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Membrane-associated proteins are likely to contribute to the regulation of the phase behavior of
mixed lipid membranes. To gain insight into the underlying mechanism, we study a thermodynamic
model for the stability of a protein-decorated binary lipid layer. Here, proteins interact preferentially
with one lipid species and thus locally sequester that species. We aim to specify conditions that lead
to an additional macroscopic phase separation of the protein-decorated lipid membrane. Our model
is based on a standard mean-field lattice-gas description for both the lipid mixture and the adsorbed
protein layer. Besides accounting for the lipid-protein binding strength, we also include attractive
lipid-lipid and protein-protein interactions. Our analysis characterizes the decrease in the
membrane’s critical interaction parameter as a function of the lipid-protein binding strength. For
small and large binding strengths we provide analytical expressions; numerical results cover the
intermediate range. Our results reiterate the crucial importance of the line tension associated with
protein-induced compositional gradients and the presence of attractive lipid-lipid interactions within
the membrane. Direct protein-protein attraction effectively increases the line tension and thus tends

to further destabilize the membrane. © 2009 American Institute of Physics.

[DOLI: 10.1063/1.3063117]

I. INTRODUCTION

Peripheral adsorption of proteins (as well as for pep-
tides) onto mixed lipid membranes is an ubiquitous phenom-
enon in cellular biology. Typically, proteins bind preferen-
tially to one (or more) lipid species, while there is no
preferential interaction with other lipids. Among a plethora
of examples for the dependence of protein binding on mem-
brane composition are phospholipase A2, lysozyme,3
a/—synuclein,4 cytochrome c,” various cytoskeletal proteins,
and antimicrobial peptides.7 A direct consequence of prefer-
ential binding is the sequestration of the favored lipid species
by the proteins. That is, in the vicinity of each individual
protein the membrane composition is shifted from the aver-
age value towards that preferred by the protein. The degree
of sequestration depends on the differences in affinity of the
protein for the various lipid species. In some cases the se-
questration may be small so that it is difficult to detect;® yet,
in other cases it has been observed experimentallygf11 and in
molecular simulations.'

Even in the absence of associated proteins, lipid mem-
branes are able to form lateral domains or to macroscopically
phase separate. Most of the current interest to study domain
formation in model membranes is motivated by the discov-
ery of lipid rafts in biological membranes and their various
functional roles.'>'* It is well documented that many binary
lipid membranes exhibit nonideal mixing properties.lsf17 In
the presence of cholesterol, appropriate ternary lipid mix-
tures undergo lateral phase separation. For a number of
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mixtures lipid-lipid interaction parameters have been ex-
tracted based on fluorescence resonance energy transfer, by
means of cross-linking of individual lipids, and heat capacity
measurements (reviewed in Ref. 20).

An unresolved question is how proteins modulate the
phase propensity of a mixed bilayer. As discussed recently,
proteins may participate in the process of domain formation
actively through attractive protein-protein interactions or
passively by interacting preferentially with one lipid species
or with the domain interface.*?' Clustering of proteins
within lipid domains (or at domain boundaries) has been
suggested based on experimental results for a large number
of systems, including lipid monolayers,zz’23 model
membranes,”**** and lipid mixtures from the plasma
membrane,” the latter at sufficiently low temperature. There
is also experimental evidence that proteins are able to induce
phase separation in both model’"*? and biological33 mem-
branes. Yet, the mechanisms how membrane-associated pro-
teins influence domain formation and phase behavior of the
lipid bilayer remain elusive. Current theoretical approaches
suggest a role of immobile proteins in the restriction of do-
main sizes,”* domain formation through wetting of proteins
by 1ipids,35’36 and a dynamic membrane remodeling through
nonequilibrium lipid transport and interactions with mem-
brane proteins.37 Other models are based on inclusion-
induced elastic membrane deformations.”*™*° Here, proteins
are described as rigid inclusions that induce elastic deforma-
tions in the host membrane. If that deformation is coupled
energetically with one lipid species, an inclusion-induced
macroscopic phase transition can result. Still another mecha-
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FIG. 1. Schematic illustration of (A) local lipid segregation vs (B) global
phase separation. In the former case, proteins (shaded rectangles) bind to a
preferred lipid species (lipids with shaded headgroups) without causing the
formation of large domains. Even though the membrane compositions ¢p
and ¢;,within the protein-covered regions and bare membrane, respectively,
may differ from each other, the membrane remains homogeneous on a mac-
roscopic scale. In the latter case, there is macroscopic phase separation into
a protein-dense and protein-dilute phase. The ability of proteins to induce
phase separation depends on the lipid-protein binding strength (), lipid-
lipid interaction (), and protein-protein interaction (A). The only structural
parameter that enters our model is the protein’s number of binding sites or,
equivalently, protein-to-lipid size ratio o=ap/a, where ap and a denote the
cross-sectional areas per protein and lipid, respectively.

