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Abstract
Chemokine receptors play fundamental roles in human physiology from embryogenesis to
inflammatory response. The receptors belong to the G-protein coupled receptor class, and are
activated by chemokine ligands with a range of specificities and affinities that result in a complicated
network of interactions. The molecular basis for function is largely a black box, and can be directly
attributed to the lack of structural information on the receptors. Studies to date indicate that function
can be best described by a two-site model, that involves interactions between the receptor N-domain
and ligand N-terminal loop residues (site-I), and between receptor extracellular loop and the ligand
N-terminal residues (site-II). In this review, we describe how the two-site model could modulate
binding affinity and ligand selectivity, and also highlight some of the unique chemokine receptor
features, and their role in function.
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The Chemokine System
Chemokine receptors are members of G-protein-coupled receptor (GPCR) superfamily, and
are activated on binding their cognate ligands of the chemokine family. Chemokines, or
chemotactic cytokines, are a large family of small soluble proteins, and are distinguished and
classified, based on the presence of conserved cysteine residues, as ‘CC’, ‘CXC’, ‘C’ or
‘CX3C’ [64]. The receptors, in turn, are classified based on the ligands they bind. These
receptors and ligands first shot to prominence for their critical role in the orchestration of
inflammation and the immune response, and are now known to play important regulatory roles
in diverse biological processes such as organ development, angiogenesis and leukocyte
trafficking [56,62,63,86]. Based on their functionality, chemokines are broadly classified as
inflammatory or homeostatic, with a few exhibiting dual functions.

The current high level of interest in chemokine biology stems not only from their beneficiary
role of immunomodulation and cell trafficking, but also from their harmful role as
pathologically dysregulated molecules. The chemokine-receptor system is finely regulated, so
any imbalance in the chemokine network has a potentially detrimental effect. Indeed,
chemokines and their receptors have been implicated in the pathophysiology of numerous
autoimmune and inflammatory diseases, and in cancer progression and metastasis [33,55,76].
Chemokine receptors also hold their own unique fascination to researchers of viral diseases,
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as several viruses have developed ways to manipulate these receptors for their own survival
[3,46]. The best-known examples are those of chemokine receptors CCR5 and CXCR4, which
are used by the human immunodeficiency virus (HIV-1) as co-receptors allowing viral entry
into the cell [7]. Moreover, chemokine receptors are excellent drug targets as over 40% of the
top 200 synthetic drugs in the market target GPCRs. Therefore, the knowledge of how
chemokines and chemokine receptors exert their function is essential for rational drug design
[42,76].

A start has been made toward such an understanding, by identifying key steps involved in the
process of chemokine-mediated leukocyte recruitment (Fig. 1). Leukocyte migration during
conditions of tissue injury or infection is a multi-step process involving the following steps:
(i) local upregulation of pro-inflammatory chemokine secretion in response to signaling
molecules such as TNF-α and IFN-γ, (ii) presentation of these chemokines on endothelial cell-
surface glycosaminoglycans (GAGs), (iii) binding of chemokines to their cognate receptors on
the leukocyte cell surface, (iv) activation of the leukocyte receptor resulting, among other
effects, in increased adhesiveness, shape change and extravasation of the leukocyte, and (v)
migration of the leukocytes along the chemokine gradient within the extracellular matrix
toward the site of infection or injury [62,87]. Each of these processes is a potential checkpoint
for regulation of chemokine function, and can be exploited as potential drug targets [42,76].

While several chemokine receptors are promiscuous, binding multiple ligands with similar
high affinity, some are strictly specific binding only a single ligand. The ligands, in turn, also
exhibit a range of diverse specificities, and unraveling the resulting network of interactions
appears daunting (Fig. 2). With multiple ligands binding a single receptor and a single ligand
binding multiple receptors, and with similar binding affinities and functional activities, there
seems to be a high degree of apparent redundancy. Viewed differently, this apparent
redundancy could in fact be indicative of complex and fine-tuned regulation, as different
ligands binding a single receptor or a single ligand binding multiple receptors could elicit both
shared and unique signaling events that orchestrate spatial/temporal regulation of the
recruitment process. The chemokine family of ligands and receptors is one of the most intricate
biological systems being studied today, so an understanding of the mechanism of action and
its relevance to in vivo physiology requires a multi-prong approach and techniques from cell
biology, immunology and structural biology to in vivo animal models.

