vascular compartment (ar-
terial, capillary, vein or pial vein).
In our model, we assume that the changes in vascular

resistance can be approximated using a canonical driving
function to the vascular system similar to the canonical
neurovascular model described in Buxton et al. We define
the dilation and contraction of the arteries as the sum of a
pair of independent canonical g-variant temporal basis
functions with variable timing parameters (refer Table I:
Arterial Dilation). We use these nonlinear canonical func-
tions with variable onset time (sonset), width (r), and am-
plitude, to impose a smooth temporal basis for the arterial
resistance state instead of modeling the entire time-series
of arterial dilation. A total of six unknown model parame-
ters describe the arterial dilation and contraction states
(refer Tables I and III].

Oxygen transport forward model

In the second part of the physiological forward model, net
changes in blood oxygenation are modeled by a set of first-
order differential equations that describe the balance between
the oxygen supplied by the vascular response and the oxygen
consumed within the tissue. We calculate the oxygen content
(cnO2; designating the nth compartment) in both the vascular
segments and the bulk extra-vascular parenchyma tissue
using the oxygen transport model described in previous
works [Herman et al., 2006; Huppert et al., 2007]. The rate of
transport across each vascular segment can be described by
first-order rate equations and depends on (i) the steady-state
flow and (ii) the relative permeability of the segment, which
can be determined from the baseline oxygen saturation.
Increased CMRO2 in the extra-vascular compartment is

approximated by a canonical temporal basis function as
described in previous works [Huppert et al., 2007]. As
with the arterial resistance state, CMRO2 changes are
described by a g-variant functional form (refer Table II).
Both the timing and amplitude of this function are
estimated as parameters within the model. Unlike arterial
resistance changes only one basis function is used as a
regressor maintaining that evoked CMRO2 changes are
expected to be elevated compared with baseline.

Hemodynamic observation models

The second component of our overall model is a set of
observation equations that represent the relationships
between the underlying physiological variables in the
model and the fMRI or optical measurements. Such an uni-
fied model of the physiology allows different multimodal
information to be fused into a single consistent estimate of
cerebral activation. This provides a mechanism to combine
both complementary measurements such as BOLD and
flow, with partially redundant information, such as the
common deoxy-hemoglobin contrast between optical and
BOLD signals. Because these measurement models are
modular, this framework allows combinations of the differ-
ent data sets, namely fMRI, optical, or multimodal data
sets, to be utilized and examined for consistency.

FMRI measurement model. The BOLD signal has a com-
plex origin arising from both intra- and extra-vascular
water signals [Buxton et al., 2004; Nair, 2005; Obata et al.,
2004; Ogawa et al., 1990]. In our model, we consider the
contributions to the BOLD signal of all four vascular com-
partments (artery through pial veins) and susceptibility
effects on the extra-vascular water signal. We model the
BOLD signal according to the equations for intra- and
extra-vascular contrast described in Obata et al. [2004]
based on the theory by Yablonskiy and Haacke [1994].

TABLE I. Summary of Windkessel model

Arterial dilation contraction (arterial resistance state)

dRArtðtÞ
dt ¼ ð�1ÞDRArt;max

3H t� s0ð Þ 2 t�s0ð Þ
r2 e�1

t�s0ð Þ2
r2 � 1

h i
exp � t�s0ð Þ2

r2

� �
Flow changes
dFn�1;nðtÞ

dt ¼ 1
RnðtÞþRn�1ðtÞ

dPn�1ðtÞ
dt � dPnðtÞ

dt

h i
� Pn�1ðtÞ�PnðtÞ½ �

RnðtÞþRn�1ðtÞ½ �2
dRnðtÞ
dt þ dRn�1ðtÞ

dt

h i
Volume changes

dVnðtÞ
dt ¼ Fn�1;nðtÞ � Fn;nþ1ðtÞ

Pressure changes

dPnðtÞ
dt ¼ 1

CnðtÞ
dVnðtÞ
dt � VnðtÞ

CnðtÞ2
dCnðtÞ
dt

Resistance changes

dRnðtÞ
dt ¼ �Rn;0 a2

�
2

� � Vn;0
a2=2

VnðtÞa2=2þ1

dVnðtÞ
dt

Capacitance changes

dCnðtÞ
dt ¼ Vn;0 1=bn � 1ð Þ PnðtÞ�PSurrondðtÞ½ �1=bn�2

Pn:0�PSurrond;0½ �1=bn
dPnðtÞ
dt

The temporal dynamics of cerebral vascular changes can be
approximated based on the fluid mechanics of a compliant Wind-
kessel compartment. In response to changes in vascular tone
(described as a sum of two independent non-linear gamma-variant
temporal basis functions), the flow, volume, and pressure changes
are modeled for each of the three vascular compartments (n [ {Ar-
tery, Cappilary, Vein}). The symbols used in the equation above
are P, pressure; F, blood flow; V, blood volume; C, capacitance; R,
vascular resistance; and t, time. The subscript ‘0’ indicates the
baseline value. In the arterial resistance equation, H(t) is the heavy
side hat function. Further details of this model have been pre-
sented in (Huppert et al., 2007).

SðtÞ
S0

¼
SEV 1� VðtÞð Þ � e �TE�DR�

2EVðtÞð Þ þ SIV �P
n
VnðtÞ � wn � e �TE�DR�

2IVðtÞð Þ

SEV � ð1� V0Þ þ SIV � V0
ð1Þ
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Extra-vascular signal:

DR�
2EVðtÞ ¼ 4:3 � to � V0 �

X
n

wn � D½HbRnðtÞ�=½HbT0�

Intra-vascular signal (nth compartment):

DR�
2IV lnðtÞ ¼ �r0 � DSnO2ðtÞ

At the 3 T field strength used in this study, ro 5 100 s21

and vo 5 80.6 s21 [Mildner et al., 2001]. SIV and SEV are
the fractional baseline contributions of the intra- and extra-
vascular signals, respectively. These parameters include a
bulk representation of the intrinsic relaxation rates of
water molecules in the intra- and extra-vascular space.
Because there is debate over the exact value of this param-
eter [Lu and van Zijl, 2005; Mildner et al., 2001], we

include it as an additional unknown parameter
(e � SIV=SEV) estimated by the model. In the above equa-
tions, Vn is the ratio of blood volume of the nth compart-
ment to tissue volume. The term, V0, represents the base-
line volume fraction and acts as a partial volume correc-
tion factor for the BOLD measurement (i.e.,
V0 � P

n
Vnðt ¼ 0Þ). V0 is estimated in the model using the

minimization procedure and is included as a calibration
factor for the magnitude of the BOLD signal. Because this
factor has explicit physiological meaning, its value contrib-
utes to the calculation of the baseline physiological values.
The measurement sensitivity weighting factors (wn) in

Eq. (1) are assumed to be equal for all four vascular com-
partments (wn 5 1). The measurement sensitivity factors
describe the intrinsic sensitivity of the measurement pro-
cess and depend on MR physics, the physical vessel
dimensions, and vessel orientations. In general, the MR
measurement sensitivity is a highly complex function of
the underlying vasculature (e.g., [Boxerman et al., 1995]).
Our current assumption of equal measurement sensitivities
implies that the vascular contributions to the signal
directly reflect the relative changes in contrast. For exam-
ple, the largest contribution to the BOLD signal arises
from the venous compartments because the oxygenation
changes are the largest in these veins due to washout
effects. This assumption should be examined more closely
in future work. We use a direct projection of the normal-
ized arterial blood flow changes to model the ASL signal.