nism, based on the experimentally observed repartitioning of
streptavidin protein coats from the liquid-disordered to the
liquid-ordered phase upon forming an ordered structure, was
suggested by Manley et al.”® Here, protein ordering is asso-
ciated with an entropic penalty that is smaller in the liquid-
ordered phase and thus may drive the repartitioning. This
mechanism could contribute, quite generally, to the tendency
of proteins to repartition into more ordered phases upon their
olig.gomerization.41 Finally, Monte Carlo simulations’>#*%
have played a pivotal role in studying the ability of proteins
(and also flexible polypeptides44'45) to induce lipid sequestra-
tion and domain formation. We note that Monte Carlo simu-
lations typically employ a lattice model for the mixed mem-
brane. For example, Almeida et al.” recently reviewed the
quantitative determination of lipid-lipid interaction param-
eters by modeling fluorescence measurements of protein-
induced membrane reorganization through Monte Carlo
simulations. As we shall see below, our present work is based
on a similar lattice model, analyzed through mean-field level
calculations of phase boundaries.

Proteins that locally sequester lipids of one species do
not necessarily induce phase separation of the host mem-
brane. The sequestration is a local process that must be dis-
tinguished from macroscopic global phase separation. Figure
1 displays schematically two protein-decorated lipid layers;
both sequester lipids underneath the proteins but only layer
(B) exhibits macroscopic phase separation whereas layer (A)
does not. A theoretical study46 has addressed the question of
what interactions are needed to render a mere sequestration
into macroscopic phase separation. It was shown that the
presence of attractive interactions among lipids of the same
species in the host membrane can be sufficient. In this case,
phase separation is driven solely by the /ine fension between
the two regions of different compositions (that at the protein
adsorption sites and that of the bare membrane). The line
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tension between coexisting fluidlike macroscopic phases in a
lipid membrane is on the order of ~1 pN.47 It has been
suggested to result (at least partially) from the thickness mis-
match between the coexisting phases.48’49 More generally,
the line tension in a nonideally mixed binary fluid simply
results from compositional gradients.50 Thus, if the host
membrane exhibits attractive lipid-lipid interactions, then a
line tension appears as a consequence of lipid sequestration
at the boundary between a protein adsorption site and bare
membrane. Reduction in the line tension contribution is the
driving force for protein clustering and phase separation. In a
related study51 detailed electrostatic calculations were pre-
sented for a number of generic model proteins adsorbed onto
a mixed membrane, corroborating the importance of the line
tension for the ability of proteins to induce membrane phase
separation.

We note that the above-mentioned previous modeling
studies*®! have focused on indirect membrane-mediated in-
teractions between adsorbed proteins. That is, the presence of
attractive interactions between membrane lipids (and the cor-
responding line tension) can be sufficient to induce phase
separation. The influence of direct attraction between the ad-
sorbed proteins on the stability of the membrane was not
considered. The objective of the present work is thus to in-
clude direct protein-protein interactions into the model of
Ref. 46. Specifically, we shall employ a two-state model (see
also Ref. 52) where lipids can reside either at the protein
adsorption region or within the bare (protein-free) mem-
brane. The model is investigated on the mean-field level,
thereby allowing for (i) a preferential binding of one lipid
species with adsorbed proteins, (ii) lipid-lipid attraction
within the host membrane, and (iii) direct protein-protein
attraction. Below, we shall characterize these interactions by
the three parameters, « (lipid-protein), x (lipid-lipid), and A
(protein-protein). In the limits of both small and large lipid-
protein binding strength «, we shall derive simple analytical
expressions that show how attractive interactions among lip-
ids and among proteins can act together to destabilize the
composite membrane.

