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We propose a new adaptive sampling approach to determine free energy profiles with molecular
dynamics simulations, which is called as “repository based adaptive umbrella sampling” (RBAUS).
Its main idea is that a sampling repository is continuously updated based on the latest simulation
data, and the accumulated knowledge and sampling history are then employed to determine whether
and how to update the biasing umbrella potential for subsequent simulations. In comparison with
other adaptive methods, a unique and attractive feature of the RBAUS approach is that the
frequency for updating the biasing potential depends on the sampling history and is adaptively
determined on the fly, which makes it possible to smoothly bridge nonequilibrium and
quasiequilibrium simulations. The RBAUS method is first tested by simulations on two simple
systems: a double well model system with a variety of barriers and the dissociation of a NaCl
molecule in water. Its efficiency and applicability are further illustrated in ab initio quantum
mechanics/molecular mechanics molecular dynamics simulations of a methyl-transfer reaction in

aqueous solution. © 2008 American Institute of Physics. [DOI: 10.1063/1.2920476]

I. INTRODUCTION

In computer simulations of many processes in complex
systems, which include conformational changes, molecular
recognition, and chemical reactions, a common and impor-
tant task is to determine the free energy profile along the
chosen reaction coordinates.' As a statistical property, the
free energy profile can be taken as a measure of the prob-
ability of finding a system in a series of given states.”® To
compute the correct probability distribution, a prerequisite is
to have good statistics. However, due to the existence of high
free energy barriers, the transitions between distinct thermo-
dynamic states of interest constitute rare events, which, in
general, make it infeasible to achieve sufficient sampling
with a straightforward application of molecular dynamics or
Monte Carlo simulations.

Over the years, many methods* ™ have been developed
to enhance the sampling of rare events. For the determination
of free energy profiles, one commonly employed strategy is
to add an artificial biasing potential into the Hamiltonian of
the system, which is exemplified by the umbrella sampling
(US) method.>?® In typical US simulations, the potential en-
ergy of the system is biased with a series of umbrella poten-
tials, which are usually in the form of a harmonic function,
centered on successive values of the reaction coordinate. For
each umbrella window, equilibrium simulations are carried
out and the biased probability distribution (e.g., histogram) is
obtained. Given that the overlaps in the phase space between
adjacent windows are sufficient, the free energy profile along
the reaction coordinate can be obtained with the weighted
histogram analysis method (WHAM).” This approach has
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been widely employed and proved to be powerful in many
applications; however, its efficiency is quite dependent on
the choice of the windows and biasing potentials. The ideal
choice of the biasing potential would be the negative of the
free energy profile, so that the uniform sampling along the
chosen reaction coordinate can be achieved. Unfortunately,
such information is exactly what we try to obtain from simu-
lations and is not known in the first place. One promising
method to circumvent this inherent challenge is the adaptive
US,%#3%32 in which a series of staged, quasiequilibrium
simulations are performed with an evolving biasing poten-
tial. For each subsequent simulation, its adaptive biasing po-
tential is the inverse of the currently estimated free energy
profile, which is often determined by using WHAM (Ref. 29)
to combine the results from all previous simulations.

With the very similar spirit of adaptivity, several non-
equilibrium approaches have been proposed to achieve the

uniform sampling, such as Wang—Landau approach,33’20 the
adaptive biasing force, 2184 nonequilibrium
rnetadynamics,&B’35 adaptive dynamics,”’36 and self-healing

Us."”? Among them, the metadynamics method has attracted
the most attention and has been widely applied in several
fields with quite some success.” In rnetadynamics,&B’35
which is also often called as the hill method, a sum of
history-dependent Gaussian potentials (centered at the vis-
ited spots) is added to the Hamiltonian of the system to fill
up the free energy wells, so that the system is forced to
explore previously unvisited configuration spaces. Such a
procedure recursively flattens the free energy barriers that
separate distinct thermodynamic states of interest, and the
underlying free energy profile can be recovered from the
updated history under some conditions. The height and width
of the added Gaussian potential are important factors to de-
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termine the accuracy and efficiency of the metadynamics
simulation, and several strategies have been developed,
which include a Wang—Landau recursive scheme to adap-
tively update its height.37 Meanwhile, one straightforward
way to further improve the accuracy of the resulted metady-
namics free energy profile is to perform some additional
equilibrium US simulations. >3

