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Analytical approximations to fundamental equations of continuum electrostatics on simple shapes
can lead to computationally inexpensive prescriptions for calculating electrostatic properties of
realistic molecules. Here, we derive a closed-form analytical approximation to the Poisson equation
for an arbitrary distribution of point charges and a spherical dielectric boundary. The simple,
parameter-free formula defines continuous electrostatic potential everywhere in space and is
obtained from the exact infinite-series �Kirkwood� solution by an approximate summation method
that avoids truncating the infinite series. We show that keeping all the terms proves critical for the
accuracy of this approximation, which is fully controllable for the sphere. The accuracy is assessed
by comparisons with the exact solution for two unit charges placed inside a spherical boundary
separating the solute of dielectric 1 and the solvent of dielectric 80. The largest errors occur when
the source charges are closest to the dielectric boundary and the test charge is closest to either of the
sources. For the source charges placed within 2 Å from the boundary, and the test surface located
on the boundary, the root-mean-square error of the approximate potential is less than
0.1 kcal /mol / �e� �per unit test charge�. The maximum error is 0.4 kcal /mol / �e�. These results
correspond to the simplest first-order formula. A strategy for adopting the proposed method for
realistic biomolecular shapes is detailed. An extensive testing and performance analysis on real
molecular structures are described in Part II that immediately follows this work as a separate
publication. Part II also contains an application example. © 2008 American Institute of Physics.
�DOI: 10.1063/1.2956497�

I. INTRODUCTION

Electrostatic interactions are often a key factor in deter-
mining properties of biomolecules,1–5 including their func-
tions such as catalytic activity,6,7 ligand binding,8,9 complex
formation,10 proton transport,11 as well as structure and
stability.12,13 In-depth studies of electrostatics-based phe-
nomena in macromolecular systems require the ability to
compute the potentials and fields efficiently and accurately
on the atomic scale.2,14 Within the framework of the so-
called implicit or continuum solvent model,15–17 the Poisson–
Boltzmann �PB� approach is an exact way to compute the
electrostatic potential ��r� produced by a molecular charge
distribution ��r�. In many practical applications its linearized
form is used, in which case the following equation or its
equivalent must be solved:

���r� � ��r� = − 4���r� + �2��r���r� , �1�

where ��r� is the position-dependent dielectric constant, and
the electrostatic screening effects of monovalent salt enter
via the Debye–Hückel screening parameter �.

Historically, the first quantitative approaches to compu-
tation and analysis of the electrostatic potential produced by

biomolecular charge distributions relied on analytical
approximations18,19 to Eq. �1�, such as the famous model due
to Kirkwood.19 The use of these models led to unique in-
sights into a number of important biophysical problems, for
example, protein titration20 and protein folding.21 The limited
accuracy resulting from the use of simplified shapes such as
a sphere to represent the true complexity of a molecular sur-
face was probably thought to be an inevitable drawback of
these models and thus prompted the development of numeri-
cal approaches to solving the PB equation.

A prototypical numerical PB �NPB� method works by
placing the molecule inside a bounding box or surface, de-
fining a three-dimensional �3D� grid of points within it, and
then solving for the ��r� at every grid point through iterating
a set of self-consistent equations. Currently available
tools22–26 based on these methods produce accurate potential
fields ��r� for any realistic charge distribution and molecular
shape. The errors of these numerical solutions can be con-
trolled, and, in principle, made arbitrarily small �albeit at an
unrealistic computational cost�, by adjusting parameters of
the numerical models such as the finite-difference grid reso-
lution and the size of the bounding box.

The NPB approaches have become the de facto accuracy
standard in the field.27 Despite their widespread acceptance,
the methodology has several drawbacks relative to alterna-
tive analytical approaches. From the practical standpoint, the
NPB methods are fundamentally more complex and gener-
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ally more expensive computationally compared to closed-
form analytical expressions. These differences are especially
pronounced in dynamical simulation, where availability of
analytical energy functions is particulary advantageous. Gen-
erally, the NPB framework does not offer as much freedom
and ease in exploring parameter space of simple model sys-
tems and toy models and in making qualitative estimates.
This ability may be critical for studies aimed at certain fun-
damental system nonspecific properties of biomolecular
systems.21

The fundamental difference between NPB and analytical
approaches such as the Kirkwood model is seen in the lim-
iting case when ��r� needs to be estimated at a single point
in space: The NPB methodology still requires that ��r� is
found simultaneously at many points of a finite spacial do-
main, for example, at every node of a 3D cubic grid or two-
dimensional �2D� surface.28,29 The computational complexity
of finding ��r� combined with technical difficulties associ-
ated with computing forces due to changes in the molecular
surface motivated the search for alternative methods to be
used in molecular dynamics �MD� to estimate electrostatic
forces within the implicit solvent framework.