It should be noted that the model employed in the
present study is a minimal model; it is simple enough to
reveal a number of analytical results and a clear understand-
ing of the underlying physics. At the same time it employs
various approximations such as its lattice character, mean-
field treatment, and the neglect of membrane-mediated elas-
tic forces. The latter ones act also between proteins adsorbed
on a single-component lipid membrane and have been stud-
ied extensively in that context.”

Il. THEORY

We consider a large planar lipid layer of lateral area A
=Na that contains N lipids, each of cross-sectional area a.
The lipid layer is composed of two different lipid species
with molar compositions ¢ and 1-¢. Let a number M of
proteins be peripherally adsorbed on the lipid layer. The ex-
tent of protein coverage on the lipid layer can be character-
ized by the fraction 8=M/M™, where M™** is the maximal
number of adsorbed proteins. Note that usually the cross-
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sectional area per adsorbed protein ap will be considerably
larger than a, implying the size ratio o=ap/a>1. In the
following we analyze a simple two-state model that is based
on a lattice-gas description of an incompressible fluid. Here,
both the lipid layer and the adsorbed proteins are described
as two energetically coupled lattice gases. For simplicity, we
treat the number of protein adsorption sites to be dictated by
area conservation, apM™*=aN, implying M™*=N/¢. In the
two-state approximation lipids can reside in only two ener-
getically distinct states, within either the bare lipid layer or
protein-covered regions. We denote the molar compositions
corresponding to these two states by ¢; and ¢p, respectively.
On the mean-field (Bragg—Williams) level, we write for the
total free energy f=F/N of the protein-decorated lipid layer,
measured per lipid,

F= 0fo(b) + (1= O)f () + 122

+
ag

MA@ 61 - 6),

(1)

where here and in the following all energies are expressed in
units of the thermal energy kg7T. In Eq. (1), the functions
fp(pp) and f;(¢;) denote the free energies per lipid in
protein-covered and protein-free regions of the lipid layer,
respectively. The function f,,(6), appearing in the third term
of Eq. (1), accounts for the free energy contribution of the
adsorbed protein layer, measured per protein. The additional
factor 1/0 converts to measuring f in units of “per lipid.”
Finally, the last term in Eq. (1) describes the additional line
tension between the bare lipid layer and its protein-covered
regions. The presence of this term is a consequence of the
compositional changes in the lipid layer;so within the present
two-state model these changes are expressed in terms of the
compositional difference A¢p=¢dp—¢; between the protein-
covered and protein-free regions. Moreover, the line tension
contribution is proportional to the total length of the bound-
ary between the two regions and thus, on the mean-field
level, contains the prefactor #(1— 6). Note that \ is a material
constant that is independent of ¢ and 6.

The free energy f=f(¢,0) [see Eq. (1)] is a function of
the two independent compositional variables ¢ and 6. Note
that A¢g=A¢(, ) is not an independent variable but must
be determined from the equilibrium condition Jf/dA¢p=0.
Hence, the equation describing breakdown of local thermo-
dynamic stability (the spinodal equation)

arit ()
At \apaen)

(2)

depends on the second derivatives of f with respect to the
two degrees of freedom ¢ and 6. Even without specifying
the structure of the functions fp(¢p), f1.(¢b,), and f,(6) one
may transform Eq. (2) into the equivalent expression

oAp? 1
AU 2J 2

+ (1= 0)fp(dp) + 0f (1) 3)

The derivation of Eq. (3) is sketched in the Appendix. Note
that this form of the spinodal equation is expressed entirely

0=[f7(¢b) + 2\ 1[fp(p) + 2>\]{
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in terms of the second derivatives of the unspecified func-
tions fp(¢pp), fr(ér), and f,(6), and as a function of Ad.
That is, no derivative of A¢ is involved, which will prove
valuable for a numerical determination of the spinodal (see
below). We also remark that in the limit of vanishing line
tension, A — 0, Eq. (3) is fulfilled if f7(¢;)=0 or f3(¢p)=0.
Here, the stability of the lipid and adsorbed protein layers is
independent of each other. In the opposite limit, that of large
line tension (N— ), all compositional changes are sup-
pressed, implying A¢=0 in Eq. (3). Hence, in this case the
lipid layer remains laterally homogeneous on a microscopic
scale.

We note that the free energy in Eq. (1) has been consid-
ered in a previous study subject to the condition of fixed
chemical potential wp=df/d0 of the membrane-adsorbed
proteins. Clearly, by appropriately choosing wp we may ad-
just the protein coverage 6=6(¢,up) to any desired value.

