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Abstract
Human skin is repeatedly exposed to ultraviolet radiation (UVR) that influences the function and
survival of many cell types and is regarded as the main causative factor in the induction of skin
cancer. It has been traditionally believed that skin pigmentation is the most important photoprotective
factor, since melanin, besides functioning as a broadband UV absorbent, has antioxidant and radical
scavenging properties. Besides, many epidemiological studies have shown a lower incidence for skin
cancer in individuals with darker skin compared to those with fair skin. Skin pigmentation is of great
cultural and cosmetic importance, yet the role of melanin in photoprotection is still controversial.
This article outlines the major acute and chronic effects of UV radiation on human skin, the properties
of melanin, the regulation of pigmentation and its effect on skin cancer prevention.

Introduction
Human skin is repeatedly exposed to various DNA-damaging environmental influences and
therefore requires numerous endogenous mechanisms to protect against, reduce and/or repair
such damage. These mechanisms include increasing epidermal thickness, DNA repair
mechanisms and apoptosis, antioxidant enzymes and, last but not least, skin pigmentation.
Ultraviolet radiation (UVR) is the major environmental factor that influences the function and
survival of many cell types and is regarded as the main causative factor in the induction of skin
tumors like basal cell carcinoma (BCC), squamous cell carcinoma (SCC) and malignant
melanoma. It has been traditionally believed that skin pigmentation is the most important
photoprotective factor, since melanin, besides functioning as a broadband UV absorbent, has
antioxidant and radical scavenging properties. Besides, many epidemiological studies have
shown a lower incidence for skin cancer in individuals with darker skin compared to those with
fair skin. However, there is growing evidence that the relationship between pigmentation and
photoprotection is far more complex than assumed. It has been suggested that UVR-induced
photodamage and its repair are signals that induce melanogenesis. To put it another way,
epidermal pigmentation may represent the mammalian equivalent of a bacterial SOS repair
mechanism.

Skin pigmentation is of great cultural and cosmetic importance, yet the role of melanin is still
controversial. In light of the increasing incidence for UV-induced skin cancer and the
progressive depletion of the ozone layer, which contrasts to public perception of a tan as being
healthy, a better understanding of the role of melanin in preventing UV-induced DNA damage
and malignant transformation of skin cells would be more than desirable.
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Solar Ultraviolet Spectra and Effects on the Skin
The UVR that reaches the earth's surface consists mainly of long wavelength ultraviolet A
(UVA) (320 – 400 nm) radiation but only a minority (estimated at 5%) of short wavelength
ultraviolet B (UVB) (280 - 320 nm) (1). UVC (200 – 280 nm) does not reach the surface of
the earth, as it is screened out by atmospheric oxygen as well absorbed by the ozone layer.
However, the penetration of UVB is enhanced by the increasing depletion of the ozone layer
leading to a higher risk for UV-induced carcinogenesis (2). It has been estimated that a 1%
decrease in ozone increases melanoma mortality by 1%-2% (3). Solar simulated radiation
(SSR) refers to radiation emitted by a device that comprises a spectrum and intensity similar
to the sun's radiation (global radiation) consisting of ∼50% visible light, ∼40% infrared light
and ∼9% UV light (∼0.4% UVB). It is important to note that terrestrial radiation varies with
the solar altitude which depends on geographic location, season and time of day (4).

UVR is responsible for a wide variety of different acute and chronic effects on the skin. Acute
responses of human skin to UVR include photodamage, erythema, mutation,
immunosuppression, synthesis of vitamin D and tanning. Chronic UVR effects include
photoaging and photocarcinogenesis, which is considered to be induced by mutation and
immunosuppression (5,6).

