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Abstract

Annotating the tremendous amount of sequence information being generated requires accurate
automated methods for recognizing homology. Although sequence similarity is only one of many
indicators of evolutionary homology, it is often the only one used. Here we find that
supplementing sequence similarity with information from biomedical literature is successful in
increasing the accuracy of homology search results. We modified the PSI-BLAST algorithm to
use literature similarity in each iteration of its database search. The modified algorithmis
evaluated and compared to standard PSI-BLAST in searching for homologous proteins. The
performance of the modified algorithm achieved 32% recall with 95% precision, while the original
one achieved 33% recall with 84% precision; the literature similarity requirement preserved the
sensitive characteristic of the PSI-BLAST algorithm while improving the precision.

1. Introduction

The sequence information generated by genome sequencing projects offers opportunities for
understanding biology at an unprecedented fine level of detail. At the same time, the
biomedical literature provides arecord of high level biological phenomena as observed and
reported over many decades. There is an opportunity to combine the power of the genome
seguence information with the published biological record to accelerate progress and gain
insight. Here we show that including literature to tailor homology searches against sequence
databases can improve performance.

The concept of homology between two protein or nucleotide sequencesis often used to infer
that two genes or their protein products are related by evolution. Divergence between the
two entities may have occurred when two species evolved from a single ancestor (orthologs)
or when gene duplication occurs within a species (paralogs). We usually expect that

homol ogous sequences have common functional roles in enzymatic activity, cellular
functions, or overall cellular processes, and may have common structural features, such asin
their protein tertiary structure or active site mechanisms. Since attributing structure,
function, or process to a protein sequence experimentally can be expensive in time and
effort, biologists ook to other sequences that share similarity to predict homology and then
infer these features. This approach has been used widely for structure prediction, function
prediction, and genome annotation [1-7].

Well-known approaches to assess sequence similarity include dynamic programming [8,9]
and BLAST [10]. The dynamic programming approaches find the alignment between any
two sequences that generates the most optimal score based on user-specified parameters.
The BLAST approach is an approximation of an optimal algorithm and was designed to
search databases rapidly for sequences that align significantly well to a query sequence.
Thus, it is often used for applications that require high performance, such as genome
annotation.
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PSI-BLAST (Position Specific Iterated BLAST) is an iterative version of BLAST designed
to increase the sengitivity of searches[11]. In the first iteration, a BLAST search obtains
significantly similar sequences that are used to create a probabilistic sequence profile. In
subsequent iterations that profile is used to search the database and to update the significant
seguences (see Figure 1). By including more diverse sequences into the query, sensitivity is
improved. PSI-BLAST approaches the problem of homology searching by assuming that the
guery sequenceis part of alarger family of sequences; the aim of iterative profile refinement
is to ascertain the underlying common structure of the unknown family and discover its
members.

AsPSI-BLAST iterates, it includes a more diverse array of sequences, and the possihility of
including a sequence that is not properly considered a homolog of the original query
seguence increases. Thus, any errors introduced into the profile can be magnified, eventually
diluting the signal from the original sequence; this situation has been called “profile drift”.

In these situations the algorithm fails to converge or converges to an imperfect solution.

PSI-BLAST considers only sequence similarity and no other biological knowledge, such as
the scientific literature associated with the sequences. For example, if aquery sequenceis
similar to many cell cycle proteins, a reasonable refinement may be to consider only those
proteinsinvolved in the cell cycle. Including more information may result in asearch that is
relatively resistant to contamination. Our adaptation of PSI-BLAST removes sequences that
lack sufficient literature similarity in each of theiterations. Evidence that literature scores
are useful for protein structure and functional analysis has previously been presented in
[5,12,13].

The code for the modified PSI-BLAST algorithm was implemented in the Python
programming language [ 14] using the Biopython toolkit (www.biopython.org) on a Sun
E450 platform. All experiments were performed on protein sequences obtained from
SWISS-PROT Release 39 (May 2000) [15]. SWISS-PROT 39 is a human-curated database
of 86,593 protein sequences and contains cross-references to databases including Protein
Data Bank (PDB) [16] and MEDLINE [17].