Structure-function—Complexity and Elegance
Receptor binding affinity is the first and most basic level of regulation of chemokine function,
but affinity is also intimately coupled to both ligand and receptor specificity (Fig. 2). We will
initially use both the systematic and the commonly used names of a given chemokine (IL-8/
CXCL8), and subsequently confine to the commonly used name (IL-8). An understanding of
the structural basis of affinity and selectivity is essential, and with over 40 ligands and 18
receptors identified to date, this is easier said than done. However at the structural level, within
this confounding complexity is also an elegant simplicity. Structures of a number of
chemokines have been determined, and despite large differences in sequence homology, all
exhibit the same basic structural fold known as the chemokine fold [12,20,22,23,26,29,44,
45,52,57,59,73,78,83,91]. The structure consists of a short N-terminal region, an extended N-
loop region, followed by three β-strands and an α-helix (Fig. 3). Structure-function studies
indicate all ligands interact with their receptor using the same two regions, N-terminal and N-
loop residues (discussed later).

A characteristic property of chemokines is also that all form dimers, and some very high-order
oligomers [24]. However, dimerization potency varies by several orders of magnitude, with
some chemokines forming very strong dimers (Kd ~ nM), and some forming dimers only under
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crystallization conditions (Kd ~ mM), and further dimer formation is also sensitive to solution
conditions. These observations together suggest that chemokine dimerization should play some
fundamental role in its in vivo function. Design of trapped monomers and monomer mutants
for several chemokines have shown that the monomer is the active form for in vitro receptor
function [49,67,82,84]. Indeed, we have recently observed that the chemokine interleukin
(IL-8)/CXCL8 dimer binds its receptor with lower affinity, and have proposed that
dimerization negatively regulates receptor function [30,75,85]. Interestingly, platelet factor 4
(PF-4)/CXCL4 has been shown to form heterodimers with IL-8 and RANTES/CCL5, and such
heterodimers show distinctly different in vitro activities compared to monomers indicating that
heterodimerization could also play a role in vivo [65,95]. In the case of RANTES, it has been
shown that higher order oligomers is critical for CCR1-mediated arrest but not for CCR5-
mediated spreading/transmigration in flow or transendothelial chemotaxis of leukocytes [5].
These processes involve binding to both GAGs and GPCRs, and in recent years, various studies
have shown that dimerization and GAG-binding are coupled, and that such a process plays an
essential role in leukocyte recruitment [40,50]. Several recent excellent reviews have addressed
the role of GAG binding, dimerization, and function [37,48].

While the structural and functional characteristics of chemokine ligands have been intensively
investigated, studies on receptors have been few and far between, due to the intrinsic difficulties
in studying membrane proteins. Structures of chemokine receptors are not known, and the only
GPCR structure known to date is that of bovine rhodopsin [69]. Sequence analysis indicates
that all chemokine receptors share a similar fold, and have an extracellular N-terminal domain
(N-domain), seven TM segments, three extracellular loops (exoloops), three cytoloops, and a
C-terminal segment. By analogy to the structure of rhodopsin, the membrane-spanning
segments of all chemokine receptors can be envisaged as being arranged in a circle, with the
extracellular domains proximal and held in space by the disulfide bonds. Nearly all members
of the GPCR superfamily have a pair of conserved cysteines in exoloops 1 and 2, which are
thought to form a disulfide bridge linking these two loops [4]. Most chemokine receptors
contain two additional cysteines, one in the N-domain and another on exoloop 3; these two
cysteines could form a disulfide bringing the N-domain and this loop into close spatial
proximity [10,89].

Computational methods for structure prediction of membrane proteins have been successful
in identifying transmembrane domains as helices or strands, and indeed such methods are
critical for classifying membrane proteins as belonging to the GPCR class. However such
methods fail to provide an accurate description of the structures of the N-terminal or C-terminal
residues and those of the loops linking the transmembrane helices. Currently available
computational tools are best suited only for predicting protein structures in a homogeneous
environment, such as soluble proteins in an aqueous milieu and membrane spanning proteins
in a hydrophobic milieu. N- and C-domains and the loop residues are proximal to the membrane
environment, and so the structural properties of these residues are influenced both by the
membrane and the aqueous solvent milieu; solution properties such as the dielectric constant
in the ‘twilight’ zone will not reflect that of the bulk solvent [99]. Further, these chemokine
receptor domains are small in length (< 50 residues), and computational methods in general
do not work well for short sequences.