DNA photodamage
One of the most important acute effects of UVR is DNA photodamage. UVA and UVB show
different properties regarding their biological effects on the skin. UVB radiation is more
cytotoxic and mutagenic than UVA and, according to wavelength dependent studies, is 3-4
orders of magnitude more effective per unit physical dose (J/cm2) than UVA for DNA
photodamage (7), erythema (7,8), tanning (8) and skin cancer in mice (9). However, UVA,
which in contrast to UVB is not filtered by window glass, is able to penetrate deeper into the
skin and reach the dermis. It has been estimated that 50% of exposure to UVA occurs in the
shade (10). While UVB is absorbed directly by DNA, and induces base structural DNA damage,
UVA is mainly responsible for indirect DNA damage by the generation of reactive oxygen
species (ROS) that include superoxide anion, hydrogen peroxide, and singlet oxygen (11) and
result in single-strand breaks in DNA and in DNA-protein crosslinks (12,13). UVR from 245
to 290 nm is absorbed maximally by DNA (14), thus implicating UVB as a primary mutagen
(15). The most important photolesions that are induced by UVB with potentially mutagenic
properties are cyclobutane pyrimidine dimers (CPD) and pyrimidine (6-4) pyrimidone
photoproducts (64PP) that occur at a ratio that varies from 4:1 to 10:1 (16,17). Animal studies
confirm that CPD, and to a lesser extent 64PP, have roles in photocarcinogenesis (18). CPD
and 64PP can lead to highly specific mutations, namely CC → TT double base substitutions
and C→T substitutions at dipyrimidine sites that are known as UVR fingerprint mutations
(19). It was reported that over 50% of BCC and SCC contain UVB fingerprint mutations (19,
20). Even suberythemal doses of UVB and SSR can immediately induce CPD and 64PP in
human skin (7,21,22). However, it seems that pyrimidine dimerization is not limited to UVB
radiation. It was reported that UVA, that is very weakly absorbed by DNA is able to induce
CPDs (22,23) and that UVA accounts for a much higher induction of T=T CPDs than does
UVB (24). There is strong evidence that the underlying mechanism is based on a
photosensitizing process that involves a still unidentified photoexcited chromophore (24,25).
The removal of 64PP after the application of a single dose of SSR is relatively fast in contrast
to the repair of CPD, where many lesions can still be found after 24 hr (26,27). There is also
evidence that cytosine-containing lesions such as C=C and C=T, are repaired more rapidly than
are those that contain thymidine only (T=T) (26,28).
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Photodamage to DNA can further result in highly characteristic gene mutations in various
critical genes (29,30), e.g. in p53 which is thought to be the first step in the induction of non-
melanoma skin cancer (31).

Sunburn
The effectiveness of UV to induce erythema declines rapidly with longer wavelengths. To
produce the same erythemal response, approximately 1000 times more UVA dose is needed
compared with UVB (8). UVB-induced erythema occurs approximately 4 hr after exposure,
peaks around 8 to 24 hr, and fades over a day or so; in fair-skinned and older individuals, UVB
erythema may be persistent, sometimes lasting for weeks. The time courses for UVA-induced
erythema and tanning are biphasic. Erythema is often evidenced immediately at the end of the
irradiation period; it fades in several hr, followed by a delayed erythema starting at 6 hr and
reaching its peak at 24 hr. Erythema is associated with a wide variety of changes at the cell
and molecular levels, but especially with the appearance of apoptotic keratinocytes (sunburn
cells) (32,33). The action spectrum for UV-induced tanning and erythema are almost identical,
but UVA is more efficient in inducing tanning whereas UVB is more efficient in inducing
erythema. The observation that the action spectrum for erythema is very similar to that for CPD
induction suggests that DNA damage is an important trigger for erythema (7).

UV and immunosuppression
Besides its deleterious photodamaging and erythema-inducing effects, UVR also has local and
systemic immunosuppressive properties (34) and is capable of reducing the capability for
surveillance against tumor or viral antigens (35). After UV exposure, the antigen-presenting
Langerhans cells undergo numerous, functional, and morphologic changes, resulting in their
depletion from the skin. UV-induced immunosuppression may have arisen to prevent
autoimmune responses to inflammatory products resulting from UV-mediated damage (e.g.
UV-damaged DNA). Most of the immunosuppressive effects of UV exposure have been
ascribed to UVB. However, more recent studies indicated that UVA radiation is even more
immunosuppressive than UVB (36).

There is considerable evidence from mouse studies that UV-induced immunosuppression
might be a risk factor for the development of skin tumors (5). In an animal mouse model, skin
tumors that developed in adult mice after long-term high dose UVB irradiation were rejected
when transplanted to syngeneic healthy mice, but continued to grow when transplanted on mice
that were pre-irradiated with UVB (37).

In humans, UVR is also able to suppress development of the contact hypersensitivity response,
which is regarded as a model for photoimmunological events that are important in skin
carcinogenesis (38,39). Interestingly, the contact hypersensitivity response is more easily
suppressed in fair skin types (types I/II) than in darker skin types (types III/IV) (40).
Furthermore, there is evidence for skin type dependent differences in response to oxidative
stress (41), which is thought to play a role in carcinogenesis (13).

