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Maximum Caliber: A variational approach applied to two-state dynamics
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We show how to apply a general theoretical approach to nonequilibrium statistical mechanics, called
Maximum Caliber, originally suggested by E. T. Jaynes [Annu. Rev. Phys. Chem. 31, 579 (1980)],
to a problem of two-state dynamics. Maximum Caliber is a variational principle for dynamics in the
same spirit that Maximum Entropy is a variational principle for equilibrium statistical mechanics.
The central idea is to compute a dynamical partition function, a sum of weights over all microscopic
paths, rather than over microstates. We illustrate the method on the simple problem of two-state
dynamics, A < B, first for a single particle, then for M particles. Maximum Caliber gives a unified
framework for deriving all the relevant dynamical properties, including the microtrajectories and all
the moments of the time-dependent probability density. While it can readily be used to derive the
traditional master equation and the Langevin results, it goes beyond them in also giving trajectory
information. For example, we derive the Langevin noise distribution rather than assuming it. As a
general approach to solving nonequilibrium statistical mechanics dynamical problems, Maximum
Caliber has some advantages: (1) It is partition-function-based, so we can draw insights from
similarities to equilibrium statistical mechanics. (2) It is trajectory-based, so it gives more dynamical
information than population-based approaches like master equations; this is particularly important
for few-particle and single-molecule systems. (3) It gives an unambiguous way to relate flows to
forces, which has traditionally posed challenges. (4) Like Maximum Entropy, it may be useful for
data analysis, specifically for time-dependent phenomena. © 2008 American Institute of Physics.

[DOLI: 10.1063/1.2918345]

I. INTRODUCTION

While the theoretical foundations of statistical mechan-
ics of the equilibrium state are well established,’ there seems
to be no unique and generally accepted formulation of the
nonequilibrium state.”™ Rather, there are various well-
understood approaches to nonequilibrium statistical mechan-
ics, each of which is plagued by some deficiencies. For ex-
ample, master-equation methods give differential equations
that can be solved for time-dependent probabilities of states.
However, in systems having only small numbers of particles,
dynamical fluctuations can be so large that mean probabili-
ties, which are smooth, continuous, and differentiable quan-
tities, are not the natural language for the dynamics. More-
over, probability distribution-based methods do not give
information about individual particle trajectories. The Lange-
vin equation, on the other hand, does give trajectory infor-
mation, but it is usually restricted in various ways. Analytical
Langevin modeling is challenged by nonlinear dynamical
problems2 and is usually based on assuming noise that is
white and uncorrelated or Gaussian. Hence, as a matter of
principle, it would be useful to have a single unified ap-
proach to nonequilibrium statistical mechanics (a) from
which both distribution-based or trajectory-based approaches
can be derived, (b) which is not restricted to near equilib-
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rium, to linear systems, or simple kinds of noise, and (c)
from which the properties of fluctuations can be derived
rather than assumed. Furthermore, it is desirable to have a
variational principle for dynamics that would serve the same
role that Maximum Entropy and the Second Law serve for
problems of equilibrium.

Here, we explore such a variational approach, called
Maximum Caliber. It was originally suggested by Jaynes5 as
a generalization of his Maximum Entropy Formulation. To
illustrate its full range of predictions, we apply this approach
to one of the simplest problems of dynamics, the two-state
system, A < B. Caliber may ultimately be useful for systems,
such as in biology, nanotech, and single-molecule experi-
ments, where the numbers of particles is small and where
there is some interest in knowing the distribution of
traject01ries.6’7

In this paper, we focus on dynamics, not statics. How-
ever, our strategy follows so closely the derivation of the
Boltzmann distribution law of equilibrium statistical me-
chanics of J aynesgflo that we first show the Jaynes treatment
of equilibria, called Maximum Entropy (MaxEnt). To derive
the Boltzmann law, MaxEnt starts from a given set of equi-
librium microstates j=1,2,3,...,N that are relevant to the
problem at hand. We aim to compute the probabilities p; of
those microstates in equilibrium. We define the entropy, S, of
the system as

© 2008 American Institute of Physics
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N
SUp}) =—ks 2 pjIn p;, (1.1)
j=1

where kg is Boltzmann’s constant. The equilibrium probabili-
ties, p;= p;f, are those values of p; that cause the entropy to be
maximal, subject to two constraints:

N
=1, (1.2)
i=1

which is a normalization condition that insures that the prob-
abilities p ; sum to one, and

(E)=2 piE;, (1.3)
J

which says that the energies, when averaged over all the

microstates, sum to the macroscopically observable average

energy. This is equivalent to the statement that the tempera-

ture is constant. Introducing Lagrange multipliers w and S to

enforce constraints (1.2) and (1.3), we maximize the function

N N N
S({Pj})=_kBEPj ]npj"'MEpj_ﬁEijj’ (1.4)
Jj=1 Jj=1 J=1
which leads to the equilibrium probabilities
-BE;
* e /

where Q:Eje‘BE.i is the partition function. By using the ther-
modynamic expression d{E)=TdS with (1.1) and (1.3), we
readily obtain 8=1/kpT. This MaxEnt derivation of the Bolt-
zmann distribution law provides a simple, compact, and
transparent variational principle for computing the equilib-
rium probabilities of the microstates. The basic idea is that,
by maximizing Eq. (1.4), we select the distribution with the
greatest multiplicity that agrees with the given information
(1.2) and (1.3).