Chemokine-receptor Interactions—Two-site Model
Structure-function studies have consistently shown that the N-terminal and N-loop residues on
ligands and the N-terminal domain and one or more exoloops of receptors are involved in the
binding interaction [1,6,8–19,22,32,34–36,38,43,47,49,53,60,61,67,68,74,88,90,92,97,98,
100–103]. On the basis of structure-function data, a general two-site mechanism of ligand-
receptor interaction has been proposed for all chemokines (Fig. 4) Binding involves

Rajagopalan and Rajarathnam Page 3

Biosci Rep. Author manuscript; available in PMC 2009 April 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



interactions between the ligand N-loop and receptor N-domain (site-I), and ligand N-terminal
and receptor exoloop residues (site-II). However, a comprehensive and quantitative description
is currently lacking as to how the two-site interaction mechanism mediates affinity, selectivity,
and activation. In this review, we discuss the current knowledge, and also how the two-site
model can be used for describing binding affinity and ligand specificity.

Chemokines are mainly classified into CXC and CC families on the basis of conserved
cysteines near the N-terminus. The CXC chemokines can be further divided into two
subgroups, ‘ELR’ and ‘non-ELR,’ based on the presence or absence of this motif before the
first cysteine. Except for the ELRCXC class, sequence analysis has provided no insights into
ligand affinity and receptor selectivity. ELRCXC chemokines bind both CXCR1 and CXCR2
receptors. Among ELRCXC chemokines, IL-8 alone binds both receptors with high affinity.
All others including MGSA bind CXCR2 with high affinity, and CXCR1 with low affinity
[2,18]. The structural basis of IL-8 and related chemokine MGSA/CXCL1 binding to CXCR1
and CXCR2 has been well studied [6,16–19,32,35,38,39,43,54,74–82,84,88,98,100]. We will
describe the current knowledge on IL-8/MGSA/CXCR1/CXCR2 system to illustrate the
structural basis of chemokine receptor function, as the properties of this subset of chemokines
and their receptors reflect the complexity seen on a broader level in the entire chemokine-
receptor system.

Sequence analysis of the ELRCXC chemokines shows that the N-terminal residues are
conserved whereas the N-loop residues are not, suggesting that the differences in binding
should be due to site-I interaction (Fig. 4). Structure-function studies have essentially used two
approaches, site-specific mutagenesis and generation of chimeric chemokines by swapping
identical domains. These studies consistently show that the core residues such as the β-strands
and the α-helix function as a scaffold and could be swapped between chemokines without loss
of function, and that N-loop (site-I) and N-terminal (site-II) residues mediate receptor binding
affinity, selectivity, and activation. The N-terminal residues are shown to be essential for both
binding affinity and receptor activation, and that the N-loop residues are essential for binding
affinity and receptor selectivity. For instance, IP-10/CXCL10, a chemokine that selectively
binds CXCR3 receptor, on grafting the IL-8 N-terminal, N-loop and 30 s turn residues that are
adjacent to the N-terminal residues, gained CXCR1 and CXCR2 function [17]. Comparison
of IL-8 and MGSA structures also showed the largest structural difference for the N-loop
residues [20,26,78]. Indeed, MGSA gained IL-8 like function and vice versa by swapping the
N-loop residues suggesting that the site-I interaction plays an important role in receptor
selectivity [54]. Chemokines bind their receptors with nM affinity, and binding of both N-loop
(site-I) and N-terminal residues (site-II) should contribute to the affinity.

If we assume the free energy of binding (ΔG) is the sum of binding energies at site-I (ΔGI) and
site-II (ΔGII),