The relevant thermodynamic potential is then f=f— up6. The
corresponding spinodal can be written in the form

df  20\A¢
de— fr(0)

as previously presented in Ref. 46. The Appendix of the
present work outlines the derivation of Eq. (4).

Let us specify the functions fp(¢p), f1(¢y), and f,,(6). In
order to include, on the mean-field level, interactions within
the lipid layer, between the proteins, and between lipids and
proteins, we chose

(b)) = frnix(br) + x b (1 = obp),

(4)

frdp) =fL(dp) — adp, (5)

fpr(a) =fmix(0) + A0(1 - 0)a

where fi(x)=x In x+(1-x)In(1-x) is the free energy (per
site of a lattice gas) of ideal mixing. The free energy of the
bare protein-free lipid layer f;(¢;) is given by the familiar
Bragg—Williams expression for an incompressible binary lat-
tice gas with nearest-neighbor interactions where the effec-
tive interaction strength is characterized by the parameter y.
Note that y depends on the mutual molecular interactions
w11, Wy, and w;,, among and between the two lipid species,
through y=z[ w;,— (@ +wy,)/2], where 7 is the coordination
number of the lattice. The spinodal of a bare lipid layer is
x=1/[2¢(1-¢)], implying the critical interaction parameter
x.=2 and the corresponding critical composition ¢.=1/2.
That is, for y> x., there is a compositional range where the
membrane is unstable with respect to macroscopic phase
separation.

The second equation, that for fp(¢p), is identical to the
one for f;(¢p) apart from an additional favorable interaction
of the protein with one lipid species. Assuming that each
bound high-affinity lipid contributes the same amount to the
protein binding energy renders the interaction term in this
equation proportional to ¢p, the composition at the protein
adsorption site. The prefactor @>0 (the binding strength per
high-affinity lipid, measured in units of kzT) thus provides
the driving force for the adsorption. We note that our model
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treats the protein-to-lipid size ratio o to be equal to the num-
ber of lipid-protein binding sites, thus rendering B=ao the
maximal protein adsorption strength (which becomes equal
to the actual protein adsorption strength in the limit of com-
plete lipid sequestration, ¢p—1).

Finally, the free energy f,,(6) of the adsorbed proteins is
again given by the Bragg—Williams expression for a binary
lattice gas. (Alternative expressions based on the van der
Waals gas or scaled particle theory yield more involved ex-
pressions for the mixing entropy of membrane-adsorbed
proteinss’54—using them would not alter the physical mecha-
nism of protein-induced phase separation studied in the
present work.) The interaction strength A that appears in
fpr(ﬁ) accounts for direct interactions between the adsorbed
proteins. We shall assume that these interactions alone are
insufficient to induce phase separation of the adsorbed pro-
tein layer, implying A <2. This assumption focuses our at-
tention on the influence of the lipid layer in inducing lateral
phase separation. We note that the present study extends pre-
vious work*® by including the protein-protein interaction
constant A. We also note that our assumption of a constant A
will not be fulfilled if protein conformation changes as func-
tion of coverage 6. Yet, even with constant A the fotal inter-
action between proteins includes not only a direct but also an
indirect membrane-mediated contribution, which depends on
membrane composition and protein coverage as shown be-
low in Eq. (11).

To sum up, we have introduced in Eq. (5) mean-field
expressions for the functions f;(¢;), fp(¢bp), and f,(6). They
involve the three material constants x, «, and A, describing
the strengths of lipid-lipid, lipid-protein, and protein-protein
interactions, respectively.

The line tension term in Eq. (1) represents the excess
free energy penalty due to the presence of compositional
changes within the lipid layer. Our two-state model involves
compositional changes (of magnitude |A¢|) only at the
boundaries between the bare lipid layer and the protein-
coged regions. The total length of all boundarles is L
=Vaph(1—O)M™* on the mean-field level (where \a p is the
spatial extension of a single protein). On the other hand, the
lipid’s excess free energy per unit length of the boundary—
the line tension—can be written as F,/L=bx(A¢)*/\a,
where b is a numerical prefactor and va is the spatial exten-
sion of a single lattice site (which represents a lipid). Note
that the line tension depends on the compositions of the two
phases through A; it vanishes for A¢p— 0 as would be the
case when approaching a critical point. The line tension con-
trlbutlon to the total free energy per lipid is thus f,=F,/N
=(bx/\ (T)(A ¢)?6(1 - 6). Comparing this expression with the
last term in Eq. (1) yields