NIRS measurement model. The NIRS technique measures
spectroscopic changes in the optical absorption properties
of tissue [Obrig et al., 1996; Villringer and Chance, 1997].
These measurements are related to changes in mean oxy-
and deoxy-hemoglobin concentrations by the modified
Beer-Lambert law [Cope et al., 1988; Delpy et al., 1988].
We assume that the measurements reflect the weighted
sum over the vascular compartments, i.e.,

YkðtÞ ¼
�
eHbO2

ðkÞ �
X
n

wn � D HbO2ðtÞ½ � þ eHbRðkÞ

3
X
n

wn � D HbRðtÞ½ �Þ � PPFðkÞ
�

ð2Þ

In this equation, e(k) is the molar extinction coefficient
of each hemoglobin species and PPF(k) is the effective
path-length for wavelength (k) traveled by photons on the
diffuse path through the brain cortex [Hiraoka et al., 1993].
The subscript n indicates the vascular compartment. In
principle, NIRS measurements are related to the absolute
changes in hemoglobin concentrations provided that the
effective path-lengths are known [Cooper et al., 1996].
However, in practice, such path-length factors are difficult
to determine without additional spatial information [Hir-
aoka et al., 1993; Huppert et al., 2006a] or direct measure-
ment [Duncan et al., 1995; Leung et al., 2006]. In our
model, hemoglobin changes are normalized to the baseline
volume and therefore the value of absolute baseline total

TABLE II. Summary of Oxygen transport model

CMRO2 state

dCMRO2ðtÞ
dt ¼ DCMRO2;MaxH t� s0ð Þ 2� t�s0ð Þ

r2 �e�1 1� t�s0ð Þ2
r2

h i
3 exp � t�s0ð Þ2

r2

� �
Intravascular oxygen content

dcnO2ðtÞ
dt ¼ 1

VnðtÞ Fn�1;nðtÞ � cn�1O2ðtÞ � Fn;nþ1ðtÞ � cnO2ðtÞ
�

�cnO2ðtÞ � dVnðtÞ
dt

i
� Kn � 1

2 cn�1O2ðtÞ þ cnO2ðtÞð Þ � ctissueO2ðtÞ
� 	

Hemoglobin oxygen saturation

dsnO2ðtÞ
dt ¼ 1

HGB�Hn

dcnO2ðtÞ
dt

Oxy/deoxyhemoglobin changes

dHbO2jnðtÞ
dt ¼ VnðtÞ � dsnO2ðtÞ

dt þ snO2ðtÞ � dVnðtÞ
dt

dHbRnðtÞ
dt ¼ 1� snO2ðtÞ½ � � dVnðtÞ

dt � VnðtÞ � dsnO2ðtÞ
dt

Extravascular oxygen changes

dctissueO2ðtÞ
dt ¼ 1

Vtissue;0

P
n
KN � 1

2 cn�1O2ðtÞ þ cnO2ðtÞð Þ�

�ctissueO2ðtÞ� � CMRO2ðtÞ

�
Changes in blood and tissue oxygen content are defined a set of
differential equations shown in this table derived from the mass-
balance of oxygen delivered via blood flow and consumed via
CMRO2 in the tissue (Huppert et al., 2007). The symbols used in
the equations above are as follows: F, flow; V, volume; cnO2, oxy-
gen content; snO2, blood oxygen saturation fraction; Kn, vascular
permeability rate constant; HbR/HbO2, deoxy/oxyhemoglobin per
volume tissue; Hn, Hufner number (1.39 ml/gm Hb (Habler and
Messmer 1997)); HGB- hemoglobim content of blood (�12–15gm
Hb/dl (Habler and Messmer, 1997)), and t, time. The subscript ‘0’
indicates the baseline value. In the CMRO2 equation, H(t) is the
heavy side hat function.
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hemoglobin is needed to scale between the changes pre-
dicted in the model and the true measurements. We
include a scaling value (XNIRS) as an additional parameter
in the model to compensate for the uncertainty introduced
in the exact quantification of the hemoglobin changes
measured with NIRS. The measurement model for NIRS is
given by the equation

YkðtÞ ¼ XNIRS �
X

HbX¼ HbO2jHbRf g
ek;HbX �

X
n

wn � D HbXðtÞ½ �
HbT0½ �

 !
ð3Þ

Note that if the optical path-length is known then the scal-
ing factor can be used to calculate the baseline hemoglobin
concentration (X ¼ ½HbTo� � PPF). The normalized term
DHbX=½HbTo� can be calculated directly from within the
model. The vascular weights (wn) in Eqs. (2) and (3)
describe the sensitivity of NIRS to the vascular compart-
ments and are assumed to be uniform for the arteries
through veins (wn 5 1). The pial venous compartment con-
stitutes larger blood vessels and contributes to changes
measured by both the fMRI and optical imaging. Sensitiv-
ity to vessels decreases with increasing radius for NIRS
measurements [Liu et al., 1995] and conversely increases
for gradient echo BOLD-fMRI [Boxerman et al., 1995].
Therefore, to account for measurement discrepancies, the
weight given to the contribution of the pial vein in the
NIRS measurement is included as an additional model pa-
rameter (xpial < 1). This allows the NIRS and BOLD meas-
urements to potentially have different weights for the pial

compartment and these measurements can be modeled to
sample different effective pial compartments.

The vascular inverse model

There are a total of 20 unknown parameters in the full

model (see Table III). The full data model utilizes measure-

ments of blood flow, volume, and oxygen saturation from

combined multimodal optical and ASL data. The baseline

oxygen saturation contents of the arterial, capillary, and

venous compartments have been included as three param-

eters within the model. These oxygen saturation parame-

ters were fixed in the models using the fMRI only and op-

tical only data. In the fMRI alone and NIRS alone models,

there are a total of 15 unknown model parameters because

we fix the values for baseline oxygen extraction parameters

and additionally drop two parameters specific to NIRS/

fMRI, respectively.
CMRO2 and arterial resistance changes together with the

unknown parameters associated with the model’s differen-

tial equations can be determined from the inverse of the

model. These parameters are estimated by nonlinear curve

fitting of the temporal dynamics of observable hemody-

namic parameters. We used a nonlinear Levenberg-Mar-

quardt algorithm [Marquardt, 1963] implemented in Mat-

lab (The Mathworks, Natick, MA) to calculate the model

parameters that define the CMRO2 and arterial dilation

functions (Matlab function lsqnonlin). In contrast to previ-

ous approaches that consider only the magnitude of hemo-

dynamic changes, we account for the full temporal dynam-

TABLE III. Description of parameters in Model

Symbol Description Physiological range Citation

Arterial resistance
temporal basis

DRAlmax Maximum change arterial resistance [0–90] [290–0]% —
sonset Time to onset of resistance change [0–6]s [0–6]as —
rA Width of temporal resistance change [0–8]s [0–8]s —

CMRO2 temporal basis DCMRO2Max Maximum change in relative CMRO2 [0–50]% —
sonset Time to onset of CMRO2 change [0–4]s —
rM Width of temporal CMRO2 change [0–8]s —

Vascular model parameters RA(0) Initial arterial resistance [20–90]% (Boas et al., 2003)
b Windkessel vascular reserve [1.1–5] (Mandeville et al., 1998b)
s Vascular transit time [0.5–4]s (Ito et al., 2005)
spial Pial venous transit time [0–4]s —

Oxygen saturation SaO2 Baseline arterial saturation [95–100]%
ScO2 Baseline capillary saturation [60–90]%b (Herman et al., 2006)
SvO2 Baseline venous saturation [55–89]%b

NIRS lead field [HbT]0 Total baseline blood volume [40–140]lM (Tomcelli et al., 2001)
xpial Pial vascular sensitivity [0–1] —

BOLD lead field Vo Baseline vascular volume fraction [1–10]% (Ito et al., 2005)
e Intrinsic ratio of intra/extra-vascular signal [1–5] —

