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Abstract
We present iCluster, a fast and efficient algorithm that clusters a set of images while co-
registering them using a parameterized, nonlinear transformation model. The output is a small
number of template images that represent different modes in a population. This is in contrast with
traditional approaches that assume a single template to construct atlases. We validate and explore
the algorithm in two experiments. First, we employ iCluster to partition a data set of 416 whole
brain MR volumes of subjects aged 18-96 years into three sub-groups, which mainly correspond to
age groups. The templates reveal significant structural differences across these age groups that
confirm previous findings in aging research. In the second experiment, we run iCluster on a group
of 30 patients with dementia and 30 age-matched healthy controls. The algorithm produced three
modes that mainly corresponded to a sub-population of healthy controls, a sub-population of
patients with dementia and a mixture group that contained both types. These results suggest that
the algorithm can be used to discover sub-populations that correspond to interesting structural or
functional “modes.”

1 Introduction
Historically, computational anatomy studies have mainly been hypothesis-driven, aiming to
identify and characterize structural or functional differences between, for instance a group of
patients with a disease of interest and control subjects. With the increasing availability of
medical images, unsupervised algorithms offer the ability to probe the population and
potentially discover sub-groups that may differ in unexpected ways. This paper proposes an
efficient probabilistic clustering algorithm, called iCluster, for computing one or more
templates that summarize a given population of images. The algorithm simultaneously co-
registers all images using a nonlinear transformation model parameterized via B-splines
[16]. Additionally, it computes a small number of template images that represent the modes
of the population and assigns each image to a template. The templates are guaranteed to live
in an affine-normalized space, i.e., they are spatially aligned with respect to an affine
transformation model.

Using two experiments, we demonstrate that the modes of the population discovered by
iCluster capture known structural differences and similarities. On a population of 416 brain
MRI of subjects aged 18-96 years, the algorithm computed 3 unique templates that mainly
comprised of young brains (mean age 31), older middle aged brains (mean age 69) and
elderly brains (mean age 79). In another setting, we demonstrate that the modes discovered
by the algorithm reflect the two groups of subjects (with mild dementia and healthy) in the
population. These results suggest that iCluster can be used to probe a population of images
to discover important structural or functional “modes.”
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2 Background and Prior Work
In medical imaging, the term atlas usually refers to a (probabilistic) model of a population of
images, with the parameters learned from a training data set [5,20]. In its simplest form, an
atlas is a mean intensity image, which we call a template [2,4,15,21]. Yet, richer statistics,
such as intensity variance or segmentation label counts, can also be included in the atlas
model [8]. Atlases are used for various purposes including normalization of new subjects for
structure and function localization, segmentation or parcellation of certain structures of
interest and group analysis to identify pathology related changes or developmental trends.

Atlas construction requires a dense correspondence across subjects. Earlier techniques used
a single image - either a standard template [4], or an arbitrary subject from the training data
set [9] - to initially align the training subjects using a pairwise registration algorithm. Other
techniques focused on determining the least biased template from the training set [12,14]. A
single template approach faces substantial methodological challenges when presented with a
heterogeneous population, such as patients and matched normal control subjects in clinical
studies. To circumvent this, more recent approaches aim to co-register the group of images
simultaneously without computing a group template [18,22]. These algorithms, however, do
not compute the multiple modes of the population. A recent work [3] presented a method
that automatically identified the modes of a population using the mean-shift algorithm. This
approach solved pairwise registrations to compute each inter-image distance, which slowed
down the algorithm substantially. Moreover, the multi-modality of the population was not
modeled explicitly, making it difficult to extract a representation of the heterogeneous
population. An alternative strategy is to use all training images as the atlas [10]. A new
subject is registered with each training image and segmentation is based on a fusion of the
manual labels in the training data. This approach is not suitable for anatomical variability
studies, where a universal coordinate frame is necessary to identify and characterize group
differences.

In this paper, we develop a probabilistic framework for joint registration of a set of images
into a common coordinate frame, while clustering them into a small number of groups, each
represented by a template image. Similar to [1], we employ a simple mixture of Gaussians
model and a maximum likelihood framework which we solve using Generalized Expectation
Maximization (GEM). Our algorithm can also be viewed as an extension of the approach of
[19], which solves the registration problem as an initial, separate step. We implement
iCluster using a 3D nonlinear transformation model parameterized via B-splines [16]. Our
framework yields an efficient, fast, scalable and flexible algorithm that offers at least two
advantages over traditional population analysis methods which are typically hypothesis
driven and work with single templates. First, it removes the sensitivity of the co-registration
and atlas coordinate frame to the selected target. Second, it provides a novel, unsupervised
way to probe the population for different modes. Analyzing the discovered sub-populations
and their representative templates promises to advance our understanding of dominant
structural or functional changes due to pathology or development.