(1)

where ΔGtotal is the free energy change from overall ligand binding, ΔGsiteI is from N-loop
residues, and ΔGsiteII is from N-terminal residues. IL-8 N-terminal ELR mutants bind with
μM affinity and are inactive suggesting that N-loop residues bind their receptors with μM
affinity, and that the binding of N-terminal residues is a low-affinity, high specificity
interaction and are involved in receptor activation. Mutagenesis and the chimera data for other
chemokines also indicate that the site-I and site-II interactions differentially influence binding
affinity, selectivity, and activation [22,34,53,68]. For instance, deleting N-terminal residues of
RANTES, MCP-1/CCL2 and MCP-3/CCL7 resulted only in marginal loss of binding affinity,
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but were inactive indicating that N-terminal residues play a major role in activity and not
affinity. RANTES N-terminal deletion mutant was no more specific and could bind to
additional receptors suggesting that the N-terminal residues also play a direct role in receptor
selectivity by negatively regulating binding to other receptors [34]. Further, addition of a single
methionine to the N-terminus of RANTES also abolishes its receptor activities but not binding
affinities indicating further a fundamental role for the N-terminal residues in determining
activity [72]. Deletion/mutation of the first two N-terminal residues in SDF-1α/CXCL12 shows
loss of function but native binding affinity indicating that these residues are important for
receptor activation but do not contribute to the binding affinity [22]. Interestingly, an
SDF-1α -terminal peptide comprising of first nine residues was only 100 fold less potent both
in binding affinity and receptor activity indicating that the rest of the N-terminal residues 3–9
contribute to binding affinity, and most importantly that binding to the N-loop is not absolutely
essential for receptor activation [53]. These observations at that time were simply described
or discussed as change in function either due to binding one or the other site, and in fact are
best described by a two-site model where the binding events are coupled.

Structural basis of chemokine receptor function has also been investigated using the approaches
of site-specific mutagenesis and generation of chimeric proteins. These studies, though not as
extensive as for the chemokine ligands, showed that the N-domain and extracellular loop
residues mediate binding affinity, ligand selectivity and activation. Design of CXCR1 and
CXCR2 chimeras created to switch ligand specificities show that both the N-domain and the
extracellular loop residues play a role in this process, and that binding to site-I and site-II cannot
be described as simply additive [1]. In other words, switching the N-domain alone did not
switch specificities [32,47,94]. It appears from these studies that the site-I interaction is the
major contributor to affinity but plays only a partial role for specificity. Similar to the ligand
studies, these studies in fact afforded tantalizing glimpses into coupling between the two sites,
but were not appreciated at that time.

The most direct evidence for the two-site model comes from the observation that IL-8 binds
the isolated CXCR1 N-domain with an affinity similar to that for the N-domain in the intact
receptor. A structure of the IL-8-CXCR1 N-domain peptide also shows that only the IL-8 N-
loop residues and not the N-terminal residues bind to the receptor N-domain [92]. We also
recently made an interesting and unexpected observation that MGSA, like IL-8, also binds the
CXCR1 N-domain in micelles with μM affinity under conditions that mimic the native
environment [74]. The observation that the binding affinities of IL-8 and MGSA for site-I
interaction are similar seems to be inconsistent with the observation that MGSA compared to
IL-8 binds CXCR1 with 100-fold lower affinity. To account for these observations, we have
proposed a model in which binding to the two sites are not independent (Eq. 1) but coupled
(Eq. 2). According to this model, the binding affinity can be described as,

(2)

where ΔGcoupling is the coupling energy between the sites. This coupling energy could be
positive or negative; in the former case, binding at site-I/II increases the binding affinity at
site-II/I, and in the latter, binding at one-site decreases the binding affinity at the other site. In
the case of IL-8 and MGSA, we propose that differences between their binding affinities are
not due to differences in binding energies at the individual sites but due to differences in
coupling energy between the sites. We further propose that the binding is sequential, and that
initial binding to site-I results in conformational changes both in the ligand and/or receptor
which either facilitates or negates binding at site-II.
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As can be seen from Fig. 2, chemokine receptors exhibit a range of ligand binding specificities,
and may bind several or all members of a subfamily, in which case a single receptor N-domain
sequence binds different ligand N-loop sequences. On the other hand, a single ligand is also
known to bind multiple receptors, in which case a single ligand N-loop sequence binds multiple
divergent receptor N-domain sequences. The low sequence homology among N-domains of
chemokine receptors therefore could explain specificity but not promiscuity. This
inconsistency, however, is only inexplicable if we assume that the two sites of interaction are
independent and are not coupled. The concept of coupling between the two chemokine-receptor
binding sites, is a powerful way to explain the apparent paradox, and reconciles the wide range
of specificities seen among the chemokine ligands and receptors. If we assume that binding
interactions are not simply additive but coupled, we can rationalize how a single receptor N-
domain can bind to different ligand N-loop sequences, or multiple N-domain sequences can
bind to a single ligand N-loop with similar apparent affinity. The Site-I interaction may or may
not differ in affinity, depending on the ligand-receptor pair, but affinity differences could arise
from differential coupling in each case to the corresponding Site-II interactions.