Following this idea, the generalization of MaxEnt to
time-dependent problems is—at least in principle—a
straightforward matter.”'""' In this case we have some time-
dependent quantities A, with averages

(A,(0) =2 pi(DA,. (1.6)
J

Instead of the equilibrium probability p; of a microstate in
Eq. (1.4), the p;(r) now denote the probability of a microtra-
Jjectory, e.g., a specific single-particle trajectory. As a conse-
quence, the resulting entropy «;p;(t)In p;(r) will be a func-
tional or path integral® of the {p (1)}, In direct analogy to the
equilibrium case [Eq. (1.4)], we construct the quantity

C()=- 2 pi(On p;(1) + uE piD+ 2 ME DA,
J J n J

(1.7)

where Lagrange multipliers x and N, enforce that the distri-
bution is normalized and that the averages (1.6) are satisfied.
Jaynes called this quantity “Caliber,” since it refers to the
cross sectional area of a tube, which partly determines the
flow in a dynamic process.5 To find the weights of the indi-
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FIG. 1. One possible trajectory of a single particle that alternates stochasti-
cally between states A and B as a function of time.

vidual dynamical paths, p;(f), we maximize the Caliber (1.7)
by setting 6C/dp;=0. This gives for the path weights

pi(t) = oy exp{NA+ o+ NAL (1.8)

where Q=3 exp{\A;+---+N\A;;} denotes the dynamical
partition function. In complete analogy to MaxEnt, by maxi-
mizing Eq. (1.7), we select the path distribution {p; (1)} with
the greatest multiplicity that agrees with the given informa-
tion (1.2) and (1.6). This path distribution then determines
the time evolution of all time-dependent observables of the
system.

Here is how Caliber is applied to a given dynamical
problem. First, we are given a set of trajectories (for ex-
ample, from a model) and a set of values, A,;, characterizing
the property A, for trajectory j. We take as given (for ex-
ample, from experiments) L first-moment quantities A,,.
Maximizing the Caliber via 8C/ dp;=0 gives L equations that
can be solved for the L unknowns \,. Finally, substituting
these quantities \,, into Eq. (1.8) gives the dynamical parti-
tion function Q4 and the trajectory populations p;. Those
quantities, in turn, can then be used to obtain all the other
dynamical distribution properties of interest.

This derivation makes no assumptions that a system is
near equilibrium, or about separations of time scales, or
about the linearity or nonlinearity of relationships between
forces and flows, or about the nature of distributions of noise
or fluctuations. The Caliber method is quite general in prin-
ciple, although for many problems, similar to equilibrium
statistical mechanics, analytical solutions will not be possible
and it may be necessary to resort to numerical methods of
solution. The approach has been subject to some formal
study,”’lz’m’15 but practical applications and tests of it have
been largely unexplored. Only recently, the principle of
Maximum Caliber has been experimentally verified for the
problem of nanodiffusion'®'” and for a single bead trapped
in a double well potential.18 In this work, we illustrate the
Caliber approach more specifically through application to
two-state dynamical systems.

Il. THE DYNAMICAL PARTITION FUNCTION
A. Definition

Consider a Brownian-driven classical two-state system
A« B. Consider, first, the trajectory of a single particle (Fig.
1). We divide time into discrete units Az. Each possible tra-
jectory has N time steps, so the time duration of each trajec-
tory is t=NAt.

There are four rate quantities that are of interest: N,
the number of transitions (over the full course of the N time
intervals from time O to ¢, of one particular trajectory j) that
have occurred from state B to state A; N, the number of
transitions from A to B along trajectory j; N,,;, the number
of “transitions” from state A to state A; and Nypj» the number
of transitions from B to B during a trajectory. Once the popu-
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FIG. 2. All the possible two-state trajectories of N=3 time steps for a
system starting in state A, with their corresponding statistical weights.

lations p; of the individual trajectories are known, the aver-
age numbers of such transitions can be computed from

(Nyp)=2 PiNapjs  (Npa) = > PiNpajs
J J

(2.1)
(Now) = E PiNagjs  Npp) = 2 PilNppj-
j j

Hence, quantities such as (N,,)/N are rates; these are the
numbers of such transitions per unit time. Other quantities
are obtainable from these. For example, for a trajectory hav-
ing N time steps, the fraction of time that the system spends
in state A can be expressed as (N4/N)=((N,,+N,)/N). In
our present simple example, we consider steady-state situa-
tions in which each such average rate is a fixed number and
is not, itself, a time-varying quantity. However, as we show
below (see Sec. IV C), the Caliber method is general and can
treat arbitrary time dependencies.

For the two-state system, the path weights are given by
Caliber [Eq. (1.8)],

P0)= Q5" exp{NiNap; + NoNpgj + NsNag; + NaNpy}
= 03 Yo Vhr Yy, (22)
where, to keep the notation as simple as possible, we have
converted to different variables, y,,=¢eM, y,,=€"2, v,,=€"3,
and 7,,=e™. The dynamical partition function
Qu(t) = 2 Vb Vot Yy (2.3)
J
is a sum over the dynamical weights of all the trajectories.
Each dynamical weight is a product of factors describing that
trajectory: v,, is the probability that during the time interval
At, the system was in state A and switches to state B, 7, is
the probability that the system was in state B and switches to
state A, vy,, is the probability that the system was in state A
and stays in state A, and 1y, is the probability of staying in
state B. Without loss of generality, we will consider trajecto-
ries that start at time =0 in state A. To illustrate, in a simple
system involving only three time steps (N=3), there are eight
possible paths, giving the following partition sum over those
path weights:

Qd(t = 3At) = 'y?za + YaaYabYba T YabVYoaYaa t YabVobVba
+ VoaYaa+ VeaYab+ Yav Yoo Yoa + Yoo Yoa:

these paths and their weights are illustrated in Fig. 2.
Collecting up the results above into a more compact ma-
trix notation gives
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FIG. 3. (Color online) Time evolution of population probability P,(r) as
obtained from Eq. (2.7), starting from state A and assuming transition prob-
abilities y,,=k,=1/10 and v,,=k,=1/20 for illustration. The system re-
laxes with a decay rate of 7,,+v,,=3/20 and approaches equilibrium,
Pa(2)=1=(Np)eg/ N=Yaup/ (¥pat Yap)=1/3, as expected. Also shown is the
result of a dynamical Monte Carlo simulation (dotted line), which agrees
well with the matrix multiplication method (solid line), when 10° trajecto-
ries are employed.