This table shows the parameters used in the model described in the text. Physiological ranges are used to set the upper and lower
bounds for each parameter used in the fitting procedure as determined from the provided citations. The baseline oxygen saturation of
each vascular compartment was estimated in the full multimodal model only.
aOnset time for the arterial contraction response is defined as the lag time after the onset of the dilation response.
bCapillary and venous oxygen saturations are defined by the change from the previous compartment to ensure that SaO2 > ScO2 > SvO2.
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ics of the response and minimize the model using the

entire time course of the hemodynamic changes in a single

cost function. Thus, the model is minimized using the tem-

porally vectorized array of discrete measurements to

simultaneously fit the entire dataset, i.e.,

y ¼ yBOLDjt¼1 yBOLDjt¼2 � � �
yASLjt¼1 yASLjt¼2 � � �

" #
bX ¼ argmin y� CðXÞ½ �T�R�1 � y� CðXÞ½ �

��� ��� ð4Þ

where R is an estimate of the variance of the measurement
error for each measurement type and superscript T indi-
cates the transpose operation. The estimates of the mea-
surement error variances were calculated from the error in
the estimate of the mean evoked hemodynamic responses
calculated from the linear deconvolution model (described
in section ‘‘preprocessing of evoked hemodynamic
responses’’) from each experimental session and normal-
ized across the subjects. Weighting the squared model
error of the different measurement types in the minimiza-
tion cost function helps to weight the model fit to more
confident observations. This routine provides the mini-
mum variance unbiased estimator for a general linear
model as described in Huppert et al. [2007] and allows the
fusion of multimodal information using a priori knowl-
edge of the measurement error in each imaging method. In
the model-fitting routine, the error cost metric is mini-
mized by refining the model parameters. To improve the
stability of the inverse problem, we constrain the parame-
ter set within the range of physiological bounds (Table III).
The fitting routine was iterated until a predefined conver-
gence criterion (1026 times the variance of the measure-
ment error) was met. This took �6–10 h per fitting proce-
dure (Pentium(R)-4 CPU 3.00 GHz). The error bounds of
our model prediction were examined using a Markov
Chain Monte Carlo sampling of the parameter-space as
described in Huppert et al. [2007]. Because of the high
computational time involved, it is currently impractical to
run this model on a per voxel basis, but will be explored
in future extensions of this work.

Estimation of baseline physiology from

model parameters

In our previous work [Huppert et al., 2007], we
described how values for the baseline physiology could be
extracted from the model estimates of baseline volume,
vascular transit time, and baseline oxygen saturation. For
example, the vascular mean transit time, which is defined
as the ratio of baseline blood volume and flow, can be esti-
mated from the temporal delay between the arterial (i.e.,
ASL flow) and venous (i.e., BOLD) responses. These bio-
mechanical parameters provide a link between the dynam-
ics of the evoked response and the baseline state. In addi-
tion, both baseline hemoglobin concentration ([HbT0]) and
baseline vascular volume fraction (V0) are estimated in the

model as the scaling factors applied to the NIRS and
BOLD observations, respectively, (detailed in [Huppert
et al., 2007]). These calibration factors allow us to assign a
physiological scale to the normalized changes estimated in
the model.
The estimates of baseline blood volume fraction from

the BOLD measurement model (or equivalently total he-
moglobin concentration) and the mean vascular transit
time (s) are sufficient to estimate the value of baseline
blood flow using the steady-state relationship,

CBF0 ¼ CBV0

s
¼ HbT0½ � �MWHb

HGB � qtissue
� 1
s

ð5Þ

where MWHb is the gram molecular weight of hemoglobin
(64.5 kDa) and qtissue is the density of brain tissue (5 1.04
g/ml [DiResta et al., 1991]). When the full set of measure-
ments (ASL, BOLD, and NIRS) is used to cross-calibrate
the estimates of absolute values for the baseline blood vol-
umes, the ratios of the vascular volume fraction (in volume
blood per volume tissue), and baseline hemoglobin con-
centration (moles Hb per volume tissue) can be used to
calculate the hemoglobin content of blood (HGB) in g Hb/
volume blood. In the absence of estimates of both V0 and
[HbT0], in Eq. (5) HGB can be assumed from literature or
measured (in adult humans HGB is typically 12–18 g/dL
[Habler and Messmer, 1997]).
At baseline steady state, relative CMRO2 is the product

of blood flow and the oxygen extraction fraction across the
compartments. In this model, baseline oxygen saturation is
either estimated (using the full multimodality data set
only) or assumed from the analysis of the complete data
set. Thus, baseline CMRO2 is calculated directly from the
baseline blood flow and absolute oxygen extraction (OE;
OE 5 sinO2 2 soutO2),

CMRO2 0j ¼ Hn �HGB � CBF0 �OE0 ð6Þ

where Hn is the Hufner number (Hn 5 1.39 ml O2/g Hb
[Habler and Messmer, 1997]).

Experimental Methods

The data used in this study previously published in
[Huppert et al., 2006b] and recorded simultaneous pulsed
arteriole spin labeling (PASL) and NIRS measurements.
Five subjects were included in this study (4 male and
1 female). Subjects performed a brief 2-s duration finger
walking task using their right hand. All subjects were
right-handed. The stimulus was jittered evenly on a 500-
ms time-step, which allowed for the response to be esti-
mated at 2 Hz with fMRI. The length of the inter-stimulus
interval (ISI) ranged between 4 and 20 s with an average
ISI period of 12 s. The timing of the stimulus presentation
was synchronized with the MR image acquisitions and
generated with a custom written Matlab script. Each run
lasted 6 min and consisted of between 27 and 32 stimulus
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periods. This was repeated 4–6 times for each subject dur-
ing the course of one scan session (�90 min in total time
for each session including position of the NIRS probe and
structural scans). The human research committee at the
Massachusetts General Hospital approved all protocols.

NIRS acquisition

The NIRS probe consisted of two rows of four detector
fibers and one row of four source fibers arranged in a rec-
tangular grid pattern and spaced 2.9 cm between nearest
neighbor source-detector pairs as shown in Figure 2. The
probe was secured to the subject’s head over the contra-
lateral primary motor cortex (M1). This was verified using
vitamin-E fiducial markers in the anatomical MRI. NIRS
measurements were taken using a multichannel continu-
ous-wave optical imager (690 and 830 nm; 18 and 7 mW,
respectively) (CW4 system, TechEn Inc., Milford, MA).
These signals were synchronized to the timing of the
fMRI. Monte Carlo simulations were used to determine the
mean photon trajectories by simulating the diffusion
through tissue-segmented anatomical volumes for each
subject using the locations of the optodes referenced by
the fiducial markers [Huppert et al., 2006a]. A mean partial
path-length correction of 4.7 6 1.5 and 4.8 6 1.5 (830 and
690 nm, respectively; N 5 5) was calculated from the frac-
tion of the path-length through the brain cortex based on
these simulation results (see Fig. 2B). Methods and results
for the collection of this data set have been previously
published in Huppert et al. [2006b]. Optical data was
sampled at 100 Hz and down-sampled with a Nyquist fil-
ter to 10 Hz for analysis in the model.