Very recently, a self-healing US approachl2 has been
proposed, in which a time-dependent bias potential is con-
tinuously self-adapted during a single simulation based on a
recursive relation for the probability density. In comparison
with the adaptive US, a key attractive feature for the self-
healing approach is that the history-dependent bias potential
is continuously updated on the fly with a set of simple for-
mula instead of using WHAM to combine all previous simu-
lation data. By achieving the uniform sampling along the
reaction coordinate, the free energy profile can be obtained
as the negative of the resulted biasing potential.

Inspired by the self-healing US approach,12 we propose
here a repository based adaptive US (RBAUS) method, in
which a sampling repository is continuously updated based
on the latest simulation data, and the accumulated knowledge
and sampling history are then employed to determine
whether and how to update the biasing umbrella potential for
subsequent simulations. A unique and attractive feature of
the RBAUS method is that it bridges nonequilibrium and
equilibrium simulations. In the following, we will first
present the theoretical method and computational details.
Then, several tests will be presented to demonstrate the effi-
ciency and applicability of the RBAUS approach, which in-
cludes simple model systems as well as ab initio quantum
mechanics/molecular mechanics (QM/MM) molecular dy-
namics simulations of chemical reactions in solution. From
these tests, some unique features of the RBAUS method will
also be illustrated.

Il. THEORY AND METHOD
A. Umbrella sampling

The free energy profile A(#) along a predefined reaction
coordinate 7(R) is related to the probability distribution

p(7),
A(n) ==kgT1n p(n) +c, (1)
with

JdR&(7[R] - n)e‘Ho(R)/kBT
B I dRe HoRVkpT

p(n) =(8(nR]= 1))y, (2)

where kg is the Boltzmann constant, 7 is the absolute tem-
perature, R represents all spatial coordinates of the system,
H,, refers the system Hamiltonian, and ¢ can be any constant.
Given a canonical ensemble of structures generated with
Hamiltonian H,, the ensemble average can be simply
computed as
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__No(n)
Jd 7No(7) ’

where Ny(7) refers to the count of configurations with a

given value of 7 in the canonical ensemble generated with

Hamiltonian H,,.
In US™'? with a biased Hamiltonian H,,

H,=H,+ V,(n(R)), (4)

the probability distribution p(#) for the unmodified system
can be obtained by the following relation:

de5( 77[R] _ 7])evb(7](R))/kBTe—H,,(R)/kBT
= J‘dRe—H,,(R)/kBT

dee_Hh(R)/kBT
X JdRe MRV kgT oty REsT

_ (S(n[R] = m)e o MRIKT),
" Jdn(8(7[R] - p)e" o mRIKSTY, -

Thus, with N,(7) as the number of configurations with a
given value of 7 in the canonical ensemble generated with
the biased Hamiltonian H,, p(7) can be computed as

Ny(m)e"n(P/ksT
P(7]) = V()T *
JdnN,(n)e ' P8

We can see that with V,(7)=0 in Eq. (6), it becomes Eq.
(3). Thus, for a given biased ensemble, N,(7) can be consid-
ered as the raw sampling number of the given value of »
along the reaction coordinate, and we can define K(7)
=N, (n)e"?M*sT a5 the corresponding unbiased knowledge
about the given value of # from this biased simulation.