<

N=b (6)

S

v

We note that the numerical prefactor is generally b= 1; its
exact magnitude depends on the geometry of the protein spe-
cies or, equivalently, on the curvature of the domain bound-
ary. More specifically, it is b=1 for a perfectly straight
boundary. That value would somewhat increase for a curved
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boundary (as will be the case for finite-sized proteins) and
would decrease if the constraint of a sharp, steplike, compo-
sitional change between bare lipid layer and protein-covered
region was relaxed. In the present work it is convenient and
sufficient to simply use b=1.

Let us finally verify consistency of the expression for the
line tension, F,/L=bx(A¢)?*/Va, with experiment. For ex-
ample, Tian et al.*” obtained F /L=3.3 pN, inside the fluid-
fluid coexistence region of a ternary lipid mixture containing
cholesterol. That value was observed to decrease toward O
when approaching the critical point. Using reasonable values
such as ¢=0.65 nm?, x=1, b=1, our present model predicts
F,/L=4(A¢)* pN, in agreement with both the magnitude
and %onounced composition dependence measured by Tian
et al.

lll. RESULTS AND DISCUSSION

Equation (1) together with Egs. (5) and (6) define the
free energy f=f(¢,0;x,a,A) as functions of the two de-
grees of freedom ¢ and 6, and in terms of the molecular
interaction constants y, «, and A. The region of spinodal
stability within the ¢, 6-phase diagram is determined by Eq.
(2) [or, equivalently, by Eq. (3) or Eq. (4)]. A spinodal curve
will only exist for y < x.. Any choice y> x, corresponds to a
membrane that is stable with respect to lateral phase separa-
tion. For the specific choice y=y, the spinodal degenerates
to a point ¢, 6. in the ¢, f-phase diagram. The correspond-
ing critical interaction parameter y.=x.(a,A) can thus be
expressed in terms of a and A. Recall, that for a bare
(protein-free) membrane y,=2. An interesting question is
thus to what extent protein adsorption (a>0) is able to re-
duce y. below the value of 2. For A=0 this question has
been addressed in previous work.*® The main objective of the
present study is to study the influence of direct protein-
protein interactions as expressed through A. The full relation
X.=X.(a,A) can only be calculated numerically (see below).
However, in the limits of small and large lipid-protein bind-
ing strengths «, analytical solutions are available.

In the limit of small binding strength (a<<1) the solution
of the equilibrium condition Jf/JdA¢=0 for the composi-
tional difference A¢dp=A¢(p, 6) can be calculated, yielding

A¢=+ (7)
as — 2 =N

Using this expression in the spinodal equation, we obtain for
the critical interaction parameter

2
XC:z_ia[ 1 _1]_ (®)

The corresponding critical compositions are ¢.=6,=1/2.
Equation (8) shows that adsorbed proteins are able to reduce
the critical interaction parameter y.. of the lipid layer even in
the limit of small «, if direct protein-protein attraction (A
>0) is present.

The other limit, that of large interaction strength a> 1,
is most conveniently analyzed for fixed chemical potential
mp of the membrane-adsorbed proteins, see Eq. (4). In this
case, the coverage 6 adjusts until all lipids that interact
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FIG. 2. The critical interaction parameter y, plotted as a function of . The
different curves correspond to (a)A=0, (b) A=1.0, and (c) A=1.5. In all
cases 0=25. Dashed lines indicate the approximation for large a in Eq. (10).
The inset shows the same graphs for small «. Here the dashed lines corre-
spond to the limiting behavior for small @ according to Eq. (8). The open
circle corresponds to the parameters used to calculate the phase diagrams in
Fig. 4.

favorably with the proteins are localized within the protein-
covered regions. This implies ¢;=0 and 6¢p=c¢. Hence,
dO/d¢p=1/¢pp and A= ¢pp. Equation (4) now is equivalent
to

(] o)
X lo g2\ o -0 ’

and adopts its minimum for ¢p=1 and #=1/2. Thus, for «
— oo the critical point is specified by ¢.=6.=1/2 and

2 A
xo=—=[1-=). (10)
Voo 2

In the special case of vanishing protein-protein interactions
A=0, _this coincides with the previously derived result x.
=2/Vc.*® The presence of direct protein-protein attraction
further destabilizes the membrane.