What could be the molecular basis of coupling between Site-I and Site-II? In both the
chemokine ligands and receptors, disulfide bonds connect the regions of the protein involved
in the two-site interactions. In chemokine ligands, two disulfide bonds ‘tether’ the N-loop and
N-terminal residues to the core of the protein. A characteristic feature of chemokines is the
conserved disulfides, and deleting these disulfides results in loss of function. In the case of
IL-8, it has been shown that modifying but without deleting these disulfides results in lowered
receptor-binding affinities indicating that disulfides mediate function in the folded protein
[80]. Disulfides could mediate the binding of the individual domains or also could also play a
role in communication between the two sites and the protein core. Deleting the disulfides in
the receptors also results in loss of function [10,51], but the mechanisms by which disulfides
mediate binding is not known. We propose that the disulfide bonds linking the N-domain and
exoloops are involved in similar communication between the two binding sites on receptors.
Thus, in addition to the compelling evidence that can be put forth based on functional evidence
for two-site coupling, structural features of both ligands and receptors also support evidence
for two-site coupling.

A related question is also what is the role of the scaffold (β-strands and the α-helix; Fig. 3).
For instance, switching IL-8/MGSA specificities not only required swapping N-loop residues,
but also swapping the third β-strand residue Leu49/Ala49. This mutation is not part of the
binding site but is adjacent to the 9–50 disulfide bond [54]. Design of chimeras also suggests
a role for the scaffold in mediating function. It has been shown that IP-10, MGSA, and IL-8
chimeras containing SDF-1α N-terminal and N-loop residues have highly differential binding
affinities and activities, with MGSA chimera showing native SDF-1α function and IL-8
chimera showing no binding or function [22]. These observations are remarkable suggesting
that all scaffolds are not equivalent, and that in addition to tethering the functional residues,
they could also mediate coupling interactions between the domains and so play a role in
function.

There is evidence that structural features such as turns and loops also influence binding. For
instance, mutating GAG-binding 40 s loop residues in RANTES also results in reduced CCR1
but not CCR5 binding [58,71]. These residues are located distal to the N-loop residues, and so
most likely do not directly bind to the receptors, but mediate binding by modulating the
properties of the N-loop residues [71]. In a similar fashion, mutating IL-8 30 s loop residues
(Gly-Pro) results in significant loss of binding and activity [17]. These residues are linked to
the N-terminal ELR residues via the 7–34 disulfide bond, and so very likely are not involved
in direct binding but mediate binding of the ELR residues. Interestingly, it has been shown
recently that a tripeptide, Pro-Gly-Pro, activates CXCR1 and CXCR2 receptors [96]. This
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tripeptide, derived from degradation of the extracellular matrix, has been shown to play an
important role in chronic obstructive pulmonary disease (COPD). It has been proposed that the
tripeptide activates the receptors by mimicking the 30 s turn ‘GP’ motif observed in IL-8
structure. However, we feel that the tripeptide and the chemokines activate receptors using
completely different mechanisms, and the observation of the GP motif in IL-8 is unrelated the
chemotactic activity of the tripeptide. We propose that this tripeptide, like most small molecule
agonists for GPCR receptors, binds to a site in the transmembrane region, which is distinctly
different from chemokine binding to the N-domain and extracellular loop region.

Sequence analysis of the chemokine receptors show overall high homology, except for the N-
terminal and C-terminal residues. Low sequence homology among the receptor N-terminal
residues suggests that the N-domain is involved in binding, and play a direct role in imparting
ligand specificity. Sequence analysis of the ligands also shows that the N-loop and N-terminal
residues are least conserved. Several studies have indicated a major determinant role for the
N-domain of chemokine receptors in ligand affinity and selectivity [13,25,32,47,74,92,94].
The N-domain of GPCR receptors can vary from a few to as many as 600 amino acids, and
there seems to be a weak correlation between the length of the N-domain and ligand size
[41]. Chemokine receptors are a notable exception to this rule, possessing in general very short
N-domains (~50 residues), which do not correlate to the size (~8–10 kDa) of their ligands. This
anomaly can be explained by the two-site interaction; N-domain and the extracellular loop
together constitute a binding site that is larger and comparable in size to that of the ligands they
bind.