It should be noted that if the chosen reaction coordinate
7 is nonlinear in the Cartesian coordinates, a Jacobian matrix
determinant term needs to be included to obtain the potential
of mean force (PMF) along 7,

PMF(7) = A(%) + kgT In|lJ
=—kgTIn p(7) + ¢ + kgT In|J|. (7)

(8(7R] = m)o (3)

p(n)

(5)

(6)

The |J| stands for the Jacobian factor.” For example, if the
distance of two particles r is chosen as the reaction coordi-
nate, the corresponding PMF (r) would be

PMF(r) = A(r) + 2kgTIn r
=—kgTInp(r)+c+2kzTInr. (8)

B. Repository based adaptive umbrella sampling

The main idea of the RBAUS approach is that a sam-
pling repository is continuously updated based on the latest
simulation data, and the sampling history and accumulated
knowledge are employed to determine whether and how to
update the biasing umbrella potential to achieve more uni-
form sampling for subsequent simulations.

Consider the determination of the free energy profile
along a predefined reaction coordinate 7(R), the sampling
repository mainly stores and updates two kinds of informa-
tion: the accumulated raw sampling number NS(7) and the
accumulated unbiased knowledge K(7). With the profile of
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NS(7), the ratio of its largest value of NS(%) to its lowest
value can be easily calculated. Here, we call it as the
“histmax-histmin ratio” (HHR). If the subsequent simulation
still explores the previously oversampled region more often
than the previously undervisited one, the HHR will increase.
On the other hand, the decrease in HHR indicates that the
subsequent biased simulation is achieving more uniform
sampling along the reaction coordinate. Thus, we can see
that the change in HHR in simulations can be employed to
determine whether the currently employed biasing umbrella
potential needs to be updated to encourage more uniform
sampling. Meanwhile, the accumulated unbiased knowledge
K(7) can be employed to calculate the free energy profile on
the fly, which can be employed to update the biasing poten-
tial V;(7) if needed. Therefore, we can see that in compari-
son with other adaptive sampling approaches, a unique fea-
ture of the RBAUS approach is that the frequency for
updating the biasing potential depends on the sampling his-
tory and is adaptively determined on the fly. In the following,
we present a practical RBAUS simulation scheme:

e Step O: Initial repository setup. In numerical simula-
tions, it is a common practice to divide the reaction
coordinate 7 into Z bins. For each bin 7, we set an initial
value of NS[i]=0, and K[i]. K[i] refers to the accumu-
lated knowledge about the [/] bin. Without any prior
information about the system, one might simply set K[i]
to be uniform with a small number of 0.001.

e Step 1: Biasing potential update. With the accumulated
unbiased knowledge K[i], the free energy profile A[i]
can be calculated with the following equation:
KlilZz

SZ K[

Ali]=-kgTIn 9)
The biased potential V), is then obtained based on the
negative of the calculated free energy profile. It should
be noted that with Eq. (9), A[i] would be zero when
K[i] is equal to the average of the accumulated knowl-
edge among all bins, which is a desired property for
constructing the biased potential. Meanwhile, from the
accumulated raw sampling number NS[i], the reference
HHR can be easily obtained by

HHR = max(NS)/min(NS), (10)

when min(NS) > 0. If min(NS)=0, the HHR can be set
to a large value, such as 1000.

e Step 2: Biased simulations. Perform molecular dynam-
ics simulations with the biased Hamiltonian Hy+ V). For
a certain period of time, such as 1 ps, we will collect
the raw histogram h[i], which is the number of sampled
configurations in each bin.

 Step 3: Repository update.
NS[i]=NS[i] + A[{],

K[i]=K[i]+ h[i]e"lVksT (11)

The updated NS[i] is used to calculate the current HHR
HHR by Eq. (10), and the updated K[i] can be em-
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FIG. 1. The flow chart for the repository based adaptive US approach.

ployed to calculate the current estimation of the free
energy profile A {i] through Eq. (9) if desired.

» Step 4: Decision made on whether to update the biasing
potential. With the calculated HHR and the reference
HHR, we have devised the following heuristic criteria
to decide how to proceed next:

* Case I: If HHR( is larger than 10 or HHR is larger
than 1.1HHR, update is needed. Thus, go to Step 5.

