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Studying the Brownian motion of a system driven by an external control from one macroscopic state
to another macroscopic state, this paper presents the derivation of a nonlinear fluctuation-dissipation
theorem �FDT�. The new FDT relates the nonequilibrium work to the equilibrium free-energy
difference in a very simple manner. It is valid wherever the Brownian dynamics is applicable. It
recovers the well-known Crooks fluctuation theorem �CFT� within the quasiequilibrium regime
where the dissipative work is nearly zero. It will also be shown that the CFT’s fundamental
assumption of microscopic reversibility is not obeyed in experiments such as mechanically
unfolding biological molecules, in which the external driving forces depend on the system’s
coordinates. © 2008 American Institute of Physics. �DOI: 10.1063/1.2992153�

The bridge from the nonequilibrium work to the equilib-
rium free-energy difference has been a subject of much in-
terest in recent years. Such a bridge is necessary to relate the
experimental data of forces and displacements to the intrinsic
properties of the system in the unfolding studies of proteins
and nucleic acids.1 It also serves as an effective and efficient
method in the computations of free energy.2 In the current
literature, Jarzynski equality3 �JE� and the undergirding
Crooks fluctuation theorem4 �CFT� are taken as the bridge
while questions have been raised5–7 about their applicability
and range of validity. The self-consistency check of the CFT
has suggested8 that the CFT and JE are valid only in the
quasiequilibrium or linear response regime. In this paper, I
will present the derivation of a new fluctuation-dissipation
theorem �FDT� without invoking any assumption beyond the
Brownian dynamics. I will also show that the assumption of
microscopic reversibility, on which the CFT is based, is gen-
erally invalid outside the quasiequilibrium regime. This will
establish that the CFT and JE are applicable only within the
quasiequilibrium regime where the dissipative work is nearly
zero. However, the new FDT is valid wherever the Brownian
dynamics is applicable.

Let us start with the Langevin equation for the Brownian
dynamics as follows:9

mi�
dxi

dt
+

�

�xi
V = Fi + �i. �1�

Here mi and xi are the atomic mass and coordinate of the ith
degree of freedom, respectively. � is the damping �frictional�
constant. V is the potential energy of the system that is a
function of all coordinates. �i is the stochastic force acting on
the ith degree of freedom. It is assumed to be Gaussian with
the following characteristics:

��i�t�� = 0, ��i�t�� j�t��� = 2mi�kBT�ij��t − t�� . �2�

Here kB is the Boltzmann constant. T is the absolute tempera-
ture. �ij is the Kronecker delta and ��t− t�� is the Dirac delta
function. Fi is the external force component acting on the ith
degree of freedom. The external force drives the system from
state A at time t=0 to state B at time t=�. For example, in a
mechanical unfolding experiment, the two terminus atoms
are subject to the external forces that are functions of the
atomic coordinates and time. In general, Fi=Fi�x , t�, where
x= �xi� is the collection of the atomic coordinates.

Now, we divide the time interval �0,�� into N equal
slices of width dt=� /N. In this, we have tn=ndt with n
=0,1 , . . . ,N. For clarity, we omit the index for the degree of
freedom and denote xn�xi�tn�, �Vn��V�x�tn�� /�xi, and
Fn�Fi�x�tn� , tn�. Then the discrete form of the Langevin
equation �1� is

m��xn+1 − xn� + �Vndt − Fndt = 	
tn

tn+1

dt���t�� . �3�

Noting the statistical characteristics of the stochastic term on
the right hand side of Eq. �3�, we have the transition prob-
ability between state xn at time tn and state xn+1 at time tn+1,
namely, the probability for the system to be in state xn+1 at
time tn+1 given that it is in state xn at time tn as follows:

P�xn,tn
xn+1,tn+1�

=
1

�
exp�−

�m��xn+1 − xn� + �Vndt − Fndt�2

4m�kBTdt
� . �4�

Here the normalization factor �= �2kBTdt /m��1/2, which is
independent of the system’s coordinates. Note that the Ito
scheme is adopted in this paper for the discrete form of thea�Electronic mail: lychen@utsa.edu.
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Langevin equation in Eq. �3�. If the Stratonovich scheme
were adopted, � would have a very complex dependence on
the coordinates through �Vn+1 and Fn+1. When that complex
dependence is correctly accounted for, the Stratonovich
scheme should agree exactly with the Ito scheme.9

Considering the dynamics of the system is Markovian,
we have the probability for transition along a given path
�x�t��= �x0 ,x1 , . . . ,xN� from state A �x0=xA� to state B �xN

=xB� as follows:

P�x0,t0
x1,t1
 ¯ 
xN,tN�

= pe�xA�

n=0

N−1

P�xn,tn
xn+1,tn+1�

=
1

�N pe�xA�exp�− �
n=0

N−1
�m��xn+1 − xn� + �Vndt − Fndt�2

4m�kBTdt
� ,

�5�

where pe�xA�=exp�−�V�xA�� /ZA is the equilibrium probabil-
ity distribution of the system when it is constrained to the

macroscopic state A. ZA=exp�−�GA� is the partition function
and GA is the free energy of that macroscopic state.
��1 /kBT. The system is driven from state A to state B by
the external force �F�t��= �F0 ,F1 , . . . ,FN�.