While a number of promising models were
proposed,30–33 perhaps the most successful of these analytical
alternatives is the generalized Born �GB� approximation pio-
neered by Still et al.34 around 1990. The model offers an
analytical prescription for estimating the electrostatic part of
the solvation free energy. The GB’s original formulation ap-
plies to the zero ionic strength case �the Poisson equation�.
Later, a heuristic prescription was introduced that success-
fully adapted the GB approximation to handle the nonzero
salt case.35

Unlike the infinite-series Kirkwood’s solution,19 the GB
expression is a mathematically simple, closed-form formula.
Importantly, the GB approximation is also aimed at working
for arbitrary shapes, not just spherical as in Kirkwood’s
model. The algorithmic simplicity and computational effi-
ciency of the original GB model, combined with accuracy
improvements, have made it the method of choice in implicit
solvent MD,15,17,36–56 although promising NPB-based alter-
natives have also been recently tested.26,57

Despite the successes of the GB approximation, the
model has its own serious drawbacks. First, fundamentally,
the GB model does not, even in principle, permit a definition
of continuous electrostatic potential everywhere in space: at
best, it can only be used to define ��r� at the centers of the
atoms.58 This property is at odds with the very physical na-
ture of electrostatic potential. In practice, the ability to com-
pute the potential at any given point is critical for many
applications. Second, unlike many important approximate
approaches in physics, for example, the perturbation theory,
or the NPB approach itself, the GB model is heuristic in
nature and does not have an obvious “handle” that controls
its accuracy, at least in principle. As a result, the physical
origins of the observed deviations from the NPB reference
are hard to trace.59

The goal of this work is to overcome these drawbacks
and derive a simple analytical approximation of the Poisson
equation that is closed form and controllable. Ideally, the

approximation should define physically admissible electro-
static potential everywhere in space and should provide a
level of accuracy acceptable in practice.

In Part I of the study presented in this paper, we derive
several candidates for such an approximation and thoroughly
examine their behavior and physical nature on a simple ge-
ometry �sphere� for which an exact reference solution of the
Poisson problem is available. We propose a candidate
approximation for realistic biomolecular shapes and show
how its parameters should be redefined once the spherical
symmetry is abandoned.

In Part II of this work, which is a separate paper imme-
diately following this one, we adapt the proposed approxi-
mation to handling the screening effects of salt and thor-
oughly test the resulting model on a large number of realistic
biomolecules. We then demonstrate how the model might be
useful in a concrete problem—a search for putative RNA
binding sites on the surface of a viral capsid.

A. Derivation of the analytical models

The geometric setup of the boundary value problem for
the Poisson equation, Eq. �1� with �=0, is shown in Fig. 1.

We follow Kirkwood19 to obtain the exact infinite-series
expressions for ��r� everywhere in space. The infinite-series
solutions for region I �inside� is worked out in detail in
Ref. 19, with �=�in /�out,
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The solution for region II is worked out in detail in the
appendix at the end of this paper. To summarize, we have
arrived at the following solution to the Poisson equation for
region II:
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Equations �2� and �3� satisfy the usual60 continuity condi-
tions at the boundary,

FIG. 1. �Color online� The boundary value problem for Eq. �1�. A spherical
boundary separates the inside region I, dielectric �in, from the outside region
II, dielectric �out. The point of observation is specified by its spherical
coordinates �r ,��; the source charge is at �ri ,0�. Here A is the radius of the
sphere.
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The above solutions, Eqs. �2� and �3�, of the Poisson
equation are valuable since they are exact. Unfortunately,
they are not very useful in practice since each one is depen-
dent on two infinite series that converge slowly for charge
distributions relevant to biomolecules. For example, the infi-
nite series in Eq. �3� converge slowly when �ri /r�→1. For
the potential near the molecular surface, the ratio being close
to 1 is a typical case in real molecules since charged groups
are rarely buried due to a high desolvation penalty. As will be
discussed below, tens or even hundreds of terms might need
to be kept in order to approach well-converged sums. Thus,
for practical applications where speed is a factor, something
different needs to be done. Also, the infinite series itself or its
partial sum is not particularly helpful in illuminating the
physical properties of ��r�. A simple closed-form approxi-
mation that retains the key physics of the Poisson equation
embedded in Eqs. �2� and �3� is what we are looking for.
Below we present the detailed derivations for Eq. �3� and just
list the end result derived from Eq. �2�.

As discussed above, we need to avoid truncating the
infinite series. Instead, we keep the l=0 term unchanged and
approximate l / �l+1��const=	 for all l
0 terms in the first
of the two infinite sums in Eq. �3�. The approximation is both
mathematically and physically motivated.