* Case II: If HHR( is less than 10 and HHR is less
than 1.1HHR, update is NOT needed. Thus, go to
Step 2 with the same V), and set HHR to be
min(HHR,HHR).

» Step 5: Repository consolidation. Here, the accumulated
unbiased knowledge in the sampling repository is con-
solidated by setting K[i]=k.onsK[i]. kconst €quals to 1
when HHR( is less than 10, and is set to a value of
0.618 when HHR( is larger than 10. Go to Step 1.

The above scheme is summarized into a flow chart
shown in Fig. 1. When the sampling along the reaction co-
ordinate is close to the uniform, case II in Step 4 would be
always fulfilled. Thus, the biasing potential would not be
updated anymore, and the simulation turns into being a qua-
siequilibrium one. In Steps 4 and 5, one criterion that we
have employed is whether the value of HHR is larger than
10. This is often the case at the initial stage of the simulation,
and it indicates that a certain region along the reaction coor-
dinate is rarely sampled and the employed biasing potential
is quite far away from the optimal. Thus, the biasing poten-
tial should be updated as often as possible. Meanwhile, since
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the unbiased knowledge accumulated at this initial simula-
tion stage is likely not reliable, a scaling factor k., (less
than 1.0) is employed in Step 5. In our experiments, we
found that values between 0.2 and 0.8 yield reasonable per-
formance. Smaller values of k.., tend to throw away too
much information from previous simulations, while a value
of 1.0 throughout the simulation makes the result quite de-
pendent on the initial simulation setup. It would be better to
make this k., to be adaptive. In our current implementa-
tion, we have set k.., to be 0.618 when HHR is larger than
10, and the value is switched to 1.0 when HHR is less than
10. It should be noted that the current scheme is not optimal,
but it is found to be quite robust and efficient in several very
different test cases, as presented in Sec. IV. In principle, a
Bayesian updating scheme can be employed here, and the
work along this direction is currently in progress and will be
presented in future publications.

We would like to point out that the embarrassingly par-
allel simulations can be very easily implemented in the
RBAUS. Basically, in Step 2, a number of replicas with dif-
ferent initial structures along the reaction coordinate can be
simulated in parallel with the same bias potential, and the
raw histogram will be collected from all replica simulations
instead of one single simulation. Meanwhile, the collection
time in Step 2 can be correspondingly reduced in multirep-
lica simulations to collect the same amount of sampling data
as in the single-replica simulation. This means that if one
single-replica simulation needs 1 ps to collect data, eight-
replica simulations would only need 0.125 ps for each rep-
lica. It would be noted that such parallel simulations are very
natural for adaptive simulations,*® which include adaptive
umbrella sampling32 and metadynamics.4o

lll. IMPLEMENTATION AND COMPUTATIONAL DETAIL

We have implemented the above presented RBAUS
simulation scheme in the TINKER4.2 suite of molecular simu-
lation program41 and an ab initio QM/MM program, which is
based on modified GAUSSIANO3 package42 and TINKER4.2."!
The biasing potential is represented by the shape-preserving
smoothing spline, and the TSPSS module in Renka’s tension
spline curve-fitting package (TSPACK) (Ref. 43) has been
used. We have tested the implemented scheme in three very
different systems. The first one is a very simple model sys-
tem: two particles interacting with a double well potential.
We have set a variety of barriers between two wells, ranging
from 3 to 30 kcal/mol, which represent typical barriers that
need to be simulated in complicated processes such as con-
formational changes and chemical reactions. Then, we turn
to a more realistic, complex, and well studied system:M*46
the Na*™ and CI~ ion pair association in water, which has a
quite low barrier of a few kcal/mol. Finally, we have em-
ployed the RBAUS simulation scheme for a more challeng-
ing task: ab initio QM/MM MD simulation of Cl~+CH;Cl
— CICH;+CI reaction in water, which has an experimental
free energy barrier of 26.6 kcal/ mol.*’
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FIG. 2. (Color online) Illustration of five double-well potentials with barri-
ers of 3, 6, 12, 24, and 30 kcal/mol, respectively.