For intermediate « the critical interaction parameter Y,
must be determined numerically. This is most conveniently
accomplished using Eq. (3) because no derivatives of
A(¢h, 0) appear in that equation. Specifically, we first deter-
mine A¢ from solving the equilibrium condition Jf/dA¢
=0. With that, we minimize the spinodal y=x(¢, ) in Eq.
(3) with respect to ¢ and 6. The minimum specifies the criti-
cal interaction parameter x,. and the corresponding critical
compositions 6. and ¢,, for any given a and A.

Figure 2 shows numerical results for y, as a function of
«a; the three different curves correspond to different choices
of A. All curves are calculated for 0=25. The prediction for
large « according to Eq. (10) is indicated by the correspond-
ing horizontal dashed lines. The inset of Fig. 2 redisplays the
small-« region and shows [dashed lines for curves (b) and
(¢)] x.(@) according to the analytical result for small a, see
Eq. (8). The numerical results confirm the trend predicted by
the analytical expressions in the limits of small and large «.
Direct protein-protein attraction further destabilizes the
membrane.
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FIG. 3. The critical interaction parameter . plotted as a function of a.
Curves marked (a) and (b) correspond to =9 and o=36, respectively. Solid
curves are calculated for A=0, dashed curves for A=1.5. The two open
circles mark the critical interaction parameters for A=1.5 at fixed maximal
adsorption strength B=18, calculated for @=0.5 and @=2, see discussion in
the text.

Let us discuss Fig. 2. As reported previously,46 protein-
induced phase separation of the lipid bilayer does not require
the presence of direct protein-protein interaction. Indeed,
even for A=0 the critical membrane interaction parameter x.,.
is reduced below its bare-membrane value y.=2; see curve
(a) in Fig. 2. The reason that phase separation can occur even
in the absence of direct protein-protein interactions is the line
tension contribution to the membrane’s free energy—the last
term in Eq. (1). That is, adsorbed proteins induce a compo-
sitional difference A¢ between the protein-covered and
protein-free regions. The corresponding energy penalty can
be diminished by protein clustering (thus reducing the total
length of the boundary between protein-covered and protein-
free regions). Hence, phase separation of the protein-
decorated lipid layer is—for A =0—mediated entirely by the
lipid’s line tension. We note that the role of the line tension
contribution can also be illustrated by setting A=0 in Eq. (1).
The result for the critical membrane interaction parameter is
then y,.=2, irrespective of A and «. Thus, in the absence of
line tension (A=0), protein adsorption does not affect the
stability of the underlying lipid layer. The presence of direct
protein-protein attraction, 0<<A <2, adds another energy
penalty in addition to the line tension contribution of the
membrane, which leads to a further reduction in .. Indeed,
both the lipid’s line tension contribution in Eq. (1) and the
protein’s nonideal mixing contribution in f,.(6) [see Eq. (5)]
provide terms ~6(1-6). The excess free energy per unit
length L of the boundary between the bare lipid layer and the
protein-covered region is thus

F 1
L =[AVo+bx(Ap)] . (11)
L Va

which explicitly shows the two contributions. In particular,
because of Ap=Ap(¢, 6) the line tension depends on lipid
compositions and protein coverage.

Increasing the number of binding sites o on the protein
reduces the stability of the membrane. This can be seen from
our analytical expressions, Egs. (8) and (10), in the limits of
small and large «, respectively. Figure 3, which shows y,
=x.(a) for different combinations of o and A, corroborates
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FIG. 4. Phase diagrams for A=0 (top) and A=1 (bottom). In both cases
x=1.9, =04, and o=25. (The points y=1.9 and a=0.4 are marked in the
inset of Fig. 2 by an open circle.) The closed loops correspond to the spin-
odal lines. The endpoints of the tie lines form the binodal region.

this behavior for intermediate «. Increasing the number of
binding sites o on the protein, while conserving the maximal
adsorption strength B=ao, does not usually (unless a>1)
reduce ., but it yields a larger slope y.(a). For example,
compare the behavior of y, at the points indicated by the two
open circles in Fig. 3. Both cases correspond to the same
maximal adsorption strength B=18. The larger protein spe-
cies (=36 and @=0.5) implies a more stable membrane but
increased sensitivity of y,. with respect to changes in a. This
larger sensitivity may be one advantage of having many
weak (instead of a single or a few strong) binding sites of a
protein with membrane lipids. Many weak binding sites in-
crease the impact of small variations in lipid binding strength
on lateral membrane organization.