04(t=NAp) = (1 I)GN<(1) ) (2.4)

with initial state ((1)) (start in A) and final state (i) (end in A or
B) and where

G= (7&14& Yab )
Yoa Vb

(2.5)

is the matrix of transition probabilities between the two
states. Of these four variables, note that only two are inde-
pendent because of the conservation relationships:

Yaa * Vba = I,
(2.6)
Yoo+ Yar =1

That is, for example, if the particle is in state A at time ¢, then
at time 7+ A¢, the particle must be either in state A or B.
What are the probabilities P,(r) and Pg(z) that the sys-
tem is in state A or state B, respectively, at time ? We can
readily obtain these probabilities from the dynamical parti-
tion function. Suppose the system starts in state A at time ¢
=0 with probability P,(0) and in B with probability Pg(0).
To compute the state populations at time 7, we multiply by
the propagator matrix G for each of the N time steps to get

(PA(I)) _ GN<PA(0) )
Py(?) Py(0)
Since P,(1)+Pg(r)=1, it follows from Eq. (2.7) that the par-
tition function is normalized,

Q4(1) = P4(t) + Pg(t) = 1.

As an illustration, Fig. 3 shows the time evolution of P,(),
given that vy,,=1/10 and 7,,=1/20. As expected, P,(t) de-
cays at a rate y,,+ v,,=3/20.

Another quantity of interest is the conditional probabil-
ity, P4(t,|¢,), that the system is in state A at time #,, given
that it was in state A at time #;:

(2.7)

(2.8)
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1 0 P40
PA(t2|ll)=(1 O)GN2_N1(0 0>GN1<P/;EO;)

=Pyt — 1)) Pa(ty). (2.9)

B. Some properties are derivatives of the dynamical
partition function

It is readily verified from Eq. (2.3) that various average
quantities and higher moments can be calculated as deriva-
tives of the partition function. For example, we can get the
average number of switching transitions, Np,, from

d1n Qq 5 , & InQy
J1n 'Yba, <(Nba) >_<Nba> _&ln ’)}bu

(Npa) = (2.10)
(and similarly for the other quantities N,,, N,,, and N,,; see
Appendix A). In the equilibrium limit, we can readily derive
closed-form expressions for the moments. For example,
Ng/N=(Ny,+N,,)/ N is the fraction of the time NAf that the
system spends in state B. Appendix A shows that in this
limit, as N— o0, we have

<NB>eq - <Nba + Nbb)eq - Ypa

, (2.11)
N N Yoat Yab
<N%}>eq - <NB>§q — 2 YbaYab _ YbaYab (2 1 2)
N (’Vlm + ’Yah)s (’Yba + ’Yah)z

It is worth noting that these equations imply detailed bal-
ance, i.e., <NB>eq7ab=<NA>eq7ba'

Other derivatives of the dynamical partition function are
also useful—mixed moments, for example. Central to equi-
librium thermodynamics is the set of reciprocal relationships
known as Maxwell’s relations, which involve equalities
among mixed second derivatives of the partition function.
The importance of Maxwell’s relations lies in the fact that
we often want to know the quantity on one side of such
equalities, but we are only able to measure the quantity on
the other side. Here, we show that Caliber gives similar
mixed second derivative equalities, except here it is for dy-
namical properties rather than for equilibria. For example,

& 1n Q4 & 1n Q4
JdlIn ’Ybba In ’yba_ﬂln ’Ybaﬂ In ’ybb.

(2.13)

Perhaps expressions such as Eq. (2.13) will be useful for
dynamics in the same way that Maxwell’s relations are for
equilibria.

C. A chemical fluctuation theorem

Of much interest in nonequilibrium statistical mechanics
are fluctuation theorems.>'""*?° A fluctuation theorem re-
lates the probability P; of a forward trajectory to the prob-
ability P, of the corresponding reverse trajectory in a dy-
namical system. From Caliber, we can readily calculate such
ratios for our two-state system. The dynamical partition
function (2.3) gives the ratio of the populations of forward to
reverse trajectories as

J. Chem. Phys. 128, 194102 (2008)

N b~ NbanNbb
if_ ’ya;lm alg baa bb _M
= Naa Nap# !  Npa=1 Ny — >
Pe YadYab” Vo™ Vob” Vab

(2.14)

where we have assumed, for the purpose of calculation, that
the forward trajectory starts in state A and ends in state B.
Employing Eq. (2.11) for the equilibrium populations P4(z)
=1 and Pg() gives

Yoa _ Pp(®) _
Yab P A(oo)
where S, and Sy denote the entropies over the populations of

states A and B, respectively. This simple derivation gives the
fluctuation theorem for the two-state system,

Sa—S
e A B’

(2.15)

f_ 34758, (2.16)

T

showing the more favorable routes are exponentially more
populated than their reverse trajectories.

D. Other dynamical quantities can be obtained
from the dynamical partition function

Other properties that are not simple derivatives of Q4
can also be obtained from the dynamical partition function.
One such property is the probability P(Ng,?) that the particle
has spent exactly Ny time steps in state B over the time
course from time #' =0 to ¢. Another example is the probabil-
ity P(N,,,t) that the particle has had exactly N, switches
during the trajectory. Or, because of its relationship to the
equilibrium constant K=Ng/N,, we may be interested in the
dynamical distribution of the quantity P(Ngz/Ny,t). Comput-
ing these properties requires a way to “pick out” certain spe-
cific trajectories from the partition sum. Expressed in terms
of Kronecker delta functions, these are

P(Ng,1) = > pi(t) 5NB,NB,.7 (2.17)
- .

P(Np) = 2 pi(D)8y,, n,,. (2.18)
- _

P(Ng/N.1) = 2 pf0) L (Ns/Ny) = (NgdNa)]. - (2.19)

J

Recalling from Eq. (2.2) that the path weights p; depend on
the variables Ny, Nygjs Nyoj» and Ny, i, we can calculate, say,
P(N,,,t), by simply summing over all the particular paths j
that take on the particular value of interest, N,,;=N,,:

P(Nalnt): E

NpajNaajNpbj

A abj baj aaj bbj
8 Jlab ba aa bb ">

(2.20)
where g;=8(N ;> Npajs Nugj>Npp;) denotes the multiplicity of
paths j that have these particular values of the four quanti-
ties.