The following question has been asked but not answered
correctly in the current literature: What is the probability for
the system to take the exact reverse path �x̃�t��
= �xN ,xN−1 , . . . ,x0� if the external driving force is tuned back-

ward in time, �F̃�t��= �FN ,FN−1 , . . . ,F0�? Answering this
question correctly requires particular attention to the subtle
stochastic nature of the Brownian dynamics. Resembling ex-
actly Eq. �4�, the transition probability between state xN−n at
time tn and state xN−n−1 at time tn+1 is

P�xN−n,tn
xN−n−1,tn+1�

=
1

�
exp�−

�m��xN−n−1 − xN−n� + �VN−ndt − FN−ndt�2

4m�kBTdt
� .

�6�

The probability for transition along the reverse path �x̃�t��
= �xN ,xN−1 , . . . ,x0� is

P�xN,t0
xN−1,t1
 ¯ 
x0,tN� = pe�xB�

n=0

N−1

P�xN−n,tn
xN−n−1,tn+1� =
1

�N pe�xB�exp�− �
n=0

N−1
�m��xN−n−1 − xN−n� + �VN−ndt − FN−ndt�2

4m�kBTdt
� ,

�7�

where pe�xB�=exp��GB−�V�xB�� is the equilibrium probability of the system when constrained to the macroscopic state B.
The relationship between the probabilities along the forward and reverse paths will become clear once we substitute the
dummy index n in the sum on the second line of Eq. �7�, l=N−n−1. Then,

P�xN,t0
xN−1,t1
 ¯ 
x0,tN� =
1

�N pe�xB�exp�− �
l=0

N−1
�m��xl − xl+1� + �Vl+1dt − Fl+1dt�2

4m�kBTdt
� . �8�

Note that the indices are in different order than those of Eq. �5�. The ratio between the two probabilities can be found as

P�x0,t0
x1,t1
 ¯ 
xN,tN�
P�xN,t0
xN−1,t1
 ¯ 
x0,tN�

=
pe�xA�
pe�xB�

exp�− �
n=0

N−1
�xn+1 − xn���Vn − Fn� − �xn − xn+1���Vn+1 − Fn+1�

2kBT
� . �9�

In deriving the above equation, we made use of the fact that
dt is infinitesimal so that

�exp�−
��VN − FN�2 − ��V0 − F0�2

4m�kBT
dt��

dt→0
= 1. �10�

Examining the differentials in the exponent on the right hand
side of Eq. �9�, we note that the internal force �V terms lead
to the potential energy differences between states A and B as
follows:

�
n=0

N−1

�xn+1 − xn� � Vn = �
n=0

N−1

�V�xn+1� − V�xn�� = V�xB� − V�xA� ,

�11�

�
n=0

N−1

�xn − xn+1� � Vn+1 = �
n=0

N−1

�V�xn� − V�xn+1�� = V�xA� − V�xB� .

However, the external driving forces are not conservative
and their terms have to be dealt with explicitly. Now we have
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P�x0,t0
x1,t1
 ¯ 
xN,tN�
P�xN,t0
xN−1,t1
 ¯ 
x0,tN�

=
pe�xA�
pe�xB�

exp�V�xA� − V�xB�
kBT

�
�exp��

n=0

N−1
�xn+1 − xn�Fn − �xn − xn+1�Fn+1

2kBT
�

= exp�− ��G�exp�1

2
�W�x0,x1, . . . ,xN��

�exp�−
1

2
�W�xN,xN−1, . . . ,x0�� . �12�

Here �G�GB−GA is the free-energy difference between the
macroscopic states A and B.

W�x0,x1, . . . ,xN� � �
n=0

N−1

�xn+1 − xn�Fn �13�

is the work done to the system along the transition path
�x�t��= �x0 ,x1 , . . . ,xN� and

W�xN,xN−1, . . . ,x0� = �
n=0

N−1

�xn − xn+1�Fn+1 �14�

is the work done to the system along the transition path
�x̃�t��= �xN ,xN−1 , . . . ,x0�, which is the exact reverse of �x�t��.
Now we see that the probability for a given path is related to
that for the exact reverse path in a very simple formula

P�x0,t0
x1,t1
 ¯ 
xN,tN�exp�− 1
2�W�x0,x1, . . . ,xN��

= exp�− ��G�P�xN,t0
xN−1,t1
 ¯ 
x0,tN�

�exp�− 1
2�W�xN,xN−1, . . . ,x0�� . �15�

Integrating both sides of Eq. �15� with respect to all coordi-
nates x0 ,x1 , . . . ,xN at all time points, we find a new formula
that relates the nonequilibrium work to the equilibrium free-
energy difference

exp�− ��G� = �exp�− 1
2�WA→B��F/�exp�− 1

2�WB→A��R.

�16�

Here WA→B�B→A� denotes the work done to the system when
it is driven from state A to state B �driven back from state B
to state A�. The angular brackets in the numerator represent
the statistical mean among all the forward paths �from state
A to state B�, and their counterparts in the denominator rep-
resent the same among the reverse paths �from state B to
state A�. This new FDT is valid as long as the Brownian
dynamics is applicable because its derivation does not re-
quire any additional assumptions.