A. Double well model potential

In this simple model system, two particles interact with
each other via a double well potential which has the follow-
ing form:

E(r)=cy+cor+ 3 + eyt + 5. (12)

We make the barriers between the two minima range
from 3 to 30 kcal/mol by setting the coefficients as the fol-
lowing below (in Fig. 2):

barrier of 3 kcal/mol: ¢, =9.134, ¢,=-10.201,
c3=4.542, c4=-0.744, ¢5=0.04,

barrier of 6 kcal/mol: ¢, =18.269, ¢, =-20.401,
¢c3=9.083, c¢4=-1488, ¢5=0.08,

barrier of 12 kcal/mol: ¢; =36.537, ¢,=-40.802,
c3=18.166, c¢4,=-2.975, ¢5=0.16,

barrier of 24 kcal/mol: ¢, =73.074, ¢, =-81.604,
c3=36.332, c¢4=-595 ¢5=0.32,

barrier of 30 kcal/mol: ¢; =91.34, ¢,=-102.01,

c3=4542, c,=-744, c5=04.

We have employed 50 bins along the reaction coordinate
from 1.0 to 8.5 A. To discourage the system to visit the re-
gion with either the reaction coordinate of less than 1.0 A or
larger than 8.5 A, a harmonic wall has been applied outside
of the [RclerRcRight]’ which is Ewall(Rc)zIO'O(RC_Rcleft)(RC
=R gign)- Such a wall potential has also been applied in the
other two test cases. The RBAUS MD simulation is per-
formed with the following simulation parameters: 1 fs time
step, 1 amu for the mass of the particle, and 300 K tempera-
ture. It should also be noted that for this simple model sys-
tem, its reference PMF is the same as the potential energy
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curve. To check the convergence of RBAUS MD simula-
tions, we have calculated the root-mean-square deviation
(RMSD) of the simulated PMF with respect to the reference
one,

>Z [PMF.. [i]- PMF. [i]]?
RMSD=\/ l_l[ mm[lZ] ref[l]] )

(13)

B. Sodium chloride ion pair in water

The system is made up of a sodium ion, a chloride ion,
and 254 water molecules in a cubic box with periodic bound-
ary conditions. The dimension of the box is 19.7429 A, and
a cutoff distance of 9 A has been used for the van der Waals
and electrostatic interactions. The simulation of the system is
performed in the constant volume, constant temperature
(300 K) by using the modified TINKER program.*' The TIP3P
water model®® was utilized, the force field parameters for
sodium and chloride ions were developed by Aqvist,49 and
the van der Waals radii has been adapted for AMBER combin-
ing rule.”” The distance between Na* and CI™ has been cho-
sen as the reaction coordinate, and the bin width has been
assigned to be 0.1 A. The above simulation protocol has
been employed in RBAUS simulations as well as in conven-
tional umbrella simulations. To obtain the reference PMF, we
have employed 21 umbrella windows along the reaction co-
ordinate from 2.4 to 7.5 A. For each window, 0.2 ns equili-
bration was performed and followed by 3 ns data collection.
The histograms along the reaction coordinate were deter-
mined for all windows and were pieced together with
WHAM 512928

C. CI"+CH;Cl— CICH3+CI- reaction in aqueous phase

For this methyl-transfer reaction, the reaction coordinate
R, is defined as R.=rccy—rcc, Where Cl' is the leaving
atom. The solutes were described at the HF/6-31G* level,
which has been known to describe such methyl-transfer re-
actions well with a reasonable computational cost.”? The sol-
utes were solvated with a 15 A sphere with 796 water mol-
ecules described by the TIP3P (Ref. 48) water model. A
spherical boundary condition has been employed, in which
solvent molecules within 13 A sphere of the sphere center
were allowed to move during simulations. To calculate the
reference free energy profile, we have employed conven-
tional umbrella simulations. A total of 33 umbrella windows
along the reaction coordinate have been employed. For each
window, the configurations were collected for 80 ps for the
data analysis after the equilibration period of 10 ps at 300 K.
The histograms along the reaction coordinate were deter-
mined for each window and were pieced together with
WHAM (Refs. 51, 29, and 28) to calculate the free energy
profile.