Functional MRI acquisition

Pulsed ASL measurements were carried out at 3 T on a
Siemens Allegra MR scanner using PICORE (proximal
inversion with control for off-resonance effects) labeling
geometry [Wong et al., 1997] with Q2TIPS (second version
of quantitative imaging of perfusion by using a single sub-
traction with addition of thin-section periodic saturation
after inversion and a time delay sequence) saturation [Luh
et al., 1999] to impose a controlled label duration. A post-
label delay of 1400 ms and label duration of 700 ms were
used, with repetition and echo times of 2 s and 20 ms,
respectively [a 5 908]. Echo Planar Imaging (EPI) was
used to image five 6-mm slices (1 mm spacing) with 3.75
mm in-plane spatial resolution. The PICORE labeling
scheme allowed collection of BOLD signals using the inter-
spersed control images from the acquisition. The fMRI
images were motion-corrected [Cox and Jesmanowicz,
1999] and spatially smoothed with a 6 mm Gaussian ker-
nel. Blood flow and BOLD signals were separated by first
extracting the even-numbered (ASL label and BOLD con-
trast) and odd-numbered (BOLD contrast only) series of
images. These two time-series were independently interpo-
lated using cubic spline functions and then the temporally

aligned series were subtracted to yield the isolated spin-
label contrast. This approach was similar to the linear
‘‘surround subtraction’’ method described by Lu et al. to
give the minimal cross-talk between the ASL and BOLD
signals [Lu et al., 2006]. Structural scans were performed
using a T1-weighted MPRAGE (magnetization prepared
rapid gradient echo) sequence [1 3 1 3 1.33 mm resolu-
tion, TR/TI/TE/a 5 2530 ms/1100 ms/3.25 ms/78].

Preprocessing of evoked hemodynamic responses

Both the NIRS and fMRI hemodynamic responses were
separately estimated using a 2-Hz resolution finite impulse
response (FIR) linear model as described in Huppert et al.
[2006b]. High temporal resolution was achieved by design-
ing the stimulation protocol using a jittered inter-stimulus
interval and lowering spatial coverage and resolution for
the EPI sequence. This may limit the use of this method in
general studies but were necessary to get the effective
sample rates needed for our model analysis. The FIR
approach assumes a linearly additive hemodynamic model
to estimate the high-temporal resolution responses but
avoids canonical assumptions that could restrict the tem-
poral characteristics of the estimates. Second order linear
trends were removed from the estimated responses. The
epoch timing for this deconvolution was based on the
stimulus presentation timing rather then the subject’s
motor response. However, the subject motor response
times were similar to presentation times with a jitter of
�100 ms as judged by an optical sensor placed on the fin-
gers which was used to record the tapping event as
described in Huppert et al. [2006b]. Because of technical
limitations, this recording was only available on three of
the five subjects. Region-of-interest averages for both data
sets were independently chosen from measurements show-
ing statistical changes (P < 0.05) based on mixed effects
analysis using an activation time window of 2–7 s to
define the t-statistic as described in Huppert et al. [2006b].
The fMRI responses were restricted to voxels beneath the
optical probe judged manually based on the fiducial
markers on the probe. ASL and BOLD responses were in-
dependently estimated. Significant NIRS channels were
defined based on the oxy-hemoglobin estimate.
The resulting BOLD, ASL, and NIRS time-courses for

each subject were variance normalized and averaged into
a single group average. In this work, the high computa-
tional load of the inverse routine required us to predeter-
mine the single-trial hemodynamic response function
using the FIR model rather than run our state-space analy-
sis directly on the full data set (c.f. [Deneux and Faugeras,
2006]). However, the linear assumption of the FIR model
can be justified (e.g., [Cannestra et al., 1998]) for the mini-
mum inter-stimulus interval (>4 s) used in this study. We
acknowledge that the temporal resolution is limited by the
acquisition techniques of fMRI and ASL methods and may
currently limit the utility of this method in general studies
because the response characterization of our vascular
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model makes use of high-temporal resolution response to
estimate the vascular parameters.

RESULTS

The underlying vascular and metabolic changes are pro-
vided by a nonlinear inverse solution to our vascular for-
ward model and estimated by curve-fitting the observed
hemodynamic responses. To illustrate the performance of
this inverse model, we demonstrate the characteristics of
our model using three examples that examine the local
precision, global accuracy, and physiological consistency of
our model when used to analyze fMRI, NIRS, or multimo-
dal data.

Example 1: Parameter Sensitivity and Local

Stability of the Inverse Problem

A requirement of a well-poised inverse model is that the
number of independent measurements is equal to or
greater than the number of free model parameters. This is
informally referred to as the ‘‘counting rule’’ and can pro-
vide a qualitative common-sense check for such a model
(e.g., [Bamber and van Santen, 2000]). To begin our investi-
gation of our windkessel model, we will first discuss this
qualitative rule. Our model used for analysis of the fMRI
signals has a total of 15 free parameters. Although the ASL
and BOLD responses (recovered at 2 Hz) contain a greater
number of sample points, each sample point does not rep-
resent an independent measurement due to the inherent
temporal autocorrelation of the evoked response and par-
tial correlation between measurements. To apply the
counting rule, we must estimate the number of independ-
ent degrees-of-freedom to these measurements. The BOLD
response is believed to have up to three distinct phases; an
initial dip period, a main response, and a post-stimulus
undershoot. To correctly model the overall BOLD
response, for example in a general linear model, three in-
dependent canonical functions should be used with one
for each of these phases. Because each canonical function
requires three degrees-of-freedom for the amplitude, first
order timing (e.g., onset or time-to-peak) and second order
timing (e.g., temporal width), it follows that a total of nine
parameters should be included to model all three phases
of the BOLD response. Similar arguments can be applied
to determine that oxy- and deoxy-hemoglobin are expected
to contain nine degrees-of-freedom each and flow to con-
tain six (with an assumption of no ‘‘initial dip’’ period). By
this argument, we can expect that the BOLD/ASL fMRI
data should have the minimum number of independent
degrees-of-freedom needed for our model. This argument,
however, is at best only a qualitative deduction. To more
rigorously investigate the ability to determine all model
parameters from fMRI measurements, we must turn to
more formal mathematical definitions of model sensitivity
and parameter identifiability.

The stability of our inverse model indicates the feasibil-
ity of our model to estimate the model parameters from
experimental data and requires that measurements be sen-
sitive to changes in each of the estimated model parame-
ters (reviewed in [Bamber and van Santen, 2000]). Model
sensitivity can be examined using a variety of numerical
methods and has been recently discussed in the context of
a similar vascular model by [Deneux and Faugeras, 2006].
However, model sensitivity does not guarantee that the
estimated values are accurate or unique. Instead, it allows
us to test whether a solution to the inverse problem exists.
Because of the nonlinear nature of our model, we focused
on local data perturbation methods to examine the theoret-
ical sensitivity of measurements to changes in the model
parameters.
Model sensitivity quantifies the influence of each pa-

rameter on the output of the forward model. Two param-
eters; namely, the mean vascular transit time (s) and the
Windkessel vascular compliance factor (b), are primarily
involved in modeling the dynamic relationship between
flow and volume. We begin our investigation of model
sensitivity by qualitatively examining whether these two
parameters affect the temporal dynamics of the hemody-
namic response and if it is plausible to estimate these
values based on relative temporal dynamics. On the basis
of our model, we predicted that these two parameters
would have distinguishable effects on the relative tempo-
ral dynamics of the BOLD and ASL measurements. For
example, in Figure 3A we see that if vascular transit time
is increased (i.e., with constant baseline flow and thus
increased baseline volume), the BOLD response ampli-
tude is reduced and the initial dip component is
removed. In particular, a longer transit time increases the
temporal delay between arterial and venous responses.
Likewise, increases in the value of b lead to larger and
quicker washout changes that produce larger magnitude
changes in BOLD and deoxy-hemoglobin and reduce the
relative time-to-peak value of these responses. The com-
pliance parameter also has pronounced effects on the rel-
ative magnitude (i.e., ratio) of the oxy-, deoxy-, and total-
hemoglobin changes that are measured by NIRS reflect-
ing differing degrees of washout. We note that the rela-
tionships between multimodal measurements are
uniquely related to these parameters when compared
with the individual evoked responses considered inde-
pendently.
The sensitivity of our model each parameter in the