Mathematically, the approximation recasts the infinite
series into a form that can be summed exactly into a closed-
form simple formula. The specific algebraic form of 	 is
motivated by a relatively small variation of l / �l+1� for any
l
0: 1 /2� l / �l+1��1.

Physically, this approximation maintains a dependence
on the constant �, which encapsulates a specific contribution
of the dielectric interface to the potential. While one can
easily construct other algebraically “simple” approximations
that would provide equal mathematical benefit, e.g.,
�1+ �l / �l+1�����const=	 or �1+ �l / �l+1����−1�const=	,
these would lose the explicit dependency on � and thus were
not considered.

Upon setting l / �l+1��const=	 for all l
0, the infinite
series in Eq. �3� is approximated as
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We now define t= �ri /r� and use the following identity:
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to approximate the first term in Eq. �3� as
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Since 1 /2� l / �l+1��1 for l
0, a reasonable first guess for
	 is the middle of the interval, 	=0.75. Applying the same
identity to the second infinite sum in Eq. �3� and combining
the two terms yields the following closed-form approximate
expression for �i

II:
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After algebraic manipulations, we arrive at the following
analytical form for the electrostatic potential outside of the
sphere, region II in Fig. 1. The corresponding expression for
the inside space, region I is obtained in the same fashion.
Below is the combined key result of this work,
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Since only the first term, l=0, in the exact infinite sums was
kept intact throughout the derivations, the above expression
can be referred to as the first-order approximation, although
it shall not be confused with truncating the infinite sums. To
demonstrate how the accuracy of this approximation can be
controlled, at least in principle, we extend Eq. �8� to include
the next two terms exactly. Due to the specific symmetry of
the Legendre polynomial, retaining the l=1 term exactly im-
proves the accuracy only for antisymmetric charge distribu-
tions: ����=−��−�� and the l=2 term improves the accuracy
for symmetric charge distributions: ����=��−��. Thus, the
next order that is expected to produce overall improvements
in accuracy is the third order according to the terminology
just introduced,
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After similar algebraic manipulations as before, we arrive at
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the following third-order expression for the outside potential:
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An analogous third-order expression exists for the inside
solution, but it will not be used in this work. An optimal
	 for the third-order formula must lie in the interval 3

4 �	
�1; we choose the middle of the interval, 	=0.875, as a
reasonable initial guess.

Higher-order approximations can be defined using the
approach described above. Equation �14�, shown below, rep-
resents the exactly summable kth-order approximation with
k / �k+1��	�1 and k
1,
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1. Properties of the analytical approximations

We now establish some basic properties of the analytical
approximations we have just derived.

a. Relation to the Poisson equation Each of the approxi-
mate formulas just derived satisfy the Poisson equation. For
the first-order Eq. �11�, this is seen immediately: The expres-
sion is the sum of two Coulomb potentials multiplied by
constant prefactors. For Eq. �10� one can verify explicitly
that �in�

2�i
I�r�=−4���r−ri�. The statement remains true for

all orders of the approximation. This is because each term in
the original infinite-series solution satisfies the Poisson equa-
tion; the approximate expression contains the same terms,
each multiplied by its own constant.

At first glance, the fact that the analytical approxima-
tions also satisfy the Poisson equation may seem to be at
odds with the uniqueness theorem that guarantees just one
solution of the Poisson problem for the specific boundary
conditions. Careful examination of the behavior of our ana-
lytical approximations at the boundary resolves the apparent
paradox: These analytical approximations satisfy only one of
the two continuity equations at the boundary, specifically
Eq. �4�. The other condition, Eq. �5�, is satisfied only ap-
proximately; ���in��i

I /�r�A− ��out��i
II /�r�A� is strictly zero

only for the exact infinite-series solution making the exact
solution unique. Still, the fact that our analytical approxima-
tions satisfy the Poisson equation is reassuring, since it
means that these analytical approximations retain some of
the key physics of the problem. Their continuity across the

boundary makes this surface a natural location for simulta-
neously testing the accuracy of both the inside and outside
solutions. For this purpose we will use �i

II defined right out-
side the dielectric boundary �molecular surface�.

The specific form of the approximate solution of order
k=1 we have just derived is peculiar: It is mathematically
equivalent to the sum of scaled Coulomb potentials due to
each source charge plus a scaled Coulomb potential due to
the total charge of the system placed in the center of the
solute sphere. The scaling factors are nontrivial, but do not
depend on the geometry �size� of the solute. In contrast to the
multipole expansion, the applicability domain of the approxi-
mation includes distances from the solute surface consider-
ably smaller than the solute size A.

b. Accuracy For the exact spherical geometry consid-
ered so far, the error of the analytical approximation for the
potential due to a single charge inside the dielectric boundary
originates solely from replacing the first infinite sum in
Eq. �3� with the kth-order approximation shown in Eq. �14�.
A rigorous error bound for this approximation would provide
useful general insights into the accuracy of the formulas we
have proposed. Such an upper bound is derived in the
appendix,
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For any fixed order k of the approximation, the error
decreases monotonically as the parameter t=ri /r approaches
zero, i.e., as the test charge moves away from the source.
Specifically, ��approx

II �k�−�exact
II �=O�r−k� in the limit r→�.