UV, Vitamin D and folic acid
The epidermis is the site for the synthesis of vitamin D. During exposure to sunlight, 7-
dehydrocholesterol in the epidermis is photolyzed by UVB to previtamin D3, which is then
converted to vitamin D3 (cholecalciferol) by thermal isomerization. In the liver, vitamin D3 is
hydroxylated to form 25-hydroxy-vitamin-D3, which in turn is transported to the kidney where
it is converted into the biologically active form 1α,25-dihydroxyvitamin-D3 (calcitriol) (42).
Skin pigmentation influences the effectiveness of vitamin D3 synthesis in the skin as melanin
absorbs UVB photons and competes for them with 7-dehydrocholesterol (43). However,
available data about the relationship between solar UVR, skin pigmentation and vitamin D
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status show contradictory results. On the one hand, it was reported that skin pigmentation
greatly reduces the UVR-mediated synthesis of vitamin D3 as those with Black skin require at
least a 6-fold greater UVR dose to increase circulating levels of vitamin D3 than do those with
White skin (44). It was also reported that many African Americans who live in northern parts
of the US suffer severe vitamin D deficiencies in spite of supplementing foods with vitamin D
(45). In contrast, Matsuoka (46) found no difference in 1,25-(OH)2-vitamin D3 levels in the
sera of different ethnic groups, although there was a significant association between skin color
and vitamin D3 synthesis. This view was supported by Nelson et al. (47) who reported that
there is no difference in the disposition for calcium deficiency in dark-skinned compared to
fair-skinned individuals and in that report they further emphasized that African women have
the same bone mass as Caucasian women. It is possible that a higher incidence of vitamin D
deficiency results from other factors such as diet. Further, melanin absorbs only 50-75% of the
UVR. Generally, it can be stated that in geographical areas of high UV-exposure there is
selection for dark skin to prevent sunburn, skin cancer and photolysis of folic acid (48,49) and
to protect the sweat glands to prevent abnormal thermoregulation (50). The gradient between
UVR level and constitutive pigmentation seems to represent a compromise between the
deleterious effect of UVR and its beneficial effects regarding vitamin D synthesis (49).

UV and Pigmentation
The regulatory mechanisms that lead to pigmentation are complex and at present not
completely understood. However, extensive data suggest that UV-induced DNA damage and/
or its repair produce initiating signals that induce an increase in melanogenesis after UV
irradiation (51,52), although the chromophore(s) for melanogenesis have not been established
with certainty.

Studies have shown that the action spectrum that leads to tanning in human skin is identical to
the spectrum that induces erythema (8), which in turn is similar to that for the typical DNA
photoproduct CPD (7). Treatment of UV-exposed melanocytes with the excision enzyme T4
endonuclease V, that is responsible for the repair of CPD, increased DNA repair as well as
doubling the melanin content compared with cells treated with diluent alone or with heat-
inactivated enzyme (53). Several studies have examined the effect of small DNA fragments
such as thymidine dinucleotide (pTpT) which serve as a model for thymidine dimers. In vitro,
a 7-fold increase in melanin content and a 2-fold increase in tyrosinase mRNA (the rate limiting
enzyme for melanin synthesis) was observed after treatment with pTpT, while topical treatment
of shaved guinea pig skin with pTpT induced a visible tan (54). Further, agents that induce
single strand DNA breaks were also able to stimulate melanogenesis in vitro (55).

Melanin Properties
Skin color is mainly determined by the mix of carotenoids, oxy-/deoxy-hemoglobin and, most
importantly, different types of melanin and also the way that melanin is packaged and
distributed in melanosomes (56). The production of melanin takes place in specific ovoid
organelles known as melanosomes which are produced in dendritic melanocytes that account
for only 1% of epidermal cells. Each basal layer melanocyte is associated with about 36
keratinocytes and one Langerhans cell (epidermal melanin unit) (57). Melanin synthesized
within melanosomes is transported via dendrites to adjacent keratinocytes, and accumulate
within keratinocytes and melanocytes in the perinuclear area as supranuclear “caps” that are
thought to shield DNA from UV rays (58). The composition of melanin (discussed in more
detail in Chapters XX and XX (note to Editor – please replace ‘XX’ with relevant Chapter
numbers in this Symposium-in-Print) is a complex of lighter red/yellow, alkali soluble sulfur-
containing pheomelanin and darker brown/black insoluble eumelanin (59,60). Differences in
skin pigmentation do not result from differences in the number of melanocytes in the skin, as