model can be numerically quantified by examining the
Jacobian of the model with respect to the model parame-
ters. We examined the rank and condition of the Jaco-
bian throughout the bounds of the parameter space to
determine if the set of measurements was sensitive to
each model parameter. We examined these properties for
the full multimodal, BOLD and ASL, and NIRS observa-
tion models. We found that the Jacobian was full rank
for the parameters estimated in each of these models,
which implies that an inverse of the model around a
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localized point is theoretically possible. Singular value
decomposition of the Jacobian provided similar conclu-
sions and showed that the number of independent

components was equal to the number of model
unknowns (for further discussion refer to [Huppert,
2007]). In comparison, when we examined the model
with BOLD only measurements, we found that it was
not possible to uniquely estimate many of the parame-
ters of the model, including the separation of flow and
consumption changes (i.e., the Jacobian was no longer
full rank). This finding was consistent with the previous
results from Deneux and Faugeras [Deneux and Fauge-
ras, 2006], which attempted similar analysis of BOLD
signals alone and found that many but not all of their
model parameters could be independently determined.
Here, we find that if we use both ASL and BOLD meas-

Figure 3.

Parameter sensitivity of the evoked hemodynamic response. This

figure illustrates the effect of the biomechanical properties of

the vascular network on the temporal dynamics of evoked

response. Panels (A) and (B) show qualitatively how the simu-

lated evoked responses vary with different values for the mean

vascular transit time (s) and Windkessel parameter (b). The

magnitudes of the responses are normalized to the peak

response for each measurement type in order to facilitate cross-

modality comparisons.

Figure 4.

Variance inflation factors for model parameters. The lower

bound on the uncertainty of each model parameter can be esti-

mated from the variance inflation factor (G; described in the

text). This factor determines the minimum parameter uncer-

tainty obtainable for a fit of the fMRI, NIRS, or multimodal data.

The values in this figure are normalized to the maximum

response contrast per modality in order to compare across the

various forms of contrast. Thus, the lower bound of the parame-

ter uncertainty for any of the parameters can be estimated for a

given contrast-to-noise ratio (CNR) by dividing by the CNR

value (e.g., with a CNR of 20:1, the Windkessel parameter, b,
can be estimated with a maximum precision of around 60.2

StdErr using the BOLD and ASL data). The degrees-of-freedom

(dof) for each model is given in the legend. These results are

shown for a linearization about the parameter set from the

model fit of the multimodal data shown in Table IV.
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urements, the model is better defined because informa-
tion about the model parameters can be additionally
determined from the inter-relationships of these signals.
To further explore the limits of the model, we examined
the Jacobian of each model as a function of the simulated
sample frequency and determined that the minimum ac-
quisition speed needed was approximately half of the
mean transit time. This implies that the estimation of
this model will require a minimum sampling rate of
above 1 Hz for both flow and BOLD signals, which is
unfortunately faster than is possible in most current
fMRI studies and was only possible in this study using
jittered stimulation presentation.
A further metric of model sensitivity is the variance

inflation factor (G), which quantifies the minimum uncer-
tainty that can be theoretically expected in the estimate of
each model parameter based on an analysis of the slope
(Jacobian) of the minimization function around a given
local model solution. This analysis allows us to examine
how distinguishable the effects of one parameter are from
the other parameters. Using the notation discussed in
[Deneux and Faugeras, 2006], for a small change in one
parameter (yi), the perturbation of the observation varies
by Jidyi, where Ji denotes the Jacobian of the forward
model with respect to the ith parameter. If the Jacobian
associated with the parameter under consideration is not
orthogonal to the Jacobian matrix with respect to the
remaining parameters (denoted Ju), then the cross talk
between parameters results in nonuniqueness of the solu-
tion because an error in one parameter can be compen-
sated by errors in other parameters. The maximum preci-
sion of each parameter can be estimated for a given level
of noise in the measurements from the variance inflation

factors as described in Deneux and Faugeras [2006] using
the following equation.

Ci ¼ I � Ju � JTu � Ju
� ��1

�JTu
� � �

� Ji
���� ���� var ðuÞ � C�1

i � var ðYÞ

ð7Þ

where JTi represents the transpose of the Jacobian matrix.
The smaller the corresponding diagonal element of the
variance inflation matrix (Gi), the more precisely the yi pa-
rameter can be determined for a given variance in the ob-
servation (Y) and the more sensitive the data set is to
changes in the parameter under consideration.
In Figure 4, we examine the sensitivity of the measure-

ments to changes in model parameters used in each fitting
procedure. Note that the full model (ASL, BOLD, and
NIRS) has more degrees-of-freedom than fMRI alone,
NIRS alone, or NIRS and BOLD models because the value
of the baseline blood oxygen saturation is fixed in these
models (refer Table III). The analysis was conducted for a
linearization about the parameter set determined from the
model fits to the empirical data (Table IV). The variance
inflation matrix was inspected for other linearization
points (not shown) and was found to be in quantitative
agreement to these results.

Example 2: Simulation Results and Global

Identifiability

The analysis of the Jacobian matrix described in our pre-
vious example indicated that the observation sets were
theoretically sensitive to the parameters being estimated
and thus the model was expected to be locally invertible.

TABLE IV. Estimation of model parameters

Multimodal fMRI model Optical model Model range

Dynamic evoked states DCMRO2max [%] 16.8 6 2.2 16.0 6 2.3 18.3 6 2.1 0–100 %
(Dilation) DDiameter [%] 5.8 6 1.1 5.6 6 1.2 6.5 6 0.7 0–90%
(Contraction) DDiameter [%] 4.0 6 2.3 3.7 6 2.3 4.6 6 2.1 0–90%

Static biomechanical parameters RA(0) 0.73 6 0.06 0.73 6 0.04 0.74 6 0.06 0.20–90
b 2.39 6 0.31 2.57 6 0.34 1.56 6 0.12 1.1–4
s [s] 1.61 6 0.22 1.64 6 0.27 1.14 6 0.13 0.5–4s
spial [s] 2.23 6 0.38 2.12 6 0.68 2.21 6 0.15 0–4s

SaO2 [%] 95.0 6 0.2 (95.0) (95.0) 90–100%
ScO2 [%] 77.6 6 0.4 (77.6) (77.6) 60–90%
SvO2 [%] 63.6 6 0.6 (63.6) (63.6) 55–89%

Observation model

V0 [%] 5.17 6 0.45 5.10 6 0.52 N/a 1–10%
e 3.81 6 0.02 3.75 6 0.03 N/a 1–5.5
[HbT]0 [lM] 100.4 6 7.1 N/a 95.2 6 5.8 40–140lM
xpial 0.56 6 0.07 N/a 0.43 6 0.07 0–1
DFlow: DVolume 3.33 6 0.12 3.40 6 0.10 3.06 6 0.07
DFlow: DCMRO2 1.50 6 0.28 1.54 6 0.35 1.81 6 0.26