Perhaps more interesting is the converse statement, that is,
the error bound increases monotonically as the parameter
t=ri /r approaches unity. This corresponds to the point of
observation approaching the source charge, Fig. 1. Obvi-
ously, the closer to the source, the larger the potential itself
becomes, and so it is perhaps not so surprising that the ab-
solute error of our approximation also increases. However,
for any realistic molecular structure the error stays finite.
This is because the largest value of t possible in real mol-
ecules is determined by the distance of closest approach of
the center of the source and test charges to molecular sur-
face, which is determined by the radius �vdW of the atom
carrying the charge. This physical restriction sets the “worst
case” value of t to be �A−�vdW� /A, and thus suggests that in
realistic structures the approximation be tested at a distance
of 1–2 Å from the surface. For a fixed geometry of the
source and test points, t=const, the error bound decreases
with increasing order of the approximation k and approaches
zero as k→�.

The error bound discussed above does not describe the
beneficial effects of error cancelation arising from a specific
choice of 	. In particular, how much of an additional benefit
do higher-order approximations, k
1, provide? To investi-
gate the accuracy of our approximations further we compare
the approximate formulas directly with solutions that can be
considered numerically exact.
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The exact solution of the Poisson equation on a sphere
can be used to test the accuracy of our analytical approxima-
tions directly. In practice, we take the sum of the first
N=1000 terms in the infinite series in Eq. �3� to represent the
exact solution. We use the test setup shown in Fig. 2. For a
sphere of radius of 15 Å, which is the size of a typical small
protein, the partial sum converges to machine precision when
�100 terms are retained, Figs. 3�a� and 3�b�. For a larger
sphere, 100 Å, which is on the order of the size of a viral
capsid, all �1000 terms are needed for the sum to converge
to machine precision, Figs. 3�c� and 3�d�. These plots dem-
onstrate a key difference between our closed-form analytical
approximations, Eqs. �11� and �13�, and a brute-force ap-
proach in which the first N terms in the infinite series �3� are
retained to approximate ��r�. Depending on the size of the
sphere, tens to hundreds of terms will need to be retained to
achieve the same level of accuracy provided by the closed-
form approximations.

It should be stressed that the “controllability” of the ap-
proximations just derived strictly applies only in the case of
a perfectly spherical dielectric boundary. In particular, one
cannot a priori expect that limk→���approx�k�−�exact�=0 for
realistic biomolecular structures. We speculate that one may
use higher orders k
1 of the approximation to explore the
limits of the sphere-based approach on different classes of
realistic biomolecular shapes. Namely, for some shapes
and/or regions of space one may observe systematic im-
provement in the accuracy with increasing k. For these
shapes, one may consider the use of k
1 formulas. How-
ever, our first priority will be to adapt and test the basic
k=1 approximation on realistic biomolecular shapes. This is
because the error analysis presented above for the spherical
shape shows that the bulk of the agreement between the ana-
lytical approximations and the exact solution is already
achieved within just the first-order approximation, Fig. 3.
The next step, the third-order approximation given by
Eq. �13�, only marginally improves the agreement with the
exact solution while substantially increasing the approxima-
tion’s complexity. This additional increase in complexity
may not be justified, especially if one aims at using the

formulas in applications where speed and stability of the
algorithms are critical.

2. Setting parameters of the model

Later in this work we will present additional arguments
for using the simpler Eqs. �10� and �11� for real biomol-
ecules. At this point we need to decide what value of the
parameter 	 in Eqs. �10� and �11� is best. While we could
simply take the ad hoc value of 	=0.75 that was used in
Fig. 3 above, we prefer to derive the optimal 	 based on

FIG. 2. �Color online� Setup of the test cases. Two unit charges are located
on the diameter of a perfect sphere of radius A, equidistant from the center
ri=rj. For the dipole case, qi=−qj, and for the dual positive case, qi=qj. The
potential ��r ,�� is computed at r=A for 0����.