Brenner and Hearing Page 4

Photochem Photobiol. Author manuscript; available in PMC 2009 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



one might assume, but from differences in the melanogenic activity, the type of melanin
produced in melanosomes and the size, number and packaging of melanosomes, with melanin
content of melanosomes ranging from 17.9% to 72.3% (61,62). The number of melanocytes
in the skin is race-independent, but can vary at different body sites with densities between 2000
mm-2 in head or forearm skin to 1000 mm-2 elsewhere. Melanocyte density in the skin of the
palms and soles is about 10-20% that in skin on the trunk (63). Red hair can contain high levels
of pheomelanin, but generally, all types of skin contain a higher proportion of eu- than pheo-
melanin. While total melanin content in the epidermis differs only by ∼2-fold in Asian and
White skin, Black skin contains higher levels of melanin (∼3 to 6-fold higher, respectively),
more eumelanin (64) and has larger and more melanosomes (65) than fair skin (Figure 1).
However, no similar correlation has been observed for pheomelanin (59). Eumelanin is
synthesized and deposited in elliptical melanosomes, whereas pheomelanin is synthesized in
smaller round melanosomes. Melanosomes in Black skin have much longer axes than do
melanosomes in White skin (800 vs. 400 nm). They exist as single entities and it has been
hypothesized that they are transferred to the keratinocytes individually (thus absorbing light
more efficiently), while melanosomes in light skin tend to form clusters and are packaged and
transferred as complexes (66).

Photoprotective Role of Melanin
Epidemiological data strongly support the photoprotective role of melanin as there exists an
inverse correlation between skin pigmentation and the incidence of sun-induced skin cancers
(1) and subjects with White skin are approximately 70 times more likely to develop skin cancer
than subjects with Black skin (67). The shielding effect of melanin, especially eumelanin, is
achieved by its ability to serve as a physical barrier that scatters UVR, and as an absorbent
filter that reduces the penetration of UV through the epidermis (68). The efficacy of melanin
as a sunscreen was assumed to be about 1.5-2.0 sun protective factors (SPF); possibly as high
as 4 SFP, implying that melanin absorbs 50% to 75% of UVR. An SPF of 2 means the doubling
of protection of the skin against sunburn. Dark skin, which contains more eumelanin than fair
skin is better protected against UV-induced damage, and eumelanin is thought to be superior
to pheomelanin in its photoprotective properties. As discussed by Gloster and Neal (69)
melanin in Black skin is twice as effective compared to White skin (70) in inhibiting UVB
radiation from penetrating. While Black epidermis allows only 7.4% of UVB and 17.5% of
UVA to penetrate, 24% UVB and 55% UVA passes through White skin (70). Further,
melanosomes in dark skin are resistant to degradation by lysosomal enzymes, remain intact
throughout the epidermal layers (65) and form supranuclear caps in keratinocytes and
melanocytes which contribute considerably to photoprotection against UV-induced damage
(71). In contrast, in lightly pigmented skin, melanosomes are degraded and only persist as
“melanin dust” in the suprabasal layers. This reduction of melanosomes in the upper epidermis
is considered to be an important factor in carcinogenesis, as it compromises the photoprotection
of the skin. Other important properties of eumelanin are its functions as a free radical scavenger
and superoxide dismutase that reduce ROS (72).