So far, our analysis has only addressed the behavior of
the critical interaction parameter .. For any x>y, the
protein-decorated lipid layer is unstable in a certain region
within the ¢, #-diagram. Stronger direct protein-protein at-
traction increases the size of that region. As an illustration,
Fig. 4 presents two phase diagrams, both calculated for y
=1.9, =04, and 0=25. At this particular point (marked by
a circle in the inset of Fig. 2) it is x> x, for any choice of A
(with A>0). The two phase diagrams in Fig. 4 correspond to
the specific values A=0 and A=1. Displayed are the spin-
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odal lines, which represent solutions of Eq. (2), and a num-
ber of tie lines. The tie lines correspond to solutions of the
four familiar coexistence equations

(56),- 2], (G2),-(5);

fA—fB=(¢A—¢B)(5_(];)A+(9A—93)(::_];>A, (12)

b= Da(0— 0p) — dp(6— 6,)
(64— Op)

for the two points ¢, 6, and ¢y, 0 [with fy=1(p4,0,) and
f5=f(ds, 0p) and given ¢ and 6 for any given tie line]. Com-
parison of the two phase diagrams in Fig. 4 corroborates our
notion of reduced stability of the protein-decorated lipid
layer in the presence of direct protein-protein attraction.

Let us discuss the context of our present model and its
possible implications for the interpretation of experimental
results. As mentioned in Sec. I, protein-induced elastic mem-
brane deformations provide an alternative theoretical concept
to explain lateral remodeling of lipid membranes. These
models account for proteins that impose elastic deformations
onto the mixed host membrane. Examples include transmem-
brane proteins that have a conelike shape,55 a mismatch in
hydrophobic thickness with respect to their host bilayer,56 or
are incorporated into a membrane that is subject to substan-
tial bending deformations.”’” Similar models have also been
applied to mixed membranes.*****° Note that nonelastic in-
teractions are usually ignored in order to extract elasticity-
based physical mechanisms. Our present model adopts a
complementary approach. It ignores elastic deformations but
accounts for specific interactions (lipid-lipid, lipid-protein,
and protein-protein). As we demonstrate in the present work,
membrane-mediated protein-protein interactions may be
strong enough to induce macroscopic phase separation, even
in the absence of elastic membrane deformations. Of course,
the presence of elastic membrane deformations may further
enhance the tendency to phase separate.

Our model is likely to be relevant in a number of situa-
tions. First, membrane-matching transmembrane proteins
and peripherally adsorbed proteins are unlikely to evoke sig-
nificant elastic deformations. For example, membrane reor-
ganization induced by the C2 protein motif in various periph-
eral proteins has been modeled using Monte Carlo
simulations that employ the same lattice description as we
use in the present study.g’10 Second, supported membranes
and lipid monolayers have reduced capacity to undergo
bending deformations. Hence, our model could be relevant
for the observed ability of the peripheral protein a-synuclein
to induce macroscopic phase separation on supported
phosphatidylcholine/phosphatidylglycerol membranes.>
Similarly, it may be used to describe annexin A2-induced
formation of large domains in supported bilayers composed
of phosphatidylcholine/phosphatidylserine.29 Finally, recent
experiments demonstrated that cross-linking of the minor
membrane component ganglioside GM; by cholera toxin
subunit B (CTB) can induce macroscopic phase separation in

bl
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model’! and biological33 membranes. Here, the membrane is
primed to undergo phase separation, which is initiated by the
CTB-induced cross-linking. In terms of our present model
the membrane resides close to the phase boundary prior to
the cross-linking. Addition of CTB effectively induces se-
questration of GM;. The fact that sequestration may give rise
to macroscopic phase separation is exactly the subject of our
present model.