Although the direct enumeration of paths is straightfor-
ward in principle, it becomes cumbersome for large N, since
the number of paths grows exponentially with the length of
the trajectory. In these cases, such averages can be obtained
using a dynamical Monte Carlo scheme instead.”’ ™ In a
direct generalization of standard equilibrium Monte Carlo,
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FIG. 4. (Color online) Time evolution of distributions P(Ng,7) (top),
P(N,;,,1) (middle), and P(Ng/Ny4,t) (below).

we can sample the nonequilibrium dynamics by comparing
the rates of individual time steps with random numbers (see
Ref. 23 for a recent review). For example, the Gillespie al-
gorithm describes a random walk in state space that repro-
duces the correct distribution of the master equation of the
process.21 For our single-particle two-state system, we can
use a particularly simple dynamical Monte Carlo scheme. At
each time step, we draw a random number r, which is com-
pared to the transition probability 7y, (when the system is in
state A) or 7,, (when it is in state B). If the transition prob-
ability is larger than r, the system makes a transition to the
new state; otherwise, the system stays in its previous state.
Figure 3 shows that the Monte Carlo approach gives good
agreement with the matrix multiplication method, when 10°
trajectories are employed.

Adopting again our simple example with y,,=1/10 and
va=1/20, Fig. 4 shows how the distributions P(Ng,1),
P(Ny4,1), and P(Ng/N,,t) begin sharply peaked when the

Maximum Caliber: A variational approach applied to two-state dynamics
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system is initiated in state A, and remain asymmetrical as
they shift with time toward their equilibrium distributions
(r=400). Interestingly, we find a nonzero third moment of
these distributions, even in the limit of long times. This im-
plies that they are not exactly Gaussian, as the corresponding
Langevin modeling would normally assume (although the
deviation is quite small). For example, we obtain ((N,,
—(N,)»?/N=0.006 86 and 0.006 91 from Eq. (A15) and the
Monte Carlo simulations. At long times, we find that
P(Ng/Ny4,t) peaks at the expected equilibrium coefficient
value, Np/N,y=2.

lll. DERIVING EQUATIONS OF MOTION
FROM CALIBER

Our premise in this paper is to use Caliber as a founda-
tional principle from which we can derive dynamical prop-
erties. A standard way to treat dynamics is through master
equations and Langevin equations.

A. Master equation

Master equations are among the most common modeling
approaches in nonequilibrium statistical mechanics. These
are differential equations that express the governing dynam-
ics of state probabilities, such as P,(¢) or Pg(f) in the two-
state system. Here, we show how to derive the master equa-
tion for this problem from Caliber’s trajectory-based
dynamical partition function. We aim to compute quantities
such as dP,/dt and dPg/dt. For the single time step Az=1
from ¢ to ¢+ 1, Caliber Eq. (2.7) gives

dPy
—— =Pu(t) = PA(t -1
& A(1) = Py(t=1)

1 Pu(t—1)
(o) nlzen)
0 Py(t—1)
Converting from the +y notation to the more familiar rate-
coefficient notation, k, and k;, gives

aa_l a _ka k
ot ) )
Yba Yoo — 1 k, =k

leading to the well-known master equation for this problem

(3.1)

(3.2)

&=—k PA+kaB
dr ¢ '
(3.3)
%= +kPA_kaB
dr ¢ '

where P, and Pg on the right-hand side represent the state
populations at time #—1 in the discrete time notation. While
chemical master equations such as these are well-understood
standard fare, they are limited; they do not give information
about the underlying system trajectories. Thus, it is not
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straightforward to compute the distribution of dynamical
quantities, which can be measured, e.g., in single molecule
experiments. The advantage of the Caliber approach above is
that it gives a deeper vantage point from which we can de-
rive the dynamical properties of both the trajectories and the
state densities, all within a single framework.

B. Switching from one-particle to multiple-particle
systems

In the sections above, we have considered one particle
that switches between states A and B. Now we generalize
and treat a system of M particles. Each particle can switch
stochastically between states A and B. We treat the case of
independent particles to show how the dynamical partition
function method simplifies such problems. Because of the
particle independence, the dynamical partition function Qy
for the total system factorizes into M single-particle partition
functions Qg ;:

Qum=0dl- (3.4)
Hence, for the M-particle system, we obtain directly
Moy M
[Pa(0) + Ps()]" = 2 ( . )P::(t)P?f‘"(r) =2 P,(1),
n=0 n=0
(3.5)
which gives
M 71 -n
P,n={ " |PAOP (1), (3.6)

where (]Z) denotes the binomial coefficients and P,(¢) is the
probability that n of the M particles are in state A at time ¢.

Here are some examples of how Eq. (3.6) can be useful.
First, Eq. (3.6) gives the diffusional dynamics of the
M-particle system (see Fig. 5). It is clear from the substantial
width of this curve for M =20 particles that the mean value,
Py(0)=(1/M)Z,_; ynP,(1)=(n)/ M, provides only a limited
description of the time evolution of the system. The copy
numbers of proteins inside biological cells are often not
much greater than this, so such dynamical variance quantities
will be important in such cases. Assuming M=1000 par-
ticles, on the other hand, the distributions are well localized
at their mean values.

Second, Eq. (3.6) gives a simple way to derive the
Poisson-like distribution for the M-particle equilibrium. At
long times, we have P,()=k,/(k,+k;)=1—Pg(). Substi-
tuting these relationships into the right-hand equality in Eq.
(3.6) and defining the equilibrium constant as K=k;/k, gives
the Poisson-like distribution®

P, (%) (3.7)

S — .
n!(M-n)!
which is expected for independent particles at equilibrium;

the proportionality constant is a function of M.
Third, Eq. (3.6) gives a simple way to derive the master
equation for the M-particle 73 reaction. We calculate

J. Chem. Phys. 128, 194102 (2008)
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FIG. 5. (Color online) Time evolution of probability distribution P,(t) of
number of particles, n, in state A, assuming k,=1/10, k,=1/20, and initial
condition P,(0)=4, . For various times, the exact binomial distribution is
shown in solid lines along with the Gaussian distribution drawn with broken
lines. In the upper panel M =20 total particles are considered, in the lower
M=1000.