IV. RESULTS AND DISCUSSION

A. Model system 1: Double well model potential

We have applied the presented RBAUS scheme with the
same set of simulation parameters to all five different barrier
potential models, with the barriers ranging from
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FIG. 3. (Color online) The RMSD of the calculated PMFs from single-
replica RBAUS simulations with respect to the reference one for all five
double-well model systems. The dashed line indicates the RMSD value of
0.1 kcal/mol. The point symbols represent the biasing-potential-updating
points.

3 to 30 kcal/mol. As shown in Fig. 3, for these five very
different barriers, the convergences of the simulations are all
very efficient. Even for the system with very high barriers,
such as 24 and 30 kcal/mol, it only takes less than 0.5 ns to
have the error in calculated PMF to be lower than
0.1 kcal/mol. Figure 3 also indicates that the convergence
for a system with a lower barrier is faster than for the higher
barrier system, which is expected and desired. However, we
would like to point out that to achieve such efficient conver-
gence for these very different barriers, using the same simu-
lation protocol is not a trivial task. For example, it would not
be the case if the repository consolidation step (Step 5 in Fig.
1) was skipped. Meanwhile, in Fig. 3, the empty symbols
represent the biasing-potential-updating points. We can see
that for each curve, the updating becomes less often when
the simulation goes on, and there is almost no updating after
0.5 ns. These illustrate a unique and attractive feature of the
RBAUS approach: it smoothly bridges nonequilibrium and
quasiequilibrium simulations.

In Fig. 4, a series of calculated potentials of mean force
at different simulation times (1 ps, 10 ps, 30ps, 50 ps, 0.1 ns,
0.4 ns) are presented for the model system with a barrier of
24 kcal/mol. This illustrates how the RBAUS scheme
works. For this particular simulation, it initially samples the
minima near 8 A, and it takes about 50— 100 ps to flatten a
barrier of about 24 kcal/mol. After about 0.1 ns, it has
sampled almost the entire area of the reaction coordinate, but
there is still some noticeable error in the minima near 2 A.
At 400 ps, we can see that the calculated curve overlaps
almost perfectly with the reference curve. It should be noted
that the added biasing potential is based on the negative of
the calculated free energy profile, which increasingly flattens
the free energy surface and leads to more uniform sampling
along the reaction coordinate.

Meanwhile, as shown in Fig. 5, embarrassingly parallel
simulations can be straightforwardly implemented and can
significantly reduce the wall time to reach the convergence if
sufficient parallel computational resources were available.



204106-6 H. Zheng and Y. Zhang

40 r . ; | . :
=
=]
E - ---- pmf after 1 ps |
= -~ pmf after 10 ps
8 30 — - pmf after 30 ps i
< -—- pmf after 50 ps
@ - pmf after 100 ps
O S j=="=_ - pmfafterd00ps
& || =T , "\ reference pmf
= 201 N ]
g =y T AN
E | / \ _
—_— \ 7 4 \
S 10~ \ Y o I N |
= \..\.../../‘./ ...... \\\‘. : /
g 4 YW o i
L 5 g7 W oy i
=3 L \\ i
& S

. | . ] i ] i ]
h L 1 . :

Reaction Coordinate (&)

FIG. 4. (Color) The calculated PMFs obtained from the RBAUS simulation
with single replica at different simulation times for the double-well model
system with a barrier of 24 kcal/mol.