To validate our approach we created a database of sequences that are associated with at |east
aminimal amount of biological literature. Next, we defined a gold standard of homologous
families of sequences. Finally, to assess performance we ran sequence homology searches
with PSI-BLAST, varying the parameters used for profile construction.

Modified PSI-BLAST approach

For each homology search, PSI-BLAST was run against the SWISS-PROT database for a
maximum of ten iterations with the profile inclusion criteria that the e-value significance of
ahit must be at least 0.001. To prevent trivial sequence similarities, we filtered both the
guery and database sequences for low-complexity regions with SEG using the recommended
parameters (12 1.8 2.0) [18].

Our modification to PSI-BLAST involved throwing out sequences that have poor literature
similarity to the query sequence. After each iteration of the search, we ranked the significant
hits according to a literature similarity score and discarded the lowest scoring fraction,
thereby excluding them from the profile (Figure 1).
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Collecting Sequence Information and Literature

To obtain literature pertaining to a sequence, we used the information indexed from its
SWISS-PROT record. First, we collected the description, comments, and keywordsin the
record. Next, we retrieved the record’s MEDLINE cross-references and downloaded the
citation and its MeSH headings, subheadings, and abstracts. We defined the literature of a
seguence as the concatenation of these unstructured texts.

Once we collected literature for each sequence, we created alist of domain specific stop
words. These are words that contain little information for distinguishing the sequences. We
defined stop words as those words that appear with less than 3 sequences or more than
85,000 sequences. We found 80,479 stop words out of atotal of 147,639 wordsin the
corpus. This simple method for identifying stop words has previously been shown to be
effectivein similar tasks [19].

Calculating Document Similarity

The similarity between the literature of two sequences was calculated using a vector cosine
measure [20]. In this model documents are represented as a vector in which each dimension
represents the number of times aword appeared in a document. Documents were tokenized
using all non-alphanumeric characters as delimiters. Words are then any lowercased token
that is not a stop word.

The similarity between two documents is the cosine of the angle between their word vectors:

AeB

A, B)=
oA B @

where A and B are the word vectors of two documents. Documents with similar word
content yield scores close to 1, while those with different words yield scores close to 0. The
lengths of the documents are not relevant to the similarity, as the cosine measure normalizes
the vectors.

Defining a Gold Standard for Validation

To validate our approach we created families of homologous protein sequencesto use as a
gold standard. Homology families should contain sequences that are related by evolution,
rather than just by sequence similarity. Since thisis difficult to define, we choose a
definition based on the Structural Classification of Proteins Database (SCOP), release 1.50
(February 2000) [21]. SCOP isamanually constructed hierarchical categorization of
proteins based on structure and function. Since biological relatednessisimplied at the
superfamily level, we defined a homology family as the set of SWISS-PROT sequences that
reference structures in the same SCOP superfamily. All SWISS-PROT sequences that map
into a single SCOP superfamily via PDB were selected for the gold standard.

Choice of Test Set

Our test set consisted of one query sequence per family. Candidate sequences were selected
from the gold standard based on two criteria: 1) they must contain at least four MEDLINE
references with abstracts and 2) they must be in families with at least five members. For
each family we selected the most divergent candidate sequence to be in our test set. We
identified this sequence as the one that detects the least number of homologous sequencesin
aBLAST search. If multiple sequences are equally divergent, one was chosen randomly.
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We conducted four homology searches for each test sequence. One search used the standard
PSI-BLAST. Three searches used a PSI-BLAST modified to account for literature similarity
with various degrees of stringency; we dropped sequences with the lowest 5%, 10%, and
20% of literature similarity per iteration.

Figure 2 shows a comparison of the performance of PSI-BLAST to the various modified
PSI-BLAST approaches. Recall is the number of homol ogous sequences surpassing a fixed
e-value cutoff divided by the total number of homologous sequences. At afixed recall,
precisionis the number of homol ogous sequences detected divided by the total number of
seguences detected. The modified PSI-BLAST was more precise than the original at any
recall. In addition, the precision did not decay as rapidly as recall was increased.