P,(t+ At)—P,(1) using Eq. (3.6) and expand to first order in

the rate coefficients k, and k;, to get the M-particle master

equation
dp,
dr

= +ka(n+ 1)Pn+l _kanPi1+kb(M_ [l’l - 1])Pn—1

—ky(M —n)P,, (3.8)

which accounts for the gains and losses in the n-particle
“bin” to and from the adjacent n+1 and n—1 bins. Here
again, this master equation is well-known; the virtue of this
Caliber derivation is simply in showing that the state-
population dynamics can be derived from a single unified
framework that also gives trajectory properties.

C. Deriving the chemical Langevin equation
from Caliber

Master equations describe quantities that are already in-
tegrated over the microscopic trajectories. The standard way
to recapture information about dynamical trajectories is to
use a Langevin equation instead. In the Langevin approach,
the left-hand side of an expression, for example, is a differ-
ential equation for average forces, velocities, or rates for a
particular dynamical problem. On the right-hand side is a
fluctuating noise quantity, which is assumed to have certain
statistical properties. Typically, the noise is assumed to be
uncorrelated and white, or to obey a Gaussian distribution.



194102-7

Such approaches are known to fail, however, in various cir-
cumstances, such as when the dynamics is nonlinear.” There
is currently no deeper analytical approach that prescribes the
nature of the noise when setting up a Langevin equation for
complex problems. Here, we illustrate how to derive the
chemical Langevin equation, for the two-state model, from
Caliber, giving a principled way of treating the noise. We
begin with the full trajectory distribution given by Caliber
and show how to derive the appropriate fluctuations for the
corresponding Langevin equation from it.

In Langevin terminology, for our two-state problem, let
n(r) represent the instantaneous number of particles in state
A at time . Correspondingly, M —n(t) is the instantaneous
number of particles in state B. Formally, the Langevin ap-
proach asserts that the fluctuating trajectory quantity n(¢) can
be expressed in terms of a differential equation

dn

—=—kn+k,(M-n)+F, (3.9)

dt

where F, is a fluctuating noise quantity that has particular
.24 .. . .

properties.”” First, it is assumed that the average noise is

zero, (F,)=0, so that averaging over trajectories recovers the

correct macroscopic expression for the mean dynamics,

%(n) ==k n) + k(M —n)). (3.10)
Since (n)=M P ,(t) and {M —n)=M Pg(1), this step of averag-
ing over trajectories just recovers the master equation for this
system. Now, rearranging Eq. (3.9) and replacing the deriva-
tive on the left side with the single time-step (Az=1) quan-
tity, n(t+1)—n(z), gives

n(t+ 1) —n(t) + kn(t) — kLM —n()] = F(z). (3.11)

Our aim here is to derive from Caliber the nature of this
fluctuating quantity, F(¢), rather than to assume that it is a
Gaussian distribution, as is often done in Langevin model-
ing. We want to determine the various statistical moments of
F(z). To do this, we need the joint probability distribution
P(n(t+1),n(r)). Using the notation n(z+1)=m and n(t)=n,
P(n(t+1),n(z)) can be expressed as

P(m,n)

S ]

m-n+i
(3.12)

where P,(1) is given by Eq. (3.6). This expression contains
two types of terms. First, given n particles in state A at time
t, this sums over the trajectories in which i of them jump to
state B at time 7+1 (hence, n—i of them stay in state A).
Second, given M —n particles in state B at time ¢, this sums
over trajectories in which m—n+i of them jump into state A
at time 7+1 (so, M—m—i remain in state B).

Based on this joint distribution, Appendix B derives the
first three moments of the distribution over trajectories. For
the first moment, Caliber gives (F(1))=0, as expected. For
the second moment, we obtain

Maximum Caliber: A variational approach applied to two-state dynamics
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(F(1)%) = M(k,P4(1) + ky,Pp(1)). (3.13)

Clearly, since P, and Py are time dependent, this second
moment is also time dependent. However, in the limit as ¢
— oo, the second moment reduces to

2Mk k,

002:
Py =

(3.14)
via the substitution of P,()=k,/(k,+k;,)=1-Pg() into Eq.
(3.13). Correspondingly, the third moment is (in first order of
k, and k,, see Appendix B)

(F(1)*) = M(Py(t)k, — P4(D)k,), (3.15)

which is time dependent and goes to zero in the limit of long
times, (F()3)=0. Since the third moment is nonzero for
short times, the standard assumption in Langevin modeling
that the noise is Gaussian-distributed is not exact, but be-
comes an increasingly good approximation for long times.
Also as a matter of principle, the implication of this deriva-
tion is that for more complex Langevin modeling, Caliber
may provide a general way to derive the appropriate noise
distributions, when the Gaussian assumption is known to
fail.

Finally, to complete the Caliber derivation of the Lange-
vin approach, we integrate Eq. (3.9) to put it into the form

t
n(t) = (n(0)) + J d' ek -, (3.16)
0

where (n(t))=M P 4(t). Next, we note that the underlying dis-
tribution P,(¢) is given by the binomial distribution Eq. (3.6),
which we approximate as a Gaussian,

o [n— ()P
P} = o(1) \"%exl}{_ }

202(0) (3.17)
where
o2 (1) = (n*(1)) — (n(1))?
= f t dt, f I dt e k)=t B(1,) F (1))
0 0
=MP,(1)[1 = P4(0)]. (3.18)

This derivation shows how, starting from Caliber, we recover
the standard Langevin model assumption of Gaussian noise.
Figures 5(a) and 5(b) show that the Gaussian curves accu-
rately mimic the binomial distribution, and that the Gaussian
differs from the exact P,(f) only at very short times. Inter-
estingly, the exact result shows that the width of the distri-
bution is time dependent at short times. This, of course, is
not recovered by the usual Langevin treatment.