With 0.1 kcal/mol as the convergence criteria, the simulation
with eight replicas converges after 26 ps, while that with
four replicas converges after 64 ps. Meanwhile, the simula-
tion with multiple replicas turns into the quasiequilibrium
stage much earlier than the single-replica simulation. For
multireplica simulations, we can see that the biasing poten-
tial update is not needed after about 30 ps for eight replicas
and 130 ps for four replicas. It should be noted that although
embarrassingly parallel simulations may not necessarily save
much of the total CPU time, it is quite attractive for the new
generation of supercomputers, which are likely to have many
more CPUS with relatively small increase in the processor
speed.

B. Model system 2: A sodium chloride ion-pair
in water

To test the RBAUS method in a more realistic system,
the dissociation of a sodium chloride ion pair in aqueous

T T T
6—9 1 simulation

8 E—8 4 simulations
—~ 4~ 8 simulations
'_g' -- RMSD =0.1 1
= 1. —
<
<o
i~ |
N’
a _
E .
-~ |

0.4 0.6 08 1

"Time (ns) )

FIG. 5. (Color online) The RMSD of the calculated PMFs from multireplica
RBAUS simulations with respect to the reference one for the double-well
model system with a barrier of 24 kcal/mol. The dashed line indicates the
RMSD value of 0.1 kcal/mol. The point symbols represent the biasing-
potential-updating points.
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FIG. 6. (Color online) The calculated PMFs obtained from single-replica
RBAUS simulation at different simulation times for the dissociation of a
sodium chloride ion pair in aqueous solution. The reference PMF is obtained
from US simulations with 21 windows and 3 ns simulation for each
window.

solution has been studied. The distance between Na* and C1~
was chosen as the reaction coordinate. The reference PMF
for comparison was calculated for the same system with con-
ventional US by using 21 umbrella windows and 3 ns sam-
pling time for each window. Figure 6 illustrates the calcu-
lated PMFs at different simulation times with the RBAUS
method by using only one replica. We can see that the cal-
culated PMF at 1.5 ns from the single-replica RBAUS simu-
lation is almost indistinguishable from the reference one. The
calculated PMF differences between the contact and solvent-
separated ion pairs and their transition barrier are 2.1 and
3.9 kcal/mol, respectively, with the RBAUS simulation,
which are in excellent agreement with the values of 2.1 and
3.8 kcal/mol from the conventional US. Figure 7 presents
the evolution of the RMSD of the calculated PMFs from
both single-replica and four-replica RBAUS simulations with
respect to the reference one. We can see that similar to the
model system 1, the convergence of the four-replica RBAUS

6—o 1 simulation
E—8 4 simulation

RMSD (kcal/mol)

1
Time (ns)

FIG. 7. (Color online) The RMSD of the calculated PMFs from single-
replica and four-replica RBAUS simulations with respect to the reference
one for the dissociation of a sodium chloride ion pair in aqueous solution.
The point symbols represent the biasing-potential-updating points.
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FIG. 8. (Color) The free energy profiles of Cl"+CH;Cl— CICH;+CI" re-
action in aqueous solution calculated by eight-replica RBAUS simulations
without prior information at different simulation times. The reference free
energy profile is obtained from the US with 33 windows and 80 ps simula-
tion for each window.

simulations is much faster than the one-replica simulation,
and for each curve, the updating becomes less often when the
simulation goes on.

C. Model system 3: ClI+CH;Cl— CICH;+CI- reaction
in aqueous phase

To further demonstrate its feasibility and efficiency, the
RBAUS scheme has been employed to determine the free
energy profile of the CI™+CH;3Cl— CICH;+CI" reaction in
water with Born—Oppenheimer ab initio QM/MM molecular
dynamics simulations. At each time step, the forces on atoms
in both QM and MM regions together with the total energy
are calculated with ab initio QM/MM method on the fly, and
the Newton equations of motion are integrated. Such simu-
lations have been recently demonstrated to be feasible and
successful in studying enzyme reactions.”*