Deleterious Effects of Melanin
Melanin is generally considered to be the perfect protection against UV-induced photodamage.
However, melanin can also have toxic properties, especially after exposure to UVR (73-75).
In in vitro studies, melanin has been shown able to react with DNA and is known to act as a
photosensitizer that produces ROS after UVA radiation (76) that can produce single strand
DNA breaks in skin cells in vitro (77). In contrast to eumelanin, pheomelanin is especially
prone to photodegradation (78,79) and is thought to contribute to the damaging effects of UVR
because it can generate hydrogen peroxide and superoxide anions (80-82) and might cause
mutations in melanocytes or other cells (83). In addition, pheomelanin has been associated
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with higher rates of apoptotic cells after UVR (84). Pheomelanin also increases the release of
histamine, which contributes to the sun-induced erythema and edema in fair-skinned
individuals (85). In vivo studies of mice also suggest that melanin, especially pheomelanin, is
a UVA and UVB sensitizer that causes cell death (86). At present, the clinical significance of
deleterious effects of melanogenic intermediates in carcinogenesis is not known, but it is
noteworthy that albinos with tyrosinase-deficient melanocytes that cannot produce melanin are
more prone to nonmelanoma skin cancers, but have a lower incidence of malignant melanoma
(87). Thus, it is possible that pheomelanin has a weak carcinogenic effect that can contribute
to melanoma formation.

Constitutive Versus Facultative Pigmentation
Human skin has developed two main defense mechanisms to guard against the damaging
effects of UV: epidermal thickening and the stimulation of melanin synthesis. With regard to
photoprotection, the increased melanogenesis is more important. The ability to adjust melanin
content of epidermal cells after UV exposure is based on the individual's melanogenic potential,
which led to the concept of facultative and constitutive skin color (88). Constitutive skin color
describes the genetically determined level of melanin in the skin that is not influenced by
exogenous or endogenous factors. Recent studies indicate that the distribution of melanosomes
within keratinocytes (89) as well as melanosome size (90) play roles in determining skin color.
On the other hand, facultative pigmentation designates an induced level of increased epidermal
melanin content as a result of environmental factors such as solar radiation or hormones.

Increased skin pigmentation in response to UV exposure proceeds in several distinct steps: the
first step is a transient phenomenon, termed immediate pigment darkening (IPD), which occurs
within min of UV exposure. It appears as a grayish coloration that gradually fades to a brown
color over a period of min to days, depending on the UV dose and the individual's skin color.
IPD is not based on the synthesis of new melanin, but rather results from the photooxidation
of preexisting melanin and the redistribution of existing melanosomes from a perinuclear to a
peripheral dendritic location (91). IPD shows a broad peak in the UVA region (92) and is only
marginally photoprotective (93), hence its biological function remains unknown. IPD is
followed by a prolonged second phase of the tanning reaction which varies among individuals,
called persistent pigment darkening (PPD). PPD, which is tan to brown in color, is thought to
result from the oxidation of melanin (similar to IPD), occurs within hr after UV exposure and
persists at least 3-5 days (94,95). PPD is elicited more strongly by UVA than by UVB and has
been successfully used for testing sunscreen formulations with UVA protection factors (95)
The last phase of skin tanning, the delayed tanning (DT) response, can be induced by UVB or
UVA, is clearly distinct from PPD and becomes apparent 2-3 days after UV exposure (62). Its
action spectrum is completely different from the spectrum of IPD, which suggests that they
are completely distinct processes (8). DT results from the stimulation of melanin synthesis and
involves increases in the number and activity of functional melanocytes, increased dendricity,
increased synthesis and transfer as well as altered packaging of melanosomes. Corresponding
to the tanning reaction, there is an increase in the activity of tyrosinase, the rate-limiting enzyme
in the melanogenic pathway (96). UVB-induced DT is photoprotective (it is estimated to have
a SPF of 3)- while DT induced by UVA is not considered to be photoprotective. DT is maximal
from 10 days to 3-4 weeks, depending on the UV dose and the individual's skin color. It may
take several weeks or months for the skin to return to its base constitutive color. UVA-induced
DT is 2-3 orders of magnitude less efficient per unit dose than UVB and has an earlier onset,
often directly after IPD. Furthermore, it has a different oxygen-dependent pathophysiology
(52,97) unlike that of UVB.

The pigmentary response of the skin to UV is determined to a large extent by constitutive
pigmentation and is more pronounced with darker skin color. The classification of skin
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phototypes (type I to VI) has been based on the ability of individuals with different constitutive
pigmentation to burn or tan in response to sun exposure (62). The concept of skin phototype
was originally created to optimize UVR doses in phototherapy (98). Skin phototype I represents
individuals with very fair skin who always burn and never tan when exposed to the sun. Skin
phototype II individuals tan minimally with difficulty and burn easily, skin phototype III
individuals tan moderately and uniformly and burn moderately while type IV individuals burn
minimally and tan moderately and easily. Finally, skin phototype V represent individuals with
very dark skin who rarely burn and tan profusely, while type VI individuals never burn and
tan profusely upon sun exposure. Sensitivity to sunburn is routinely evaluated by minimal
erythema dose (MED) determination. MED describes the lowest dose (J/cm2) of UVR that will
cause erythema assessed at 24 hr after exposure. In general, tanning capacity correlates with
MED. but – in contrast to MED measurement - the determination of skin phototype is based
on personal experience and is therefore not a reliable index for UVB sensitivity of the skin.