3 The Model and Algorithm

We assume that the input images  are generated from a small number of templates
. Thus, for each n ∈ {1, . . . , N}, there exists k ∈ {1, . . . , K} such that:

(1)
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where  is an admissible spatial warp, such as a parameterized nonlinear
transformation, εn(x) is spatially independent, non-stationary Gaussian noise with zero mean
and standard deviation σ(x). The unknown assignment between individual images and
templates is of interest and defines a clustering of the images. To model the possibly
unbalanced nature of cluster sizes, we define an unknown prior on the template frequencies,
and denote this by {πk}.

We use θ = {{Tk}, {πk}, σ, {Φn}} to denote the pooled set of model parameters.
Marginalizing over all possible template indices, we obtain the probability of observing a
particular image:

(2)

where  is the Gaussian density with mean μ and standard deviation σ(x). We
formulate the problem of atlas construction as a maximum likelihood estimation:

(3)

where L(θ) denotes the log-likelihood. We use a Generalized Expectation Maximization
(GEM) algorithm to solve Eq. (3). For a fixed θ0 value, using Jensen’s inequality we form a
lower bound for L(θ):

(4)

where qk(In; θ0) = πkpk(In; θ0)/(Σk’ πk’pk’(In; θ0)) is the posterior probability that In was
generated from Tk and c is a constant that does not depend on θ. Note that L(θ0) = Q(θ0; θ0).
The GEM algorithm iteratively improves this lower bound. Let θ(i) be the guess of θ at the

(i)’th iteration. Computing Q(θ; θ(i)) - or, equivalently  - is the E-step.
The M-step updates θ to increase Q(θ; θ(i)). In our formulation, we use a coordinate ascent
strategy in the M-step and divide it into two sub-steps: (1) the T-step (“T” stands for
template) where we compute the closed form expressions for the template parameters {{Tk},
{πk}, σ} that maximize Q; and (2) the R-step (“R” stands for registration) where we
numerically solve for the transformation parameters {Φn}. The algorithm can be
summarized as follows:

E-step
Given the model parameters from the i’th iteration, the algorithm updates the posterior
cluster probabilities as:

(5)

and . These probabilities can be seen as “soft memberships,” where 
would indicate a “hard membership” in cluster k.
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T-step

Given the posterior probability estimates  and transformation parameters , the
algorithm updates its estimates of the templates {Tk}, template priors {πk} and variance
image σ2 for which we derive closed-form expressions:

(6)

(7)

R-step
Given the new template parameters and memberships the spatial transformations are updated
as:

(8)

where  is the “effective template” (i.e., target image in registration)
for image In at iteration (i + 1). This is a weighted average of the current templates and the
weights are membership probabilities. A single transformation Φn is estimated for each
image, since the model assumes that an image is generated from a single template Tk.
Current membership probabilities determine which template the image should be aligning
with. We solve the non-convex optimization problem (8) using a gradient-descent optimizer,
a B-spline transformation model on an 8 × 8 × 8 control point grid and a multi-resolution
strategy. The registration of each image is done in parallel, since the optimization does not
depend on the other images. The local convergence nature of gradient-descent guarantees
that the lower bound on the log-likelihood is improved, not maximized, at each step; hence
the name Generalized EM.

The above algorithm does not guarantee that the computed template images are in
alignment. To introduce a notion of common coordinate frame, we use an initial affine
normalization step that co-registers all the images using a single dynamic mean image and
an affine transformation model. This step is one of the popular co-registration algorithms
used in practice [12].

In group-wise registration, one needs to anchor the registration parameters to avoid global
transformation drifts across subjects [18,22]. We extend this strategy to the multi-template
setting by constraining each point to lie at the average location of corresponding points
across the images in each cluster. To impose this constraint, we use the soft memberships

:
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(9)

Marginalizing Eq. (9) over k yields , which is the anchoring
constraint used by group-wise registration methods [18,22]. We apply the constraint of Eq.
(9) at each iteration by projecting all the subjects’ gradients of the registration objective
function onto an appropriate space determined by the memberships of all subjects. This is an
extension of subtracting the average gradient from the individual gradients, as proposed by
[18].

Each iteration of the algorithm has a computational complexity and memory requirement of
, where N is the number of input images, K is the number of templates and M is the

number of voxels. We use multi-threading in ITK [11] to implement a parallelized version
of iCluster. Similar to [22], we employ a stochastic sub-sampling strategy to speed up the
algorithm. At each iteration, a random sample of less than 1% of the voxels is used to
compute the soft memberships, templates, template priors, standard deviation image and to
update transformation parameters.

4 Experiments
We used the OASIS data set [13] which consists of 416 pre-processed (skull stripped and
gain-field corrected) brain MR images of subjects aged 18-96 years including individuals
with early-stage Alzheimer’s disease (AD).