The microscopic reversibility required by the CFT as-
sumes that

W�x0,x1, . . . ,xN� = − W�xN,xN−1, . . . ,x0� . �17�

When this is valid or a good approximation, Eq. �15� can be
rearranged into the following form:

P�x0,t0
x1,t1
 ¯ 
xN,tN�

= exp�− ��G�P�xN,t0
xN−1,t1
 ¯ 
x0,tN�

�exp�− �W�xN,xN−1, . . . ,x0�� . �18�

Multiplying the two sides of Eq. �18� with an arbitrary but
finite function f�W�x0 ,x1 , . . . ,xN��, integration over coordi-
nates at all times immediately leads to the CFT in the fol-
lowing form:

exp�− ��G� = �f�WA→B��F/�f�− WB→A�exp�− �WB→A��R.

�19�

At this point, it is appropriate briefly look into the CFT’s
self-consistency. Choosing f�W�=1, Eq. �19� gives the free-
energy difference through exp�−��G�=1 / �exp�−�WB→A��R.
Choosing f�W�=e−�W, it leads to the well-known JE, exp�
−��G�= �exp�−�WA→B��F. The self-consistency and thus the
validity of the CFT and JE demand that

CFR � �exp�− �WA→B��F�exp�− �WB→A��R = 1. �20�

Equation �20� is a very strong constraint and therefore se-
verely limits the CFT’s applicability. It has been shown8 that,
for near-equilibrium processes, Eq. �20� is simply the linear
FDT. For processes that are not near equilibrium; the self-
consistency requirement, Eq. �20�, is far from being satisfied.
I have done in silico experiments of unfolding titin �1TIT� in
vacuum. The CHARMM27 force fields are used for the inter-
atomic interactions. NAMD/SMD �Ref. 10� is used for the nu-
merical undertakings. I sampled ten unfolding and ten refold-
ing paths to compute the consistency factor CFR defined in
Eq. �20�. The consistency CFR is plotted in Fig. 1 as a func-
tion of the end-to-end distance for two unfolding/refolding
speeds. As expected, CFR is closer to 1 for the speed of
0.1 Å /ps than for the speed of 1.0 Å /ps. Even in the case of
0.1 Å /ps, though, CFR is still very far from 1, which means
CFT is not self-consistent for these far nonequilibrium
processes.

Now it is time to examine whether or not the assumption
of microscopic reversibility is valid. From the definition of
work, we have

1E-50

1

1E+50

1E+100

1E+150

1E+200

1E+250

22 24 26 28 30 32 34

C
F

R

end-to-end distance

v=0.1A/ps
v=1.0A/ps

FIG. 1. The self-consistency factor CFR vs the distance �Å� between the
terminus N atom �that is fixed� and the terminus C atom �that is pulled at
constant velocity v�.
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W�x0,x1, . . . ,xN� + W�xN,xN−1, . . . ,x0�

= − �
n=0

N−1

�xn+1 − xn��Fn+1 − Fn� . �21�

The assumption of microscopic reversibility means that the
right hand side of Eq. �21� is equal to zero. Now one might
be attempted to conclude that the right hand side of Eq. �21�
vanishes as dt→0 because �xn+1−xn��dt and �Fn+1−Fn�
�dt. But that conclusion is invalid. In fact, it does not vanish
as long as the external force F�x , t� is not independent of the
system’s coordinates. In general, we have

W�x0,x1, . . . ,xN� + W�xN,xN−1, . . . ,x0�

= − �
n=0

N−1

�xn+1 − xn�2 � Fn, �22�

where �Fn��F�x�tn� , tn� /�xi. The right hand side of Eq. �22�
would be zero if �xn+1−xn�2 were proportional to dt2, but the
stochastic nature of the system makes �xn+1−xn�2 propor-
tional to dt instead of dt2. Therefore the right hand side of
Eq. �22� does not vanish in the dt→0 limit. It is equal to
twice the dissipative work instead. This means that the CFT
and JE are invalid unless the dissipative work is vanishingly
small.

Now one more question needs to be asked: What about
the case when the external force is independent of the sys-
tem’s coordinates? In such a case, the right hand side of Eq.
�22� does vanish. However, with such kind of external
forces, the system may not transition from state A to state B
because of the stochastic nature of its dynamics. In the ex-
periments of mechanically unfolding biological molecules at
constant speed, the forces acting on the system are indeed
functions of the coordinates of the terminus atoms attached

to the tips of the atomic force microscope or the optical
tweezers. CFT and JE are inapplicable to those experiments
unless the pulling speeds are slow enough that the system is
always near equilibrium.

In summary, a new FDT has been derived from the
Brownian dynamics without invoking any assumption. This
new FDT is valid in the near-equilibrium or far nonequilib-
rium regime, wherever the Brownian dynamics is valid. It is
also shown that the CFT and the JE are valid only in the
near-equilibrium regime where the dissipative work is nearly
zero.
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Computing Center.
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