Hormonal Regulation of Pigmentation
Tanning is determined directly by the response of melanocytes to UVR, but is also affected
indirectly by a complex system of paracrine and autocrine factors such as hormones, cytokines
and growth factors, whose synthesis in epidermal cells is influenced by UVR. In vitro
experiments have examined the expression of a wide variety of factors synthesized in skin cells
after UVR. In keratinocytes, UVR increased synthesis of the cytokines interleukin-1 (IL1)
(99) and tumor necrosis factor α (TNFα) (100), while these factors decreased the proliferation
and tyrosinase activity of human melanocytes (101), suggesting that they might be part of a
negative feedback loop that down-regulates the pigmentary effect of UVR. The levels of
prostaglandins D2, E2 and F2α have been found to increase in the skin after UVR (102). It has
been shown that prostaglandins E2 and F2α increase the dendricity of melanocytes, an effect
that is associated with increased skin pigmentation, as it facilitates the transfer of melanosomes
to keratinocytes (103).

Endothelin-1 (ET1) is produced by keratinocytes, especially after UVR, and has been reported
to stimulate human melanocyte proliferation synergistically with basic fibroblast growth factor
[bFGF) and α-melanocyte stimulating hormone [αMSH] (104). ET1 reduces UV-induced
apoptosis as well as promotes melanocyte survival (105,106).

More than 120 genes have been shown to regulate pigmentation in mammals. The major
determinant of pigment phenotype is the melanocortin 1 receptor (MC1R) (107). Its product,
the MC1R protein, is a G-protein coupled receptor that is expressed on the surface of
melanocytes, and which regulates melanin synthesis qualitatively and quantitatively. MC1R
function is regulated by the physiological agonists αMSH and adrenocorticotropic hormone
(ACTH) and by one antagonist agouti-signaling protein (ASP). Activation of the MC1R by
binding an agonist stimulates the synthesis of eumelanin. Epidermal keratinocytes and
melanocytes respond to UVR by increasing their expression of αMSH and ACTH, which up-
regulates the expression of MC1R and consequently enhances the response of melanocytes to
αMSH and ACTH. Those melanocortins, as well as ET1, are survival factors that rescue human
melanocytes from apoptosis induced by UVR (105). Those 3 factors activate survival, DNA
repair and antioxidant pathways in human melanocytes. Their pigmentary effects protect
against the damaging effects of subsequent UVR exposures. Variants of MC1R that function
weakly show a relative inability to tan (for example red-heads cannot tan). In mice with mutant
MC1R there is no detectable tanning response; however, a rescue strategy of topically applied
forskolin was able to bypass the mutant MC1R and induced a profound skin darkening in
genetically fair-skinned mice (108).
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Vitamin D3 (cholecalciferol) is synthesized in the skin upon sun exposure. There have been
studies to examine whether vitamin D3 metabolites might mediate the melanogenic effects of
UVR. It was shown that human melanocytes express specific receptors for vitamin D3 (109).
Experiments addressing the correlation between vitamin D and pigmentation also showed
contradictory results. In an in vitro study, melanocytes responded to 1,25 (OH)2 vitamin D3
with a decrease in tyrosinase activity (109). But contrary to those findings, Mansur et al. did
not detect an effect of different vitamin D derivatives on human melanocytes in vitro (110). In
contrast, topically applied 1,25 (OH)2 vitamin D3 increased the number of DOPA-positive
melanocytes in mouse skin and augmented the melanogenic effect of UVR on murine skin
(109).

Sex steroid hormones have long been recognized for their role in cutaneous pigmentation.
Although no specific receptors for estrogens could be detected in melanocytes, dose-dependent
increases in tyrosinase activity to β-estradiol have been reported and the response did not
correlate with constitutive pigmentation (111,112).