IV. CONSTRAINTS
A. How to choose constraints for Caliber modeling

What is the justification for the Caliber approach? Sta-
tistical mechanics is about making models. For dynamics, a
model is a statement of a set of possible microscopic routes
and some chosen set of microscopic parameters (the statisti-
cal weights, not known in advance), the number of which
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will typically be much smaller than the number of different
trajectories. The Caliber strategy is simply a way to deter-
mine the values of those statistical weight parameters so as
to satisfy the observable average flux quantities, and so as to
otherwise assign no further favoritism to any one trajectory
over any other. The essential idea is that all trajectories are
equivalent intrinsically and are only weighted differently by
virtue of the resultant statistical weight factors. Caliber then
predicts other dynamical moments. If those other dynamical
moments were then found to disagree with experiments, it
would imply the need for a different model.

This raises the question of what types of constraints are
appropriate in Eq. (1.7), (1.6), and (2.1). In this regard, the
Maximum Caliber approach to dynamics bears close resem-
blance to the Maximum Entropy approach to equilibrium,
which involves satisfying constraints, such as Eq. (1.3), on
certain equilibrium averages. In applying either Caliber to
problems of dynamics or MaxEnt to problems of equilib-
rium, we are not at liberty to choose constraints arbitrarily.
For example, for the two-state model of interest in this paper,
there are many possible quantities that could have served as
the “observables” of our trajectories, including (N,,—Ny,),
(le;), and (sz/NB), or an infinite number of others. The
resulting dynamical distribution function that would have
been predicted from those various choices can differ depend-
ing on what constraints are chosen. So, what are the “right”
constraints?

First, in physical problems, some quantities, like energy,
momentum, mass, particle numbers, or volume, are con-
served. They are extensive, or first-order homogeneous func-
tions. In equilibrium thermodynamics, you can only predict a
state of equilibrium if you maximize the entropy S(U,V,N)
that is a function of extensive variables; you cannot predict
equilibrium by maximizing the function S(7', V>,N/U) of in-
tensive variables, such as temperature, or other non-
conserved quantities. Similarly, for dynamics, the constraints
used in Caliber are only fluxes, such as (N,,), which are time
derivatives of conserved first-moment quantities, not higher
moments of fluxes. Second, any linear combination of flux
quantities would also lead to the same prediction for the p;’s:
hence, substituting (N,4)=(N,,)+{(N,,) for the quantities
(N, or (N,,), for example, would give the same trajectory
populations. Hence, there is freedom to choose among linear
combinations of flux constraints those that are most conve-
nient.

Third, what is the right number of constraints? In our
present model, we have two, corresponding traditionally, say,
to an equilibrium constant and a forward rate coefficient. In a
two-state system of independent particles having stationary
dynamics and no memory, this may be sufficient to account
for bulk experiments. However, modern single-molecule
measurements can also give the higher moments.' ¥4 In
those cases, it is found that no further statistical weight pa-
rameters are needed. If some additional microscopic process
were operative that caused a further preference of some tra-
jectories over others, additional measurements (constraints)
would be needed to fix the values of the additional param-
eters required. In the sections below, we illustrate how Cali-
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ber can be applied to other conserved quantities (time, rather
than flux), to time-dependent constraints, and to memory
effects.

B. Constraining the time rather than the flux

An alternative way to describe the two-state system is
through the waiting time distribution rather than through the
flux distribution. Caliber can treat time distributions as sim-
ply as it can treat flux distributions. Often measured in
single-molecule experiments are the waiting times 7, and 7g,
i.e., the number of time steps the system spends in state A or
B until it switches to the other state. The mean waiting time
in state A is (74)=2;p;(1)74;. Now, switching from con-
straints on average fluxes to constraints on average times,
this time-based Caliber formulation gives the path weights
p;=05'e™ ™, where Q, is a dynamical partition sum over all
the possible waiting times,

Q4= f e Madr, = 1/\. 4.1)

0

Hence, we obtain for the average waiting time

® 2

1
=0y reMadr=——=1A.
(72)=0; fo e Mgy = -

The average waiting time (7,)=1/k, is an observable, equal
to the inverse of the rate constant. Hence, from this observ-
able, we obtain A\, leading also to the well-known Poisson
waiting time distribution for this system,

pj=koe i, (4.2)

This simple derivation shows how a constraint on the mean
waiting time gives, through the Caliber approach, the full
waiting time distribution. Also, since the same holds inde-
pendently for the waiting time distribution in state B, we
obtain from these two constraints the weights

pj* e *aTaje~kbTB;

(4.3)

In short, there can be different ways to choose constraints for
Caliber. We have shown the equivalence of fixing two flux
quantities such as N, and N,, or fixing, instead, two mean
waiting times, for states A and B. One advantage of the latter
is that the waiting times are decoupled and independent [Eq.
(4.2)], while the former quantities are interdependent and
must be combined, as indicated in this paper, to give a proper
distribution.

C. Time-dependent constraints

Consider now a two-state process, A <> B, in which the
energy minima and barrier height vary with time. Now, the
constraint quantities, such as (N,,(7)), will depend on time,
as does the dynamical partition function Q4. The Caliber
formulation remains the same;5’“’12 here is an illustration of
how it is implemented in this case. First, consider a discrete
piecewise time variation, whereby an observable A takes on
a fixed value for some time interval, and a different value
over the next time interval, 7=r:
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FIG. 6. (Color online) Time evolution of P,(r) for a periodically driven
two-state system (dashed line) compared to the stationary nondriven case
(solid line) treated previously.

(A1) =2 p(N)A(7). (4.4)
J

By fixing (A(7)) for a number of times 7=, ..
obtain the Caliber function

. Tk, WE

C(1) = 2 p/0In py(0) + w2 pi(0)+ 2 pi(0) 2 A7)
J J J T
(4.5)
It is clear that by taking the limit of small time intervals, this
procedure can accommodate any arbitrary time dependence.