FIG. 3. �Color online� The root-mean-square error, in kcal/mol per unit
charge, of the various approximations to the exact solution of the Poisson
equation on a sphere. The functions plotted are the error of first-order
�k=1� analytical approximation, Eq. �11�, with 	=0.750 �double-dashed red
line�, the third-order �k=3� analytical approximation, Eq. �13�, with
	=0.875 �dashed blue line�, and a partial sum solution obtained by retaining
the first N terms of Eq. �3� �black curve�. The potentials are computed at the
surface of the sphere over the interval 0����; the errors are computed
with respect to the exact solution, which is the converged partial sum of
Eq. �3�. The test geometry is shown in Fig. 2. �a� Sphere A=15 Å, dipole
charge distribution, and charges located at �ri�= �rj�=13 Å. �b� Sphere
A=15 Å, dual positive charge distribution, and charges at �ri�= �rj�=13 Å.
�c� Sphere A=100 Å, a dipole charge distribution, and �ri�= �rj�=98 Å.
�d� Sphere with A=100 Å, a dual positive charge distribution, and
�ri�= �rj�=98 Å.
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more rigorous grounds. A physically justified choice of 	 can
come from the requirement that it minimizes the error be-
tween the approximate and exact ��r�. There are many rea-
sonable ways to compare two scalar fields defined in 3D
space �or 2D if one limits comparison to some Gaussian
surface around the charge distribution, for example, the mo-
lecular surface�. Here, we will use the following approach to
set the value of 	: Require that the best 	 minimizes the
error in the solvation energy of a random charge distribution
inside a sphere. We chose this strategy because comparing
two real numbers is more straightforward than comparing
two scalar fields. This comparison also allows us to make a
connection between the current model and the previous ones
such as the GB. To this end, we consider an arbitrary charge
distribution and define the reaction field potential �
inside the sphere. The � is given by the inside part of the
analytical approximation, Eq. �10�, less the Coulomb field:
�=�i��i

I−1 /�inqi /di�. The electrostatic part of the solvation
energy is then

�Gel =
1

2�
j

qj�

� −
1

2
� 1

�in
−

1

�out
� 1

1 + 	�
�
ij

qiqj� 1

f ij
+

	�

A
� , �16�

with f ij =A−1
A2dij
2 + �A2−ri

2��A2−rj
2�.

A closer look at the above expression reveals that it is
equivalent to Eq. �3� of Ref. 61 which is the analytic linear-
ized PB �ALPB� model developed in Refs. 33 and 61. Thus,
the ALPB model with the above f ij can be considered a spe-
cial “discrete” case of the current first-order approximation,
Eqs. �10� and �11�, for ��ri� defined only at the location of
the point charges qi. This connection allows us to use the
optimal value of 	=32�3 ln 2−2� / �3�2−28�−1�0.580127
which was rigorously derived for the ALPB model.33 This
value of 	 should be appropriate for a random charge distri-
bution inside the sphere. One can also check explicitly that
the GB model �on a sphere� is also just a particular case of
the current theory in the limits �out→� or 	→0. In the
�out→� limit, the analytical approximations, Eqs. �10�, �11�,
and �13�, all become exact solutions of the Poisson equation
on a sphere.

With the rigorously justified choice of an optimal value
for 	, our approximations, Eqs. �10� and �11�, become
parameter-free. Their performance for the entire range
0���� is compared to the exact solution on the surface of
a sphere, Fig. 4. For comparison, the “Null model”—
screened Coulomb potential 1 /�out�i�qi / di � due to the same
set of charges qi—is also shown.

In agreement with the considerations presented above
for the error bound, the largest errors of the approximation
occur when the source charges are closest to the boundary
and the test charge is closest to one of the sources. For the
geometry used to produce the error curves in Fig. 4,
these maximal errors for k=1 approximation are
�0.4 kcal /mol / �e� or �10% of the corresponding exact
value. These are of the same order of what one may expect
from a “typical” numerical solution of the PB equation for a

similar test charge geometry. Namely, in an earlier study,62 a
geometric setup similar to ours and the same reference—
numerically converged partial sum of the exact series solu-
tion for a sphere—was used to assess the accuracy of a
finite-difference algorithm that was at the time implemented
in the popular package DELPHI. The largest error reported in
that study was �15% of the exact reference, for the source
charge located 1 Å deep inside the dielectric boundary, and
the test charges being 3 Å away from the source. One
should be careful, however, not to overinterpret such com-
parisons between two fundamentally different approaches:
The accuracy of both can be increased, albeit at additional
computational expense. In the case of our analytical approxi-

FIG. 4. Absolute error, in kcal/mol per unit charge, of the first-order ana-
lytical approximation, Eq. �11�, with 	=0.580 127 �solid lines�. The error is
computed as the absolute difference between the analytical approximation
and the exact solution �converged partial sum�. For comparison, the absolute
error of the screened Coulomb potential produced by the same charge dis-
tribution is also shown �dashed lines�. The geometric setup is shown in
Fig. 2. �a� Sphere A=15 Å, dipole charge distribution, and unit charges
located at �ri�= �rj�=6 Å. �b� Sphere A=15 Å, dual positive charge distribu-
tion, and unit charges at �r�= �rj�=6 Å. �c� Sphere A=15 Å, dipole charge
distribution, and unit charges located at �ri�= �rj�=13 Å. �d� Sphere
A=15 Å, dual positive charge distribution, and charges at �ri�= �rj�=13 Å.
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mation this can be achieved by using its higher orders
k
1, while the accuracy of the NPB solutions can be im-
proved through a variety of techniques that include
focusing62 or multigrid methods.24