In this CI” identity S)2 reaction, the formation of one
C---Cl bond is accompanied by the breaking of the other
C---Cl bond. By choosing the difference of these two bond
lengths as the reaction coordinate, we have carried out an
eight-replica. RBAUS molecular dynamics simulation with
HF/6-31G* QM/MM method to map out its potential of
mean force. A series of calculated PMFs at different simula-
tion times (after 0.125, 1.25, 4, 7, 15, and 30 ps) are shown
in Fig. 8. We can see that it only takes about 10 ps RBAUS
simulation to overcome a free energy barrier of about
26 kcal/mol, and the free energy profile obtained from eight-
replica RBAUS molecular dynamics simulations at 30 ps is
in excellent agreement with the reference curve obtained
from conventional US with 33 windows and 80 ps trajectory
long for each window. The free energy barrier obtained at
30 ps from RBAUS is 25.6 kcal/mol, which is very compa-
rable with the US result of 25.5 kcal/mol. Meanwhile, Fig. 9
illustrates how some prior information can be used to further
enhance the sampling efficiency of RBAUS simulations, and
Fig. 10 shows the RMSD of the calculated PMFs for both
simulations with and without prior information. The free en-
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FIG. 9. (Color) The free energy profiles of Cl"+CH;Cl— CICH;+CI" re-
action in aqueous solution calculated by eight-replica RBAUS simulations
with prior information at different simulation times. The reference PMF is
obtained from the US with 33 windows and 80 ps simulation for each
window.

ergy barrier obtained after 5 ps from RBAUS with this prior
information is 26.0 kcal/mol, which is also close to the US
result.

Here, the supposed prior information about this reaction
is represented by an Eckart potential function,”*

Y

V(S) AV_+B(1+y)2,

(14)

where

y=expla(s—s0)], B=[Vy>+(Vo-AV)P,  (15)

1
S():_ln[(VO—AV)/V()]. (16)
2a
The s— — region is the reactant and the s— 4+ is the
product. The V, is the energy difference between reactant
and transition state, AV is the difference between reactant

»— 8 simulations without prior info
6 =—a 8 simulations with prior info .

RMSD (kcal/mol)

0 15 30 45 » 60 7
Time (ps)

FIG. 10. (Color online) The RMSD of the calculated free energy profiles
with respect to the reference one for ClI"+CH;Cl— CICH;+CI" reaction in
aqueous solution by eight-replica RBAUS simulations with and without
prior information. The point symbols represent the biasing-potential-
updating points.
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and product, and « refers to the width of the curve. Here, we
choose V to be 20 kcal/mol, AV to be 0 kcal/mol, and « to
be 1.5. This supposed prior information is employed to set
the initial value of K[i] in the initial repository setup (Step
0). Since the employment of such prior knowledge effec-
tively reduces the height of the reaction barrier to overcome,
it is not surprising that it leads to a faster convergence than
the simulation without employing the prior information, as
shown in Figs. 9 and 10.

V. CONCLUSION

In this work, we have proposed a RBAUS method to
determine the free energy profile along chosen reaction co-
ordinates. In comparison with other adaptive sampling meth-
ods, a unique and attractive feature of the RBAUS method is
that the frequency for updating the biasing potential is not
predetermined but depends on the sampling history and is
adaptively determined on the fly. Thus, the RBAUS method
smoothly bridges nonequilibrium and quasiequilibrium simu-
lations. By using the “repository” paradigm, it is straightfor-
ward to employ parallel simulations and to use all of the
other prior information to enhance the sampling efficiency.
The tests on several very different systems with barriers
ranging from 3 to 30 kcal/mol demonstrated its efficiency
and applicability, which are very encouraging. Meanwhile, it
should be noted that the presented RBAUS method has much
room to be further improved and extended, such as to inte-
grate a Bayesian updating method into the RBAUS approach
and to determine multidimensional free energy surfaces. The
work along these directions are currently in progress in our
laboratory and will be presented in later publications.
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