As an illustration, suppose the two-state system has two
different rate constants over two different time regimes:

KD if 0=r=1,

k(1) = 4.6
® K2 if n=t=m,. (4.6)
This corresponds to the time-dependent constraints
(Np(t))y =2 PN)N (1),
J
4.7)

(Nap(12)) = 25 pj(N)N (1),

and similarly for the other flux quantities. As a consequence,
each term in Eq. (2.20) is replaced by a double sum, e.g.,

Naopi N N o
2 = 2 A X e
Nabj Napj(ty) Napj(tp)

(4.8)

Figure 6 shows a calculation for a periodically forced two-
state  system. In this case, we use Y,(t)=Yull
+0.5 cos(4y,,t)]. To compute the dynamical properties of
the system, we discretize the values of 7,,(¢) for each time
interval Ar and substitute each such value into its own G
matrix, which we then multiply together to get the time-
dependent partition function [see Egs. (2.5)—(2.7)]. The fig-
ure shows how the computed value of the population of A,
P,4(1), oscillates in time in this case.

FIG. 7. (Color online) Two-state dynamics showing P,(f) in two systems
having memory: The system gets trapped in state A for four cycles [light
dashed line, Eq. (4.10)] or is trapped with an exponential memory decay
[dark dashed line, Eq. (4.12)], both compared to simple Markovian relax-
ation (solid line).

D. Memory effects

The Caliber approach also allows us to treat dynamics
that is non-Markovian and involves memory effects. To ac-
count for the time history, we can make the substitution’

]

- knPn(t) e f dt,Kn(t,)Pn(t_ t,)
0

(4.9)

in master Eq. (3.3), where K, () (n=A,B) is the memory
function that accounts for the non-Markovian behavior of the
system. A common form is K, (t)=c,e~"™, where 7 represents
the memory time.

There are different ways to treat memory effects in the
Caliber formulation. First, consider the memory function

Kn(t) = kna(t - tn)’ (4 10)

which describes a system that gets trapped in state n=A,B
for t, time steps before it can exit. For this simple case, we
again get the dynamical partition function (2.3) but aug-
mented with the additional conditions that N,,;=t; and
Nypj=tp. Figure 7 shows the Caliber prediction for 74=1p
=4. Starting in state A at r=0, we obtain P4(¢)=1 for r=4 by
construction. For longer times, P4(¢) looks similar to the
Markovian case, although the system needs to wait each time
it arrives at state A or B for at least four time steps.

Let us now consider the case that there are only first-
neighbor effects in time. Hence, we need to go beyond P4(¢)
and Pg(f) and consider the joint probabilities: Py,(7)
=P(A,t|A,1—Ar) that the system is in state A at time ¢ given
that it was in state A at time t—At; P,g(1)=P(A,t|B,t—Ar)
that the system is in state A at time ¢ given that it was in state
B at time t—Ar; etc. The only modification required of the
simpler Caliber treatment above is now the need for a larger
transition matrix G:
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PAA
N PAB >
P(r) = — GNP
PBA
PBB

Yaaa  Yaab 0 0 N PAA

1 0 0 Yaa Yaww Pagp @.11)

Yvaa  Ybab 0 0 P BA
0 O Yoba Voro Pgp

where v, denotes the transition probability to state j from i,
given that the system was in state k before. Instead of four
numbers N4, Ng, N, Np, to characterize the occurrences of
the four transition probabilities v,,, V.p» Vba» Yop @lOng a path
of the Markovian two-state system, we now need eight sta-
tistical weights. As in Eq. (2.6), each column of transition
matrix G in Eq. (4.11) sums up to one. In general, to treat
longer memory processes, Caliber simply requires increas-
ingly large G matrices, and additional statistical weights that
characterize those variations.

As an example, Fig. 7 shows a memory process that
combines trapping and exponential decay. Here, we take

K,(1) =k, 0@t —1,)e )™ (4.12)

with t,=7,=4. The calculation requires the construction of a
G matrix according to Eq. (4.11) including M =4 memory
steps. Again we find that the population P, () gets stuck in
state A for r=4. For longer times, however, the combination
of trapping and exponentially decaying memory function re-
sults in an oscillatory decay of P4(¢), until equilibrium is
reached.

V. CONCLUSIONS

We have described the Maximum Caliber approach to
nonequilibrium statistical mechanics, applied to a simple dy-
namical two-state system, A<« B. In this approach, experi-
mentally observable average rates are taken as input to de-
termine microscopic dynamical statistical weight quantities.
This is done using a dynamical partition function, Qg4, which
is a sum over microscopic paths, resembling the way that
equilibrium partition functions are sums over microstates.
Caliber is quite general: It gives both the time evolution of
density- or population-based quantities, as master equations
do, but it also gives trajectory quantities, as Langevin models
do. Analytical Langevin models require assumptions about
the nature of noise distributions and are typically limited to
linear dynamics. In contrast, Caliber gives a deeper founda-
tion from which those noise distributions can be derived and
is not limited to linear systems. Also, in principle, Caliber is
not limited to applications near equilibrium.

While this work has been restricted to two-state dynam-
ics, several generalizations of the Caliber formulation are
obvious. First, we have shown here that Caliber can readily
treat more complex dynamics, for example, in which the
energy landscape itself varies in time or involving non-
Markovian memory. Hence, we can also describe nonequi-
librium situations with a persisting external perturbation.
Second, it is straightforward to extend the theory to a general
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N-state system, simply by increasing the dimensionality of
the G matrix. In a similar vein, standard diffusion or random
walk problems can be expressed through a G matrix and
subsequently treated by Caliber. Finally, we can generalize
from a discrete state space (e.g., states A and B) to a con-
tinuous state space (e.g., position space x). We obtain for the
continuous time evolution of a continuous state variables x(¢)
the path probability p[x(r)] as a functional of the path x(),
and the dynamical partition function is given by the func-
tional integral® Qu(r) = oplx(7)]dx(7), which sums up all
continuous paths x(z) that start from x(0).