Melanin and UV Exposure
Epidemiological as well as experimental data suggest that melanin in the skin plays an
important role in photoprotection, and not merely as a sunscreen. The relationship between
melanogenesis and DNA photodamage was summarized in an earlier review by Agar and
Young (113). In an early study, Kaidbey et al. (68) examined Black and White skin after
irradiation with UVA and UVB with regard to phototoxicity and erythema. They found that
five times less UV reaches the upper dermis of Black skin compared to White skin and assumed
that was due to the increased melanin content, its more efficient distribution and the thickness
of the stratum corneum. However, another study that used white-and-black guinea pigs to
examine the relationship between the protective role of melanin and UV-induced DNA repair
by measuring unscheduled DNA synthesis (UDS) in guinea pig skin after treatment with UV
radiation (at different wavelengths) in vivo found no difference in UDS in pigmented and
unpigmented skin at any UV dose. They concluded that epidermal melanin does not
significantly protect DNA of basal cells against UV radiation (114). In a recent study, using
sunburn cells as markers, a close correlation between constitutive skin pigmentation and UV
sensitivity was observed. In brown or dark skin, DNA damage was restricted to upper layers,
but occurred in all layers of lightly pigmented skin (115). Other studies concentrated on the
relation of facultative pigmentation and photoprotection. Young et al. (116) exposed subjects
with skin type II who were treated with or without sunscreen to SSR (0.7 MED) 10 times over
a 2-week period followed by a 2 MED SSR challenge one week later. The results of
measurements of unscheduled DNA synthesis, melanin content, distribution and skin thickness
in biopsies taken at the end of the experiment led to the conclusion that increased melanin
content alone without sunscreen protection was not sufficient to protect completely against
DNA damage. In a follow-up study (117) that extended the original study, Young et al. found
that pigmentation and skin thickening were induced in all skin types examined (I-IV).
Combined with the use of sunscreen, the increased pigmentation and skin thickening improved
protection against subsequent UV challenge. In another clinical study Sheehan et al. (118)
reported that tanning offers a ‘modest’ photoprotection against erythema and concluded that
induced tanning provides a higher protection against UV than does the thickening of the stratum
corneum. De Winter and colleagues (119) examined whether repeated UV exposures (SSR 3
times a week for 3 weeks; the first dose was 0.5 MED, the second 1.0 MED and the following
doses with an increment of 20% MED) lead to significant protection against subsequent UV
(3 MED SSR) challenge. Their study concluded that repetitive UV exposure increased
pigmentation and skin thickness, and decreased its sensitivity to erythema by 75%. They found
less DNA damage (average reduction in CPD formation by about 60%) and concluded that the
pigmentation induced was photoprotective to some extent. Photoprotection by melanin not
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only depends on its amount, but is also determined by its distribution in the skin. We completed
a clinical study with more than 90 subjects in 7 distinct racial/ethnic backgrounds that were
exposed to a single 1 MED dose of UVA/UVB. The analysis of biopsies taken immediately,
at 1 d and 7 d after the irradiation showed that DNA damage was significantly greater in lighter,
more UV-sensitive skin types and significantly lower in darker, more UV-resistant skin, as
shown in Figure 2, although subjects with darker skin typically received at least 3 – 4 times
the physical UV dose (17,120,121). In all skin types, DNA damage occurs to a greater extent
in the upper layers of the epidermis, while the lower layers of the skin are protected as the
melanin content of the skin increases (122). Interestingly, the results showed that UVR not
only induces less DNA damage in darker skin than in lighter skin, but also the rate of apoptotic
cell formation - even at the same physical UV dose - is dramatically higher in darker skin
(122). This indicates that besides decreased UVR-induced DNA damage, darker skin is also
more efficient at removing damaged cells. This combination results in a greatly reduced risk
of carcinogenesis.

Our irradiation studies in skin of different color and racial/ethnic origin demonstrated that,
although a visible tan developed after a single 1 MED UV irradiation, melanin content did not
significantly change within 1 week (17,120). Even after a series of UV exposures over a period
of 3 weeks and despite a significant increase in visible pigmentation, there are less than 2-fold
increases in melanin content in White and Asian skin (123,124). A possible explanation for
this observation might be the fact that after UVR melanin migrates towards the surface of the
skin and is thereby more visible and also more effective in shielding the lower layers of the
skin from UV irradiation. The observations made in these studies allow the conclusions that
DNA damage is greatest immediately after UV exposure and is gradually repaired thereafter
and that subjects with darker skin type incur less DNA damage than subjects with lighter skin.
However, even the darkest skin type incurred significant DNA damage at levels less than or
equal to 1 MED, underscoring the fact that there is no such thing as totally UV-resistant human
skin.