IV. CONCLUSIONS

We have studied the stability of a protein-decorated
mixed lipid layer with respect to lateral phase separation.
The proteins are assumed to preferentially interact with only
one species of a binary membrane. Starting with the assump-
tion that both the isolated lipid layer and the adsorbed pro-
tein layer each on their own are stable (y <2 and A <2), we
have addressed the question of whether the coupled system is
able to undergo phase splitting. The energetics of the protein-
decorated lipid layer depends generally on three effective
interaction strengths, lipid-protein (), lipid-lipid (y), and
protein-protein (A). Our present model is complete in the
sense that it accounts for all these interactions; it extends a
previous study46 in which only the interaction constants «
and y were taken into account. As in that study, we find that
protein adsorption onto a stable binary membrane can induce
lateral phase separation, as expressed by the reduction in the
critical interaction parameter Y. even for A=0. The driving
force for the phase transition is the membrane line tension
contribution to the free energy. Beyond that we quantify the
role of direct protein-protein attraction (A >0). These gener-
ally enhance the destabilization of the lipid layer. That is,
both x. is further reduced and the region of instability in the
¢, O-phase diagram widens as a function of growing A.
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APPENDIX A: DERIVATION OF EQUATIONS (3)
AND (4)

Equation (2), the spinodal equation, defines the bound-
ary between local thermodynamic stability and instability in
the ¢, O-diagram. (For a numerical calculation of the spin-
odal see the phase diagrams in Fig. 4.) To calculate the spin-
odal based solely on Eq. (1), we point out that the two com-
positions ¢p and ¢; in, respectively, the protein-covered and
protein-free regions of the lipid layer are connected through
the lever rule ¢=0¢p+(1-6)@;. Together with the defini-
tion of A¢p=pp— ¢, this implies,

dp=¢+(1-0Ad, ¢ =¢h-0Ad.

In thermal equilibrium, the compositional difference A¢ ad-
justs so as to minimize f, implying that the equilibrium con-
dition df/dA¢p=0 must be fulfilled. Using Eq. (1) this is
equivalent to

(A1)

J. Chem. Phys. 130, 045102 (2009)

Ir(ép) = f1(dr) +20A =0, (A2)

which defines the relation A¢p=A¢d(¢p, ). Hence, the free
energy f=f(¢,6) in Eq. (1) depends only on the two com-
positional degrees of freedom ¢ and 6. Furthermore, par-
tially differentiating the equilibrium condition Eq. (A2) with
respect to 6 and ¢ leads to two equations that can be com-
bined to yield the relation

101 _ 0 0p )
a0 d¢p 90 IP
Together with Eq. (A1) this becomes
dA¢ dA¢p
—=—Ap—. Ad
Py ¢ 08 (A4)

Using Egs. (A1)-(A4) allows us to calculate the first deriva-
tives

af

26 = f1(¢r) —2NA 0,

fu(0) (0)

a];=fp(¢P - fildr) - Ad’fL ¢L)+)\(A¢)2

(AS)
and from that the second derivatives

Pf by,
5$5=-5;fU1(¢0-F2A]—2A,

Pf

62 (A¢)2(9¢L (6)
J

[f1(r) +2N] +

_Pf

XY (A6)

—A¢%%UH¢J+ZM.

Inserting these relations into the spinodal Eq. (2) gives rise to

ch oA¢)? 1 }:1
AN

The derivative d¢b; / d¢p can be obtained by differentiating the
equilibrium condition for A¢, Eq. (A2), with respect to .
The result is

ﬁ;ﬂ _ 2\ + fp(bp)
ap  2n+(1- 0)f}’:»(¢p) + afli(ff’L) .

Together with Eq. (A8), the spinodal in Eq. (A7) yields the
final result in Eq. (3).

Let us also outline the derivation of Eq. (4). The (fixed)
chemical potential wp=df/d0 of the membrane-adsorbed
proteins is given in Eq. (A5). Taking the full derivative of up
with respect to 6 results in

d d
ﬁ = ¢L [fL( ¢L

[fL( &) +2\] { (A7)

(A8)

NI f0(6)=0. (A9)
g

Using Eq. (A9) we eliminate f](¢;) from Eq. (A7). The
spinodal, Eq. (A7), then becomes
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déL
do (0
A0 _ 10\, (A10)
gy 20N\A¢
b

However, (d¢;/d0)/ (dd, ! dd)=—Ad+(d¢/db), and we thus
obtain Eq. (4). We note again that the calculations in this
Appendix are valid irrespective of the structure of the func-

tions fp(p), fr(dr), and fi,(6).
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