One of the main motivations for the Caliber approach is
that it can treat single-molecule or few-particle systems,
where it is of interest to know the dynamical distributions
over trajectories. Also, in the same way that the MaxEnt
method has found applications beyond equilibrium statistical
mechanics, in signal and image processing applications, we
believe that Maximum Caliber may be similarly useful for
the analysis of dynamical data.
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APPENDIX A: ANALYTICAL RESULTS
FOR THE TWO-STATE PROBLEM

We wish to derive analytic expressions for the first mo-
ments of the distributions P(Ng,1) [Eq. (2.17)] and P(N,,1)
[Eq. (2.18)], where Ng/N is the part of the time the system
spends in state B and N,, denotes the number of switches
from state B to state A. To this end, we diagonalize transition
matrix G given in Eq. (2.5) in order to obtain a closed ex-
pression of the dynamical partition function Qq in Eq. (2.4).
We denote the eigenvalues of G by A; (larger) and \,
(smaller) and the corresponding eigenvectors as (e,,ep)
and (e,,,e,). Thus, upon inserting the complete set we can
write Q4 of Eq. (2.4) as

Qq(t=NA1)

ool ol
0D e )}

€
€2b 0
=(ea+erpe Ny + (€2, + €3p)er N5 (A1)

In the limit of long times, we can approximate Eq. (A1) as

In Qd(t:NAt) =NIn )\] N (A2)
Yaa+ Yoo |
A=\ = R 2y 5\/(7aa = Yp)* + 4Ypa Yaps (A3)

that is, the partition function Q4 depends only on the largest
eigenvalue for r— . We note that this approximation of the
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equilibrium partition function is equivalent to the transfer
matrix method, which is usually employed to solve Ising
models.”” The corresponding eigenvector (e;,,e;,) can be
written as

ela()\ - 7aa) =C1pYab- (A4)

Therefore, we can express the mean flows in terms of vy,
Yobr Yabs A0 Yp, aS

dIn Q dln A

(Npa) = g =~ : (A5)
d1n 7y, d1n 7y,
d1n Q dln\

(Nap) = ? =~ : (A6)
d1n vy, d1n vy,
dlnQ dln\

(Nua) = L = : (A7)
dln vy, d1n vy,
d1n Q dln\

(Nyp) = C=N . (A8)
d 1n 7y, d1n 7y,

With (N,)=(N,,)+{N,,) and (Ng)=(N,;,)+{N,,), we obtain
explicit expressions for the flows at #— ce:

(Na) ) (Ng) _
N Yab t ’Yba’ N

_ <NA> _ Yoa
N Yoat Yab

1 . (A9)

<Nab> - <Nba> - YabYba
N N Yabt Vba

(A10)

To derive similar results for the second moments, we use Eq.
(2.3) to derive the expressions

(Np=(Ng)*  #InQy  #InQy
N om0 ain(y,)?
M, (A11)
d1n y 9 In 7y,
2 2
(Np)) = (Npo)> 8 In Qy (A12)

N - d (hl yab)z .
Using the same strategy as described above, we then obtain

(ND =N 2% Ya YoaYab

= - , (A13)
N (7bu + ’Yub):i (')/ba + 7ub)2
(Vo)) = Not’ _ VoaYa | Yab* You _YouYar
N Yoat Yab (’Yba + 7ab)2 Yoat Yab
(A14)

Similarly, the third moments can be calculated by taking the
appropriate derivatives of the partition sum. Here we report
the third moment of the stochastic variable N,,,

Maximum Caliber: A variational approach applied to two-state dynamics
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Yab'Yoa

YabYba
(Npg = (Npa)))* = -
ba b Yab t Yoa (Yczb + Yba)z
’%
-6 yzbylia ﬁ)a‘yab
Var+ )~ Voat+ Ya)’
3 3
+6 y?lb%a nbyZa
(Yab + ch¢)4 (yab + 7170)5

(A15)

APPENDIX B: NOISE DISTRIBUTION
OF THE CHEMICAL LANGEVIN MODEL

Consider a single time step, Az=1. In order to calculate
the moments of Langevin noise (3.11), we first evaluate the
distribution P(m,n) defined in Eq. (3.12). In leading order,
only jumps with m=0, = 1 are considered, which leads to

P(m,n) = P,(1)

Y Y, if m=n—1,
X [')/c:a’)/lz)_n+n(M_n)7ba’}/’a;1 bb_n_IYah]’ if m=n,
(M - I’l) ’Yab’}/;a’}/bvi_n_l’

if m=n+1,
(B1)

where P,(r) is given by Eq. (3.6). Using v,.=1=Ypu» Vi
=1= Y Voa=kas Yar=Fkp» and expanding to first order in k,
and k;,, we obtain

nk,, if m=n-1,
P(m,n) = P,(1)) (1 —nk,— (M - n)k,),
(M— i’l)kb,

if m=n,
if m=n+1.

(B2)

Insertion in Eq. (3.11) gives for the second moment of F(z)
(F(07) = 2 P (0){(n(k, + k) = Mk, = 1)’k

+ (n(k, + k,) = Mky)*(1 — nk, — Mk, + nky,)
+ (nk, + ky) = Mk, + 1)2(M = n)ky}. (B3)

Using Pn(t)=(A:)P/’§(l —P,)M" this simplifies to

(F(1)*) = ((Mky, — nky, + nk,)) = ((Mk; — nk, — nk;)*)
=M (k P, +k,Pp). (B4)

In the last line we used that (n)=MP, and {(n*)=MP,Py
+M2Pf‘ and kept only terms to first order in k, and k. Since
Py(0)=k;/(k,+k,)=1—Pp(), we obtain at long times

oy _ MKk,
(F(e) >_—ka+kb . (B5)

In complete analogy to the above derivation, we can also
calculate higher moments of F(r) from Eq. (B2). For ex-
ample, the third moment reads
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(F(1)*) = ((n(ky + ky) = Mk, + 1)*((M = n)k,))
+{(n(ky + ky) = My, = 1) (nky)) + {(n(ky + ky)
- Mk,)*(1 = nk, — (M = n)ky)).
In leading order we then obtain
(F(1)*) ={(M = )Yk, = {myky = M(P(1)k, = Pa(Dk,),
(B6)

which vanishes in the limit of long times

(F(e0)*) = M(Py()ky = P5(0)k,) = 0. (B7)
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