The errors of the approximate electrostatic solvation en-
ergies �Gel computed via Eq. �16� for our test geometries are
appreciably smaller than the errors �per unit charge� in the
potential itself. Namely, for the two source charge geom-
etries described in Fig. 4 the maximum error in �Gel is
�0.13 kcal /mol or only 0.1% of the corresponding exact
value. We therefore conclude that direct comparisons be-
tween approximate and exact potentials over the entire di-
electric boundary is a more sensitive test of the accuracy of
the type of approximation considered here. Although quite
tedious, these comparisons may thus be preferred to
“global metrics” such as �Gel.

B. Adaptation to nonspherical shapes

The key question now is how well our analytical ap-
proximation for the solution of the Poisson equation on a
sphere will perform on shapes that are not exactly spherical.
The extensive testing on realistic biomolecular shapes will
be presented in Part II of this work that immediately follows
this paper. Here, we conclude by showing how our model
can be adapted to the nonspherical case.

The first step is to decide what order k of the analytical
expressions derived above is appropriate for realistic biomo-
lecular shapes. We have already argued that since the first-
order Eqs. �10� and �11� and the third-order Eq. �13� perform
similarly against the exact solution, Fig. 3, the extra compu-
tational complexity of introducing dependencies on
Legendre polynomials might be unwarranted. Therefore, we
propose that the adaptation of our approximations for realis-
tic molecular shapes begins with the k=1, Eqs. �10� and �11�.

Next, we need to define all the geometrical parameters
that enter Eqs. �11� and �10� for the nonspherical case. The
distance from the point charge to the point of observation di

does not present a problem as it translates directly to the
nonspherical case. The distance from the center of the sphere
to the observation point r is less straightforward. Fortunately,
we do have a physical parameter that characterizes the global
shape of the structure and replaces the radius of the sphere in
the general case—the so-called effective electrostatic radius
that was introduced earlier.33 Once this parameter is com-
puted, which can be done analytically,61 the r distance can be
defined as electrostatic radius plus �or minus, if the point of
observation is inside the structure� the distance p to molecu-
lar surface, see Fig. 5.

The above definition of the geometric parameters that
enter formulas �10� and �11� for nonspherical geometries is
attractive because it treats all regions of space on the same
footing. This is why it will be used throughout this work,
particularly in Part II. However, depending on specific appli-
cation, one may find some more restrictive alternatives use-
ful. We note in this respect that the accuracy of the outside
solution, Eq. �11�, is rather insensitive to the precise defini-
tion of r. This is because the maximum error of the approxi-
mation occurs closest to the source on the dielectric bound-

ary, and at this region the 1 /di terms dominate. To be
specific, consider the following example. Suppose the goal is
to get a quick estimate of just �i

II �solvent space�, then one
can proceed by determining a meaningful geometric center
of the structure, and then define r simply as the distance to it.
Since, according to the main definition in Fig. 5, r cannot be
less than A for points outside the structure, one should set
r=A for all r�A. For an overall neutral molecule, �iqi=0,
and the computation simplifies even further as the explicit
dependence on r cancels from the total potential �i�i

II

obtained via Eq. �11�.

II. CONCLUSIONS

In this study we have shown how the exact infinite-series
solution of the Poisson equation for an arbitrary charge dis-
tribution inside a spherical dielectric boundary can be ap-
proximated by a simple analytical formula. We have derived
such expressions for the potentials both inside and outside
the dielectric boundary, for arbitrary internal and external
dielectrics. Unlike the GB model, our model defines electro-
static potential everywhere in 3D space; this parameter-free
approximate expression is itself a solution of the Poisson
equation, which means that it retains some of the key physics
of the problem. We show how an apparent contradiction with
the uniqueness theorem of electrostatics is resolved. We have
extensively tested the accuracy of the approximation against
the exact infinite-series solution represented by its numeri-
cally converged partial sum. The errors are assessed for two
source charges placed inside the spherical boundary separat-
ing the solute of dielectric 1 and the solvent of dielectric 80.
We analyzed the errors resulting from several locations of
the source charges on the opposite sides of the diameter of
the sphere. For unit source charges placed within 2 Å from
the boundary, and the test surface located on the boundary,
we find the root-mean-square error of the approximate po-
tential to be less than 0.1 kcal /mol / �e� �per unit test charge�.