This table shows the vascular model parameters estimated using combinations of the pulsed ASL and/or NIRS measurement data sets.
In the model fit to the entire multimodal data set, the baseline oxygen saturation for the three vascular compartments was also estimated
(SaO2-arterial; ScO2-capillary; SvO2-venous). For the remaining models, these values were not fit (assumed values are given in parenthe-
ses). The 95% uncertainty bound for each parameter was estimated from Markov Chain Monte Carlo simulations using the data set (the
50% and 75% confidence intervals are also presented as box plots in Fig. 7). Model parameters are defined further in the methods sec-
tion and Tables 1–3.
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However, the Jacobian can only be defined about a local
linearization point in nonlinear systems and such sensitiv-
ity analysis can be used to probe only the local precision
of the model but not its global identifiability. Using this
analysis we know that a local solution can be determined
but we do not know if this solution is unique.
To investigate the uniqueness of an estimated solution,

it is necessary to examine the ability of the model to cor-
rectly determine the parameter set from a global search of
the parameter space. We ran forward simulations of the
model using a sampling of the physiological states and pa-
rameters from within the expected physiological ranges
(refer to Table III). To emulate the fMRI and NIRS experi-
mental data, the measurements were simulated at a 2 Hz
sample frequency with a random additive instrumental
noise term (10:1 contrast-to-noise ratio to approximately
match the data). We reconstructed system parameters for
each simulation using the fMRI data alone, the NIRS data
alone, and the full multimodality data set to explore the
accuracy of the model to infer the physiological states. For
all reconstructions, the Levenberg-Marquardt minimization
algorithm was initialized at a random position within the
physiological range of the parameters. The same initializa-

tion was used for each modality set. Reconstructions were
iterated until a set convergence criterion was met (�106

iterations that took around 6 h per model estimation). A
total of 350 simulations were run for each of the three data
sets.
In Figure 5A, we show parametric plots of the simulated

(truth) values for the parameters used in the forward sim-
ulation against the reconstructed values obtained from
each of the three data sets (NIRS only, BOLD and ASL, or
NIRS, BOLD, and ASL data). The ability of a model to pre-
dict one subset of a data set (in this case the NIRS meas-
urements) from analysis of a different subset (the fMRI
data) is often used as a strategy to asses if a model has
been over-parameterized. We found that relative CMRO2

and arterial resistance changes (DRA) can be estimated
accurately with both single and multi- modality measure-
ment sets, consistent with the tests of local sensitivity. We
examined the accuracy of the estimation of key static and
response-related parameters in the model. We found that
the estimates of the Windkessel vascular reserve parameter
(b) had the most variance but could still be estimated
fairly accurately in spite of a slight systematic model
under-estimation bias at high values of b with the optical

Figure 5.

Examination of global parameter identifiability. In Panel (A), we

show the results from 350 simulations of the model. fMRI and

NIRS measurements were simulated at a contrast-to-noise ratio

of 10:1. The vascular parameters (refer to Table III) were esti-

mated from the multimodal (optical and fMRI), fMRI, or optical

data sets. For each plot, the simulated and recovered values are

shown (black—multimodal; red—fMRI; blue—NIRS). The solid

and dotted lines show a linear regression and 95% confidence

bounds. The R-squared (R2) values for these regressions are

shown within each plot. In Panel (B), we examine the cross-talk

between each parameter by looking at the cross-correlation

(Pearson correlation coefficients) of the error in the parameter

(normalized error 5 [recovered-simulated]/simulated).
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or fMRI only data sets. In Figure 5B, the covariance in the
error of the estimates for the parameters is plotted. The
lack of high correlation indicated a low interdependence
between variables and minimal cross-talk between these
parameters in the model. We noted the largest cross-talk
(R2 5 0.07) between the vascular transit time through the
pial-venous compartment and the relative change in
CMRO2. We also observed negative correlation between
CMRO2 and the blood oxygen saturation parameters in the
BOLD/ASL/NIRS model as also noted in [Huppert et al.,
2007] (not shown). Recall that baseline oxygen saturation
was not varied in the NIRS or fMRI alone models because
we found these parameters were not identifiable in the
reduced data sets.

Example 3: Estimating Relative CMRO2

Changes From Empirical Measurements

As a final example of the inverse procedure for our vas-
cular model, the model was used to analyze empirical
measurements of hemodynamic changes in the human
motor cortex following a 2-s finger-tapping task. To exam-

ine the estimate of the CMRO2 changes and other model
parameters given in Table III, the model was first fit using
the combined NIRS, ASL, and BOLD data set. The values
of baseline blood oxygen saturation from the model fit to
the full data set was then fixed and the model was applied
to the ASL and BOLD data and finally to the NIRS only
data.

Figure 6.

Model fit of empirical data. The vascular model was independ-

ently fit to the multimodal (Panel A), pulsed ASL and BOLD

measurements (Panel B), and NIRS measurements (Panel C).

Based on the parameters estimated from the model fit to one

data set (i.e., fMRI alone), the remaining data (i.e., NIRS) can be

predicted. These model predictions are presented for the fMRI

and optical data in Rows B and C. The error bars on the data

measurements (open circles) show the standard error from the

group average of the five subjects. The model predictions and

75% confidence bounds are shown as solid and dashed lines in

each plot. The data from 0 to 9 s was used in the model fitting

procedure.
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The fits of the fMRI only and NIRS only data sets closely
predicted the NIRS and fMRI data, respectively as shown
in Figure 6. The 75% confidence bounds for the model fit
to each measurement and the model predictions of the
opposing measurement set are shown as dotted lines in
Figure 6. To verify that the results of the model fit were in-
dependent of the initial position of the Levenberg-Mar-
quardt algorithm, we repeated the minimization for differ-
ent initial seed positions (see Fig. 7). The model fit using
the group-averaged response curves was consistent with
the mean of the fits to the five individual subjects (see Fig.
7). Inter-subject variations in the parameter estimates were
observed, but remained consistent whether the reduced or
full data sets were used in the fitting. The values of the
estimated parameters and uncertainties are given in Table
IV. In Figure 7, we graphically present the estimates for
the key model parameters and uncertainties for both the
group and individual subject analysis. The estimated
dynamic changes in arterial diameter and CMRO2 are
shown in Figure 8.

Calculated Baseline Physiological Properties

Based on the values of the estimated biomechanical pa-
rameters presented in Table IV, several additional physio-
logical quantities can be determined and are presented in
Table V. Importantly, the vascular transit time and the vas-
cular volume fraction, needed to scale the BOLD signal
were both precisely determined. Vascular volume fraction,

Figure 7.

Parameter accuracy. The mean and uncertainties in the parame-

ter estimates are illustrated using box and whisker plots to

show the median (vertical line), 50% (box edges), and 75%

(whiskers) percentile confidence bounds for each estimated pa-

rameter for the model fits to the group averaged data (N 5 5).

The results are shown for the model fits to the fMRI-BOLD/ASL

data alone, optical NIRS data alone; and multimodal BOLD/ASL/

NIRS data sets. The open circles represent the fitted model pa-

rameters from variation of the initial starting position of the LM

algorithm used in the analysis of the group averaged data (from

variations of the extrema of the parameter bounds given in Table

III). In addition, the dotted vertical lines show the mean esti-

mates for each of the five individual subjects fit using the same

model.

Figure 8.