In another irradiation study we examined the effect of 3 different schedules of repeated UV
exposure (cumulative dose of schedule A = 1900 J/m2, of schedule B = 2900 J/m2 and of
schedule C = 4200 J/m2). Exposures to all 3 schedules resulted in effective increases in skin
pigmentation and significantly increased melanocyte density. Interestingly, the level of CPD
measured was significantly lower after schedule C compared to schedules A and B, implying
that pigmentation induced by repeated UV exposure protects against subsequent CPD
formation. However, increased cumulative UV doses raised the number of p53-positive cells,
potentially associated with a higher risk of UV induced malignant transformation (124).

Melanin and Skin Cancer
Since the 1960s, incidences in BCC, SCC and melanoma among predominantly white
populations have increased at a rate of 5% to 8% annually (125-127). In contrast, the incidence
of skin cancer has remained relatively constant in Blacks.

Non-melanoma skin cancers such as SCC in subjects with White skin most commonly occur
on areas of skin exposed to the sun, and occurs in sun-protected sites in subjects with Black
skin (67,128). When the protective effect of melanin is calculated using MED measurements,
protection for even the darkest-skinned individuals is no more than 10- to 15-fold that seen in
the absence of melanin. But in terms of skin cancer risk, the protection is 500-1000 (66,68)
indicating that highly pigmented skin is profoundly protected from carcinogenesis. Even less
deeply pigmented Asians have a very low skin cancer rate (129). One possible explanation for
the high cancer protection afforded by darker skin pigmentation might involve mechanisms of
increased risk associated with blonde/red pigments. MC1R variants have been shown to confer
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an increased risk of melanoma and non-melanoma skin cancers, independently of skin pigment
(including red hair phenotype) (130,131).

Recently, it was shown that the transcription factor and tumor-suppressor protein p53 promotes
cutaneous pigmentation after UVR by activation of proopiomelanocortin (POMC) (a precursor
of αMSH) expression, while absence of p53 inhibits the tanning response (132). POMC/αMSH
is of considerable importance for skin carcinogenesis, as mutations in the POMC gene lead to
a red-hair phenotype (comparable to that of MC1R alleles) (133).

UVA induces 40 times more DNA single strand breaks in human melanocytes from dark skin
than in melanocytes from light skin (134). Given that UVA damage is largely thought to occur
via oxidative mechanisms this may account for a positive role for UVA in melanoma induction
(84).

Conclusions
To minimize the deleterious effects of UVR, public education on photoprotective measures
should be continued. Although there are a wide variety of agents with photoprotective
properties, which range from antioxidants to plant extracts to DNA repair enzymes, a better
understanding of melanin, its photoprotective properties and contributions of melanocytes to
cancer would be desirable. This should permit new approaches to safely modulate pigmentation
in the absence of sun to increase pigmentation for cosmetic reasons as well as to prevent skin
cancer.
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6,4-photoproducts
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adrenocorticotropic hormone

ASP  
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IPD  
immediate pigment darkening

MC1R  
melanocortin 1 receptor

MED  
minimal erythema dose

αMSH  
α-melanocyte stimulating hormone

PPD  
persistent pigment darkening

POMC  
proopiomelanocortin

ROS  
reactive oxygen species

SCC  
squamous cell carcinoma

SPF  
sun protective factor

SSR  
solar simulated radiation

TNFα  
tumor necrosis factor α

UVR  
ultraviolet radiation
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Figure 1. Melanin Content in Skin of Different Ethnicity
Histological detection of melanin content using Fontana-Masson staining. Melanin content in
the basal layers of the epidermis is substantially higher in Black skin compared to Asian or
White skin, although the number of melanocytes is virtually identical in skins of different
ethnicity.
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Figure 2. CPD in Skin of Different Ethnicity
Immunohistochemical detection of CPDs in skin of different ethnicities immediately after
UVR. The fluorescence detection technique uses the binding of FITC-labeled antibodies that
are reactive with DNA photoproducts. A considerably higher amount of CPDs is detected in
White skin compared to Asian or Black skin.
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