FIG. 5. �Color online� Definition of the geometric parameters that enter the
analytical formulas �10� and �11� and can be used to compute the electro-
static potential �i due to a single charge located inside an arbitrary biomol-
ecule �in the absence of mobile ions�. Here di is the distance from the point
of observation where �i needs to be computed, to the source charge qi. The
distance from the point of observation to the molecular surface is p �p�0
for points inside the boundary�. The so-called effective electrostatic size of
the molecule, A, characterizes its global shape and is computed analytically
as described in Ref. 61. The distance from the point of observation to the
“center” of the molecule is then defined as r=A+p. Likewise the position of
the charge ri is defined as A minus the distance of the charge to surface
�not shown�.
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In agreement with the predictions based on a rigorously de-
rived error bound, the largest errors in the approximate po-
tential arise from configurations in which the source charge
is closest to the dielectric boundary and the test charge is
closest to the source. This maximum error of
0.4 kcal /mol / �e� or �10% of the exact value corresponds to
the source charges being 2 Å apart in our test geometry, that
is, less than a typical salt-bridge distance. The errors of the
approximate electrostatic solvation energies computed via
the approximation are noticeably smaller than the corre-
sponding errors in the potential itself. Thus, direct compari-
sons between approximate and exact potential over the entire
dielectric boundary, although tedious, appear to be a more
sensitive test of the accuracy of the type of approximation
considered here than comparisons based on solvation energy.

Just like the perturbation theory, our approximation is
fully controllable, at least in the perfect spherical case con-
sidered in this work: it is rigorously shown that the error
approaches zero with the increasing order of the approxima-
tion. However, unlike the perturbation theory, the approxi-
mation is not equivalent to a sum of the first few terms of the
infinite-series solution: it effectively retains all of the terms,
albeit approximately. To achieve the equivalent accuracy by
a straightforward summation of the exact infinite-series so-
lution, tens or even hundreds of terms would have to be
retained for realistic charge distributions. While we cannot
claim full controllability for realistic biomolecular shapes,
we speculate that for some shapes and/or regions of space
one may observe systematic improvement in the accuracy
with increasing order of the approximation. These improve-
ments are likely to be small though: for the perfectly spheri-
cal shape the bulk of the agreement between the analytical
approximations and the exact solution is already achieved
within just the first-order approximation. Thus, testing the
first-order formulas on realistic molecular structures should
be the first priority. These tests are performed in Part II of
this study that immediately follows.
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APPENDIX: DERIVATION DETAILS

1. Boundary value problem

The derivation refers to the setup shown in Fig. 1. The
fixed charges exist only in region I, and so the corresponding
Poisson equation is

�2�i
I = −

qi

�in

1

�r − riêz�
, �A1�

where the point charge density �=qi��r−riêz� is placed on
the z-axis at position ri.

In region II,

�2�i
II = 0. �A2�

These two regions in the spherically symmetric case are
0�r�A and A�r��, with the charge located on the
z-axis, a distance ri from the origin. The solution of the Pois-
son equation for region I, Eq. �A1�, is the sum of Coulomb’s
potential due to the point charge qi and the reaction field part.
Due to azimuthal symmetry, the solution depends only on the
angle � through Legendre polynomials Pl�cos ��,

�i
I =

qi

�in

1

�r − riêz�
+ �

l=0

�

Blr
lPl�cos �� . �A3�

Using the following definitions:

if ri 
 r, then ri = r
 and r = r�,

�A4�
if ri � r, then ri = r� and r = r
,

and the well-known identity,60

qi

�in

1

�r − riêz�
=

qi

�in
�
l=0

�
r�

l

r

l+1 Pl�cos �� , �A5�

the solution for region I is

�i
I =

qi

�in
�
l=0

�
r�

l

r

l+1 Pl�cos �� + �

l=0

�

Blr
lPl�cos �� . �A6�

No fixed charges are present in region II, which gives

�i
II = �

l=0

�
Cl

rl+1 Pl�cos �� , �A7�

where B and C are constants determined by the continuity
conditions at the boundary r=A: �i

I�A�=�i
II�A� and

��in��i
I /�r�A= ��out��i

II /�r�A. For the remaining boundary
condition, the continuity of the tangential components of the
electric field ��i /�� will be satisfied automatically for the
unique exact solution of the Poisson equation.