Dynamic CMRO2 and arterial diameter changes. The dynamic

changes in arterial diameter (inversely related to resistance

changes) and CMRO2 are shown in Panels (A) and (C), respec-

tively. The solid and dotted lines show the most probable and

75% confidence intervals for the time-courses estimated from

the multimodal, fMRI, and optical data sets. Panel (B) shows the

histogram of the ratio of maximum flow to volume changes

recovered from the Markov Chain Monte Carlo process. In

Panel (D), the flow-consumption ratio is shown for the three

data sets.
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in units of milliliters of blood per milliliter of tissue, is eas-
ily converted to blood volume, in units of milliliters of
blood per 100 g of tissue, given the approximate density of
brain tissue (1.04 g/ml [DiResta et al., 1991]). This baseline
blood volume divided by the vascular transit time pro-
vides an estimate of baseline blood flow. Likewise, base-
line CMRO2 can be calculated from the baseline blood
flow and oxygen saturation within the venous compart-
ment. We were able to precisely estimate the venous oxy-
gen saturation only in the model using the combined fMRI
and NIRS data and we found that this estimation was not
as accurate using only the fMRI only data. Thus, we fixed
the value of baseline vascular oxygen saturations in the
model estimates using the fMRI only or NIRS only data.
Prior studies have noted that the oxygen extraction frac-
tion varies only a few percent between different regions of
the brain and this justifies constraining the range of
expected cerebral venous oxygen saturation to the range of
60% 6 9% based on previous measurements in the healthy
adult brain [He and Yablonskiy, 2007; Raichle et al., 2001].
The estimated baseline blood volume, blood flow, and oxy-
gen consumption using different combinations of fMRI
and NIRS data are shown in Table V. Although we
assumed a value for the resting oxygen extraction in the
fMRI-only and NIRS-only models, we found that the esti-
mate of baseline blood flow and oxygen consumption
based on the estimated scaling parameters and vascular
transit time from the fMRI data alone was consistent with
the estimate from the NIRS alone fit and also with the
combined fMRI and NIRS fit. The values of the estimated
baseline physiology for the group data and the mean of
the results from the five individual subjects are presented
in Table V.

DISCUSSION

Measured hemodynamic responses are the net result of
the competing effects of an increased metabolic demand
for oxygen and an increased supply of oxygen transported
by hemoglobin through the flow-inducing response. How-
ever, the role of variable baseline physiology and vascular
biomechanical properties in the interpretation and repro-
ducibility in the measurements of these responses has
been largely under-appreciated. In this work, we have
introduced an inverse model for the analysis of multimo-
dal hemodynamic data which depicts how baseline physi-
ology and vascular structure affect the relative magnitudes
and temporal dynamics of evoked signals. Although our
model is similar to previously published models of the
vascular system (reviewed in [Buxton et al., 2004]), our
approach focuses on the dynamics and relative timing dif-
ferences observed between multimodal measurements
rather than the absolute magnitude of such signals. This
allows us to characterize of the vascular properties more
accurately by considering the interrelated dynamics of
multimodal measurements in addition to the changes in

absolute magnitude. The vascular and oxygen transport
phenomena are considered simultaneously in this work,
which creates a unified multimodal model that enables
incorporation of both measurements of blood flow and ox-
ygenation changes into a single and self-consistent descrip-
tion of the underlying physiology. In this way, we demon-
strate that BOLD signals can indirectly add information
about both the flow-volume relationship and CMRO2

changes. We suggest that it is possible to infer blood vol-
ume changes from measurements of blood flow (ASL) and
BOLD alone but note that these estimates are subject to the
assumption of baseline values for oxygen extraction from
the vascular compartments. Similarly, we report that blood
flow changes can be inferred using measurements of blood
volume and oxygen saturation changes alone (i.e., NIRS
measurements). The calculated estimates of CMRO2 and
arterial resistance changes were largely consistent with
those obtained when we used the full complementary set
of fMRI and NIRS information.

Physiological Relevance of Estimated Model

Parameters

Because the estimation of the model parameters was re-
stricted to physiological ranges based on previous litera-
ture, it is expected that the parameter values estimated
from the data are also consistent with this literature. The
estimate of the Windkessel vascular reserve parameter (b)
is consistent with values estimated from evoked responses
found in [Jones et al., 2002; Mandeville et al., 1999b; Wu
et al., 2002; Zheng et al., 2005] and in approximate agree-
ment with the steady-state flow-volume relationship
[Grubb et al., 1974]. Our estimated total mean vascular
transit time (including pial vein) (s 5 3.3–3.8 s) is consist-
ent with cortical gray matter values measured with
dynamic susceptibility contrast-enhanced MRI methods
(DSC-MRI) (s 5 1.2–6.9 s as compiled in [Ibaraki et al.,
2006]) and previously applied to modeling the BOLD sig-
nal [Buxton et al., 2004].
We found that secondary calculations of physiological

values based on the estimated parameters were also con-
sistent with previous literature. This is further validation
of our model because our analysis did not explicitly
impose this consistency. For instance, while there are
physiological bounds on the magnitude of both flow and
consumption changes, there is a much weaker constraint
on the ratio of flow to consumption changes. Our esti-
mated ratios of peak blood flow to peak blood volume
changes of 3.0–3.4 (Table III) were consistent with previous
literature values of 2–4 [Huppert et al., 2007; Jones et al.,
2002; Mandeville et al., 1999a; Martin et al., 2006; Wu
et al., 2002]. The determined values of the flow-to-oxygen
consumption ratio between 1.5:1 and 1.8:1 is also consist-
ent with literature measuring these changes in comparable
experiments where values of 1.5:1–3:1 have been reported
in studies using fMRI [Boas et al., 2003; Dunn et al., 2005;
Hoge et al., 1999; Kastrup et al., 2002] and higher ratios of
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5–6 have been reported in PET studies [Fox and Raichle,
1986]. Although our estimated flow: consumption ratio is
in the range of previous literature values, our estimates
that utilize the ASL data were somewhat lower than the
average value from the fMRI literature (�2:1). We
hypothesize that this may be a result of an unaccounted
partial-volume error in the ASL measurements arising
from our defined region-of-interest and require further
investigation. This underestimation of flow is further sup-
ported by the higher predicted flow changes from the
model fit of the NIRS data set (see Fig. 6). In the ASL
model, the ASL measurements were considered direct
measurements of the relative flow changes and no addi-
tional scaling parameters were applied unlike the BOLD
and NIRS measurements where calibration factors were
estimated. We note, however, that fitting a scaling factor
on both the ASL and BOLD signals may give rise to a non-
unique estimation of CMRO2 changes and baseline
CMRO2 from the ASL and BOLD only data set. The same
does not apply to parameter estimation with the NIRS
only data set because only one partial volume term was
applied to scale oxy-, deoxy-, and total-hemoglobin meas-
urements. The value of the NIRS scaling factor does not
change the ratio of hemoglobin changes (i.e., the peak
oxy-/deoxy- hemoglobin changes normalized to the peak
total-hemoglobin change) which is the relevant measure
giving sensitivity to b and s.

Estimates of Baseline Physiology

The estimates of baseline volume, flow, and CMRO2,
were consistent between the three dataset combinations
used in the model fitting procedure (Table V). The esti-
mate of baseline blood flow from the three data sets was
86 ml/100 g/min (mean) [range 82–93 ml/100 g/min].
Previously reported values of baseline blood flow in
human cortex range from 80 to 100 ml/100 g/min in gray
matter and �20 ml/100 g/min in white matter as meas-
ured using positron emission tomography (PET) (reviewed
in [Coles, 2006; Ito et al., 2005]). Our estimates derived
from evoked changes represent gray matter estimates of
flow, volume, and CMRO2. This explains why our esti-
mates of blood flow are higher than the reported values
that average gray and white matter (e.g., �44 ml/100 g/
min from data complied in [Ito et al., 2005]).
Our estimate of baseline oxygen extraction determined

from the combined BOLD, ASL, and NIRS data set was
36.6% 6 0.2%. This value is consistent with values
reported in the literature of 35–43% from PET [Diringer
et al., 2000; Raichle et al., 2001] and quantitative BOLD-
fMRI 38% 6 5% [He and Yablonskiy, 2007]. In the fMRI
only and NIRS only models, the value of oxygen extraction
was assumed based on the value obtained from the full
model fit. The additional estimation of this parameter
introduced considerably more uncertainty in the recovered
value of CMRO2 from these models. We consider the
assumption of oxygen saturation in these models reasona-

ble given that previous studies have demonstrated fairly
small ranges for these values in normal, healthy popula-
tions. However, this assumption poses a potential source
of systematic error for the application of our model to
atypical subject populations.
Lastly, we estimated baseline cerebral oxygen consump-

tion (CMRO2). Our estimate of 5.2 ml O2/100 g/min
(mean) [range 5.2–5.4 ml O2/100 g/min] is higher than
reported values of 3.3 6 0.5 ml O2/100 g/min [Ito et al.,
2005]. However, the values reported in these PET studies
are based on flow measurements that represent the aver-
age of both gray and white matter values. Baseline CMRO2

in gray matter is estimated to be �3.5–8 ml O2/100 g/min
using the literature ranges for gray matter blood flow, oxy-
gen extraction, and hemoglobin content referred earlier.