We have confined our discussion so far to the structural characteristics of the chemokine ligand
and receptors, and have not considered whether the immediate milieu such as the membrane
environment plays a role in the coupling interactions. We observe that the CXCR1 and CXCR2
N-domains are unstructured in buffer but adopt specific structure in detergent micelles, that
mimic the native membrane environment (74; unpublished observations), highlighting the
significant contribution of the membrane environment to structure-function of these domains.
NMR studies in micelles indicate that the CXCR1 N-domain adopts a defined secondary
structure, but is also conformationally flexible. This structured yet flexible conformation could
support interactions with multiple ligands, enhance coupling between the two interaction sites,
and thus play a major role in selectivity. It has been shown that the chemokine receptor CCR5
is preferentially associated with lipid rafts and that depleting cholesterol reduces MIP-1α/CCL3
binding [66]. These observations suggest that association with lipid rafts and cholesterol is
important for receptor folding and activity, and so could play a role in mediating the coupling
interactions between the ligand the receptor.

An interesting feature of chemokine receptor N-domains is the predominance of charged and
hydrophobic residues. The exact role of the amino acid composition for N-domain binding is
not clear. Most chemokines carry a net positive charge (pI > 9), so it was initially thought
electrostatic interactions mediate binding. However, mutational studies show that none of the
charged residues in CXCR1 are critical for binding. Some of the chemokine receptor (CCR5,
CCR2, CXCR4, CX3CR1) N-domain tyrosines are also post-translationally modified by
sulfation, and it has been shown that sulfation is essential in these receptors for high-affinity
ligand binding [21,27,28,31,70]. Sequence analysis does suggest that most chemokine
receptors carry signature sequences for tyrosine sulfation. There is also evidence from in vitro
studies that some of the chemokine receptors form homodimers and heterodimers, and such
dimerization modulates function [93]. These observations add additional dimensions to the
complexity of receptor structure-function, and future studies should reveal how these different
but interconnected properties of receptor structure mediate affinity, selectivity, and activation.
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Summary
In retrospect, a family as large and complex as the chemokine/chemokine receptor system
would have to possess mechanism(s) to allow maximum flexibility in interactions between
different ligand-receptor pairs. Binding involves interactions between the receptor N-domain
and ligand N-terminal loop residues (site-I), and between receptor extracellular loop and the
ligand N-terminal residues (site-II). Structure-function data indicate that binding affinity and
specificity cannot be unequivocally assigned to interactions at one or other site, so we propose
that the binding to the individual sites is not independent but coupled. Further, the observation
that the sequence diversity or similarity of individual interacting sites do not correlate with the
ligand specificity is also consistent with a coupled two-site model. Several unique features of
chemokine receptor extracellular domains combine to provide a perfect template for subtle and
fine regulation of affinity, selectivity, and activity. We propose that the defined and unique
conformation of the binding domains, combined with their sequence and structural flexibility,
their communication through intramolecular contacts and/or disulfide bonds, endows
chemokine receptors with their characteristic ability to bind multiple ligands with a range of
affinities, creating the network of interactions that gives the chemokine family its versatility.
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Fig. 1.
A schematic showing how chemokines recruit leukocytes. Each step affords an opportunity
for regulation and modulation of chemokine function. Chemokine ligands are shown as green
circles, and the receptors are shown in brown as a series of stacked lines (corresponding to the
7 transmembrane helices). Chemokine ligand dimerization is shown but receptor dimerization
is not shown for simplicity
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Fig. 2.
Specificity and Promiscuity of Chemokine-receptor interactions. The receptors are shown
inside the circle and the ligands outside the circle. The systematic nomenclature for both
chemokine ligand and receptors are used, and the commonly used ligand names are shown in
brackets. Some chemokines have multiple common names, and we have opted to use just one
for simplicity
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Fig. 3.
A schematic of chemokine structure. The functionally important N-terminal and N-loop
residues are highlighted by arrows, and the strands and the helix are labeled
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Fig. 4.
A model of chemokine ligand-receptor interaction (reproduced from ref. 74). The ligand N-
loop residues interact with the receptor N-terminal domain residues (site I), and the ligand N-
terminal residues interact with the receptor exoloops and trans-membrane residues (site II)
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