The first boundary condition gives

qi

�in
�
l=0

�
ri

l

Al+1 Pl�cos �� + �
l=0

�

BlA
lPl�cos ��

= �
l=0

�
Cl

Al+1 Pl�cos �� . �A8�

Because of the orthogonality of the Legendre polynomials,
the equality simplifies to a relation between Bl and Cl,

�
−1

1

Pl�x�Pm�x�dx =
2

2l + 1
�lm �A9�

or, after integration,

Bl =
1

A2l+1�Cl −
qi

�in
�ri�l� . �A10�

The second boundary condition equates the normal compo-
nents of the electric displacement fields of the two regions,
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− �out�
l=0

�

�l + 1�
Cl

Al+2 Pl�cos ��

= �in	�
l=0

�

lBlA
l−1Pl�cos �� −

qi

�in
�
l=0

�

�l + 1�
ri

l

Al+2 Pl�cos ��
 .

�A11�

The orthogonality relation between the Legendre polynomi-
als is used again to simplify Eq. �A11�, thus providing the
second relationship between Bl and Cl,

Cl =
�in

�out
	 qi

�in
ri

l −
l

l + 1
A2l+1Bl
 . �A12�

Equations �A10� and �A12� are solved simultaneously to
give independent expressions for Bl and Cl,

Bl =
qi

A2l+1ri
l� 1

�out
−

1

�in
� 1

1 + l
l+1�

, �A13�

Cl = qiri
l� 1

�out
−

1

�in
� 1

1 + l
l+1�

+
qi

�in
ri

l. �A14�

Recall that the equation for region I is

�i
I =

qi

�in
�
l=0

�
r�

l

r

l+1 Pl�cos �� + �

l=0

�

Blr
lPl�cos �� . �A15�

Let t=r� /r
, then the equation for region I becomes

�i
I =

1

�in

qi

r

�
l=0

�

tlPl�cos �� + �
l=0

�

Blr
lPl�cos �� . �A16�

After summing up the first infinite series, Eq. �A16� becomes

�i
I =

1

�in

qi

r


1

1 + t2 − 2t cos �

+ �
l=0

�

Blr
lPl�cos �� . �A17�

Figure 1 represents the geometry definition and defines
cos �= �r�

2 +r

2 −di

2� / �r� ·r
�. By replacing cos � with this
identity and simplifying the potential in region I, I �i

I be-
comes

�i
I =

1

�in

qi

di
+ � 1

�out
−

1

�in
�qi

A
�
l=0

� 	 1

1 + l
l+1�


� rir

A2�l

Pl cos � .

�A18�

To simplify the equation, define the dimensionless distance
parameter t= �rir /A2�. Then

�i
I =

1

�in

qi

di
+ � 1

�out
−

1

�in
�qi

A
�
l=0

� 	 1

1 + l
l+1�


tlPl cos � .

�A19�

For region II, the dimensionless distance parameter is
t=ri /r; substituting the result for Cl into Eq. �A7� yields the
potential in region II,

�i
II = −

qi

r
� 1

�in
−

1

�out
��

l=0

� 	 1

1 + l
l+1�


tlPl�cos ��

+
qi

r

1

�in
�
l=0

�

tlPl�cos �� . �A20�

2. Error bound

The error of the approximate analytic solution for the
potential in region II for a single charge in a sphere origi-
nates from replacing the first infinite sum in Eq. �3� with the
kth-order approximation shown in Eq. �14�. Since the terms
with l�k in this approximation are exact, the error is

��error
II �k�� = ��approx

II �k� − �exact
II �

= �−
q

r
� 1

�in
−

1

�out
��

l=k

� 	 1

1 + 	�

−
1

1 + l
l+1�


tlPl�cos ��� . �A21�

A relatively simple upper bound for the above infinite sum is
available, which depends on the value of k chosen for the
order of the approximation. First, notice that since
��ab����a��b�, the above error is largest when all tlPl�cos ��
are largest and of the same sign, which occurs at cos �=0
when Pl�cos ��=1 �t
0 by definition�. Then, since
k / �k+1��	�1, l / �l+1��1, and l
k in Eq. �A21�,
one can check that ��1 / �1+	��−1 / �1+ �l / �l+1����� �
� �1 / �1+ �k / �k+1����−1 / �1+���. This yields the following
expression for the upper bound on ��error

II �k��:

��error
II �k�� � �q

r
� 1

�in
−

1

�out
��	 1

1 + k
k+1�

−
1

1 + �
�l=k

�

tl.

�A22�

After performing the summation of the geometric series in
the above equation along with some algebraic manipulation,
we arrive at

��error
II �k�� � �q

r
� 1

�in
−

1

�out
��� tk

1 − t
�� �

1 + �
�

�	 1

�1 + k + k��
 . �A23�

In reality, � is always positive, which allows us to also write

��error
II �k�� � �q

r
� 1

�in
−

1

�out
��� tk

1 − t
�� �

1 + �
�	 1

�1 + k�
 .

�A24�

In the important case of aqueous solvation, ��1, this some-
what simpler expression has essentially the same numerical
value as the one above it.
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