In the first experiment, we ran iCluster on the whole data set while varying the number of
templates: K = 2-6. Each run took approximately 4-8 hours on a 16 processor PC with
128GB RAM. For K = 2, 3 the algorithm computed 2 and 3 unique, structurally different
templates, respectively. These templates were robust: they were the same for random subsets
of the data set of as little as 60 subjects. For larger values of K, however, the computed
templates were not all unique, or corresponded to single outlier subjects, or were not robust
to random sub-sampling of the data set. Fig. 1 shows the two and three robust templates
computed with K = 2 and K = 3. The figure includes the age distributions estimated using
Parzen windowing with a Gaussian kernel and a standard deviation of 4 years for each
cluster identified by the algorithm (Fig. 1-c and 1-h).

Each template corresponds to a unique age group: for K = 2, we have a group of young
subjects (mean age 39) and a group of elderly subjects (mean age 78); and for K = 3 we
have young subjects (mean age 31), an older middle aged group (mean age 69) and elderly
subjects (mean age 79). Fig. 1-d illustrates the intersection between the middle age
distribution for K = 3 and the distributions for K = 2. This plot reveals that the middle aged
group for K = 3 consists of two sub-populations: (1) a younger group of subjects that are in
the young group for K = 2 and (2) an older age group in the elderly for K = 2. These results
suggest that the dominant structural modes in this large population are mainly due to aging.
However, analyzing the decomposition of the whole age distribution (shown in black in Fig.
1-d) indicates that iCluster does not simply find the three major age modes. Specifically, the
small, middle peak around 50 years is robustly included with the younger population for
both K = 2 and K = 3. Furthermore, with three modes, the algorithm identifies an older
middle aged group that has a significant overlap with the elderly group. This could suggest
that some brains “age faster than others.” Further analysis of the anatomical structures is
needed to validate this.
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In a second experiment, we used a set of 60 subjects from the OASIS data set. Thirty of
these were diagnosed with very mild to mild dementia and probable AD, while the other
thirty individuals were age-matched controls with no sign of clinical dementia at the time of
scanning. iCluster robustly identified three modes in this population. Template 1 (shown in
Fig. 2-a) consists of 17 subjects, 14 of which have dementia. Template 3 (Fig. 2-c) consists
of 17 subjects, 16 of which are healthy. Template 2 (Fig. 2-b), on the other hand, is a
mixture group that contains 15 patients and 11 healthy subjects. For K = 2 (templates not
shown), there was a significant overlap between the two groups: in the first group 21 out of
31 subjects had dementia, while in the second group 20 out of 29 subjects were healthy
controls. The fact that most of the healthy subjects from the first, patient-dominant group
and most of the patients from the second, healthy-dominant group were pooled to generate a
third, mixed group in K = 3 may be indicative that dementia is not a simple, binary state.
Rather, the mixture group may represent a population of individuals with borderline
dementia or a type of pathology other than dementia that seems to be dominant in the first
template population for K = 3.

In both experiments, enlarged ventricles are obvious in the older and dementia templates
when compared to the younger and healthy populations, respectively. This structural change
due to aging and dementia has been reported in the literature [7,17]. Further analysis is
required to understand the structural differences between the discovered modes. The
intermediate groups (the older middle aged in the first experiment and the mixture group in
the dementia experiment) can provide interesting insights into structural changes due to
aging and dementia.

5 Discussion
We presented a fast and efficient image clustering algorithm for co-registering a group of
images, computing multiple templates that represent different modes of the population and
determining template assignments. We demonstrated our algorithm in two experiments,
which revealed age and disease-related modes of the population. Our results confirm
previous findings and lead to interesting insights that suggest future research directions in
computational anatomy.

The proposed framework can be further explored in various ways. One can employ a richer
transformation model, with a prior on the transformations. This will incorporate deformation
costs into the membership computations, similar to deformation-based population analysis
approaches [6]. Also, general image-to-image distances, such as Mutual Information, can be
derived using more flexible models than an additive Gaussian. This promises better results
in cases where inter-image intensity variations are significant. Furthermore, one can use a
model selection strategy to automatically determine the optimal number of modes. The
proposed algorithm can be straightforwardly used with other types of datasets, such as fMRI
or DTI, to identify functional or connectivity based modes of a population.
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Fig. 1.
Top row: Two templates in the OASIS data set: (a) young subjects, (b) older subjects; (c) the
cluster-specific age distribution for K =2; (d) the age distribution that reveals the
relationship between the ages of subjects in clusters identified for K=2 and for K=3. Bottom
row: Three templates in the OASIS data set: (e) young subjects, (f) older middle-aged group
and (g) elderly subjects; (h) the corresponding age distribution. See text for details.
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Fig. 2.
Three templates for the “30 dementia+30 healthy data set.”
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