Table 1 lists all the families for which the outcome of PSI-BLAST was atered by inclusion
of our literature criteria; these are the families that account for the differencesin Figure 2.
For 46 of the 54 families that were tested, the outcome was identical for the modified and
the unmodified PSI-BLAST. Out of the eight queries remaining, five differed in
convergence, while three differed in performance. These eight familiesfall into three
categories. Thefirst two familiesin Table 1 converged to poor solutions with standard PSI-
BLAST and failed to converge for the modified PSI-BLAST. The next three failed to
converge for PSI-BLAST, but converged to reasonably good solutions for modified PSI-
BLAST. Thefinal three converged for both modified and standard PSI-BLAST; the
solutions are slightly better for the standard one.

4. Discussion

The figures demonstrate the major strength of our approach. Inclusion of biomedical
literature into homology searching in some cases improved performance and otherwise did
not deteriorate it. As greater precision was achieved, recall was not as dramatically reduced
asit wasfor the standard PSI-BLAST.

For the protein family “Thioredoxin-like”, the PSI-BLAST homology search with the
“CAQS-RABIT"” test sequence failed to converge. The modified PSI-BLAST that accounted
for literature similarity did converge on a precise solution; it correctly detected 5 sequences.
In this case, removing sequences with low literature similarity prevented profile drift and
allowed the search to converge on a correct solution.

Alternatively, for the “EGF/Laminin” and “Acid proteases’ families the standard PSI-
BLAST converged upon incorrect answers, indicating that drift occurred. In the modified
PSI-BLAST, removing sequences with unrelated literature slowed the drift, preventing it
from converging in 10 iterations. These families suffered because non-homologous
sequences had high similarity to family sequences. Although excluding these sequences did
not prevent them from being detected in the next round, it did prevent further drift in the
profile. Literature similarity checking added an additional constraint against including
€rroneous sequences.

However, the literature similarity constraint made no difference in the performance of PS|-
BLAST in the majority of the families. Out of the 54 families, only 5 of the searches
benefited from the additional constraint, and only 2 of those resulted in major
improvements. In the 3 cases in which the performances were worse, they resulted in
dightly lower recalls that can be attributed to a single missed sequence in each family.
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A limitation of any natural language processing approach to biological problemsisthat areas
for which the appropriate quantity of text is unavailable may be difficult to study. In the
context of thiswork, for example, annotation of newly discovered sequences are unlikely to
benefit from the literature if the literature simply does not provide any information about the
related sequences. In the algorithm we tested, the literature of the original document is used
to screen additional sequences. Instead, an adaptive method where the literature of the
original document is supplemented with the literature of the queried sequences may be
appropriate. Thiswould correspond to an assumption that the literature gathered in
subsequent iterations was sufficiently representative of the original sequence, to alow it to
be used to create a“literature profile.” However, such an approach might be subject to the
same drift phenomenathat limit PSI-BLAST!

Aside from homology searching, combining literature similarity with sequence similarity
has applicationsin any area in which sequence differences can be supplemented with expert
knowledge. For example, single nucleotide polymorphisms and other sequence level
differences between individuals are now being characterized and may soon be relevant
clinicaly [22,23]. In exploring these polymorphisms in the context of clinical data, it may be
useful to look not only for similarities at the genomic level, but also at the level of the
patient record. In this setting, biomedical literature is replaced with an electronic medical
record, and comparisons are made between individual patient genomes. For example, the
genomic segquence of a presenting patient can be queried against a patient database of
seguences and records. Similar patients can be examined and studied to understand the
history of diagnosis and treatment, and to correlate these with genomic variations.

In conclusion, we have shown that the biological literature can be used to improve the
detection of sequence homology. Simple natural language processing techniques capture
enough information from free text to improve the accuracy of homology searches.
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Figure 1.

Anillustration of PSI-BLAST and our modification. A sequenceis used in the initial query
to BLAST search the database for similar sequences (1), amultiple alignment is then used to
construct a profile to search the database again (2). Our modification (3) involves screening
the sequences that constitute the multiple alignment for literature similarity; the sequences
for which the associated literature is least concordant with that of the original sequence used
in (1) are eliminated from the profile.
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Figure 2.

Using Text Comparison Improves Homology Search Results. Results of homology search
for 54 training sequences from different families. Precision isinterpolated to insure that the
curves are monotonic. The solid bold line represents the unmodified PSI-BLAST algorithm;
other lines represent modified PSI-BLAST algorithm that drops the sequences with the
lowest 5%, 10%, and 20% of literature similarity.
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