Advantages of the Bottom-Up Model

Our model used a curve-fitting approach to estimate the
underlying changes of CMRO2 and arterial resistance. The
use of such an inverse model allows us to incorporate our
multimodal data into a unified estimate of the underlying
physiology. In contrast to our approach, most previous for-
mulations of vascular models have been built around a
top-down (or deductive) approach where CMRO2 changes
are estimated from the set of hemodynamic measurements.
Because deductive models calculate CMRO2 changes
directly from measurements, the results directly reflect the
quality of the data used. In such models, CMRO2 changes
can be recovered only at the lowest spatial and temporal
resolutions of the data used. In addition, the error in the
estimate of CMRO2 is compounded by the errors in multi-
ple measurements and the resulting estimates generally
have errors greater than the noisiest measurements used.
In an inductive framework, measurements are forward-

modeled from changes in the underlying states (i.e., arte-
rial resistance and CMRO2). The estimate of the underlying
states requires the solution of an inverse problem, which is
more computationally intensive than the equations used in
the deductive approach. However, the distinct advantage
of the inductive approach is that model inversion may be
possible with limited sets of observations (as in the fMRI
alone analysis) and redundant information can be fused
into estimates that maximize the joint probability of all
observations (as in the full multimodal analysis). The in-
ductive framework predicts all possible observations, not
all of which are necessarily measured thus allowing the
use of a smaller subset of possible observations to estimate
the parameters in the model. Additionally, the inductive
model may be used to take advantage of advanced state-
space estimation techniques, which are particularly useful
for hidden-variable or under-determined problems. Several
methods have been described to solve problems in this
framework, such as the Kalman filter for dynamically vari-
ant systems. In this model, we use a time-invariant
approach, but recognize that advanced techniques could
provide additional advantages in future work. Lastly, the
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model setup described has the advantage of providing a
mechanism by which multimodality information can be
fused within a Bayesian framework by incorporating statis-
tical error of each measurement and the corresponding ob-
servation model for each modality. Recently several similar
inductive models have been applied to interpretation of
fMRI data [Deneux and Faugeras, 2006; Friston, 2002] and
the fusion of fMRI and EEG data [Riera et al., 2005].

Model Assumptions and Future Extensions

The vascular model we have described is a simplified
approximation of the complex behavior of the cerebral sys-
tem. Therefore, we must be cautious in the physiological
interpretation of such model-based results and identify
how they may be affected by the assumptions made. These
approximations must be tested and either confirmed or
refined based on future human and invasive animal model
studies. We believe that this model will provide a mecha-
nism to develop hypotheses which may facilitate future
testing of the consistency of these model assumptions with
experimental evidence. On the basis of our model, we can
make predictions about how the evoked response is
expected to change under different conditions, for example
hyperemia. Testing these hypotheses can provide a means
to examine the validity of our assumptions and provide
corrections if necessary. We believe that the development
of a unified model to allow us to examine measurements
from a variety of different imaging modalities, experimen-
tal conditions, and animal models including both human
(as described this work) and invasive small animal studies
[Huppert et al., 2007], is important to improving the
understanding of cerebral mechanisms in future work.
In our current model, the estimation of CMRO2 from

ASL and BOLD data assumes the values of the relative
volume fraction and the oxygen saturation of each vascu-
lar compartment. The baseline volume fraction of the arte-
rial, capillary, and venous compartments used in this
study was assumed to be 25, 15, and 60%, respectively
[Duong and Kim, 2000]. This assumption may affect the
accuracy of the BOLD calibration and estimated CMRO2

changes to the extent of the variability of these volume
fractions between different cortical regions of the brain.
Although the dynamics of the fMRI response is sensitive

to the baseline oxygen extraction, we found that the addi-
tional fitting of the baseline oxygen saturations of each
vascular compartment in the fMRI only or optical only
models created considerable uncertainty in the estimation
of relative CMRO2. We found that the most probable value
of relative CMRO2 estimated from the fMRI data was con-
sistent whether or not the oxygen saturation parameters
were allowed to vary in the model (19% 6 6% maximum
rCMRO2 when fitting for oxygen saturation), and the
uncertainty of this magnitude was much larger unless oxy-
gen saturation was assumed. In previous work, Raichle
et al. have suggested that there was little spatial variation
in the oxygen extraction fraction across the normal healthy

adult brain [Raichle et al., 2001] and, thus, we believe that
it is reasonable to use an a priori assumption of oxygen
extraction values to help better constrain model. The valid-
ity of this assumption, however, is suspect in pathological
cases. We note that the oxygen saturation of each vascular
compartment could be estimated when the full set of blood
flow, volume, and oxygen saturation (or BOLD) changes
were included in the model.
Furthermore, the estimates of absolute functional and

baseline parameters rely on the quantitative accuracy of
the measurement methods which in turn depends on
uncorrected partial volume errors. In this work, we have
neglected partial volume errors of the fMRI methods. For
the optical data, partial volume effects were corrected
using the anatomical information from MRI [Huppert
et al., 2006a]. However, we note that the accuracy of this
correction depends on the accuracy of the model of light
propagation in the tissue. Uncertainty in the estimated
baseline blood volume, flow, and CMRO2 is linearly de-
pendent on any systematic errors in the partial volume
correction. We found that the estimates of relative changes
in CMRO2, blood flow, or volume are largely unaffected
by partial volume errors because these parameters are nor-
malized within the model and are affected only by uncer-
tainties in the temporal characteristics and relative magni-
tudes of the hemodynamic signals.
A final limitation of our model is its numerical complex-

ity and the extensive computational power needed to per-
form the model inversion and estimation of parameters.
Because of this complexity, we currently limited the analy-
sis to only one or a few regions-of-interest within the
brain. Systematic biases may thus have been introduced
due to (i) the choice of the region-of-interest, (ii) varying
spatial resolution of the optical and fMRI measurements,
and (iii) the potential for displacement of the locations of
different functional contrast types due to the underlying
arterial and venous spatial structure [Huppert et al.,
2006a]. In future work, this vascular model can be
extended to incorporate a more accurate forward tomogra-
phy model of the optical measurements which may allow
the reconstruction of CMRO2 and flow volume images. It
should be noted that this will require of the use of more
efficient computational methods within future work in
order to overcome the high dimensionality of the nonlinear
imaging problem.

CONCLUSIONS

Hemodynamic changes are influenced by both evoked
metabolic and vascular response, but are also sensitive to
the biomechanical, structural, and physiological state of
the brain. By using multimodal methods to investigate
these changes and, in particular, by examining the
dynamic characteristics and inter-relationships between
different measurement types, we have found that multimo-
dal fMRI measurements may be used to examine some of
the underlying properties of the brain. We have illustrated
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how our dynamic vascular model may be used to obtain
estimates of some of the underlying physiological proper-
ties of the brain based on curve-fitting techniques and
high-temporal resolution functional signals. Further confir-
mation and validation of our approach would provide an
important new approach for estimating evoked changes in
cerebral oxygen metabolism with fMRI without the need
to calibrate the BOLD signal with hypercapnia or assume
a flow-volume relationship.
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