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Vitamin E is an important natural antioxidant, and its most common and biologically active form is α-tocopherol. In
addition to this, specific regulatory effects of vitamin E have been revealing. The body exerts a certain effort to regulate
its tissue levels with specific tocopherol transport proteins and membrane receptors. Antiproliferative and protein kinase
C-supressing effects of alpha-tocopherol have been previously demonstrated, which have not been mimicked by beta-
tocopherol or probucol. Protein kinase C promises to be an important area of interest in the means of glaucoma and
cataractogenesis. It has been shown in different models that retinal vasculer dysfunction due to hyperglycemia could be
prevented by alpha-tocopherol via the diachylglycerol-protein kinase C pathway. Glutamate transporter activity has been
shown to be modulated by protein kinase C. This pathway is also important in intraocular pressure-lowering effects of
prostaglandin and its analogs in glaucoma therapy. Filtran surgery became another possible area of usage of alpha-
tocopherol since its antiproliferative effect has been demonstrated in human Tenon's capsule fibroblasts. Prevention of
posterior capsule opacification is another area for future studies. It is evident that when correct and safe modulation is the
objective, alpha-tocopherol merits a concern beyond its mere antioxidant properties.

Vitamin E is a natural, highly tolerable and cost effective
molecule. This generic term is used for tocopherol and
tocotrienols consisting of two rings with a hydrocarbon chain.
Both structures are similar, although the tocotrienol structure
has double bonds on the isoprenoid units. Natural vitamin Es
are known as α, β, γ, and δ according to the methyl or proton
groups that are bound to their Benzene rings, and the most
common and biologically active form is alpha-tocopherol
(Figure 1) [1]. When produced synthetically, it is composed
of eight stereoisomers in which RRR-α-tocopherol is the most
biologically active form [2].

While the recommended daily allowance (RDA) for
vitamin E is 8 mg (12 IU) for females and 10 mg (15 IU) for
males, Packer [3] recommends up to 1,000–1,200 IU intake
of vitamin E in some pathologies including cataract. The
principal reserve of natural vitamin E is vegetable oil where
its function is to protect tissue from oxidative demage. It is a
liposoluble molecule, and, therefore, after dietary intake,
vitamin E is not only absorbed easily from the intestinal lumen
but is also dispersed between lipids and proteins in cell
membranes. Vitamin E molecules can interrupt free radical
chain reactions by capturing the free radical. This imparts to
them their antioxidant properties. The free hydroxyl group on
the aromatic ring is responsible for the antioxidant properties.
The hydrogen from this group is donated to the free radical,
resulting in a relatively stable free radical form of vitamin E
(Figure 2) [2].
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Regarding the pharmacodynamics of tocopherols, it has
been reported in a study conducted in human eyes that the
retinal levels of vitamin E are higher than those of the choroid
or vitreous and is correlated with serum levels of vitamin E
[4]. It is known that vitamin E can only reach its theraupetic
levels in aqueous humor and lens via topical application and
is accumulated within the retina when applied via the oral or
parenteral route [5]. Moreover, it is reported in animal studies
that when 100 mg/kg α-tocopherol is applied via oral or
parenteral route, it causes a similar threefold to sixfold
increase to its serum levels, though the retinal and vitreal
increases are somewhat slower via the oral route [6].

Based on the common knowledge summarized above,
vitamin E is occasionally prescribed in ophthalmology clinics.
This article provides an overview of the existing literature
regarding other effects of this molecule that illuminates the
potential usage of this drug as an effective, specific
therapeutic tool in several ocular pathologies.

DISCUSSION
Beyond the nonspecific antioxidant effect: Specific effects of
Vitamin E, which includes gene regulation, have been
revealing, and non-antioxidant properties of tocopherols are
current topics of interest [7]. In many in vivo and in vitro
studies, the antiproliferative effect vitamin E has been shown
[8-10].

Protein kinase C (PKC) is one of the pathways used by
α-tocopherol [11]. Sharma et al. [12] reported that tocopherol
inhibits not only free radical formation but also tyrosine kinase
activity in Tissue Plasminogen Activator (TPA)-induced
primary human fibroblasts or HL-60 cells. Results of many
published in vivo and in vitro collaborative studies illuminate
the antiproliferative effect of α-tocopherol via the PKC
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pathway in the vascular smooth muscle cell model, and they
have been summarized by Ozer et al. [13]. In smooth muscle
cell cultures, neither the antiproliferative nor the PKC-
supressing effects of α-tocopherol have been shown by its
isomer, β-tocopherol, or another antioxidant, probucol. It is
also shown that, 3H Timidin incorporations and PKC activities
gradually decline as the α-tocopherol level in the medium
rises. On the other hand, linkage of Activator Protein (AP-1)
to DNA has been supressed by the application of α-tocopherol
in para-methoxyamphetamine (PMA)-stimulated cells, but
this effect has not seen in phase G0 cells. These findings are
also succesfully supported by rabbit studies in the
atherosclerosis model.

The existence of sensitive mechanisms to regulate tissue
levels is an important and distinctive feature of vitamin E
[10,14]. The tocopherol transfer protein, responsible for the
intracellular transportation of vitamin E, has been shown and
described in cell cultures [15], animals [16-19], and various
human tissues [20-22]. Furthermore, discovery of α-
tocopherol specific membrane receptors [23] and cytosolic
transfer proteins strengthen the thesis that vitamin E possesses

properties beyond a mere antioxidant function [10].
Specifically for the eye, scavenger receptor class B type I at
the inner blood-retinal barrier has been described in vitro,
which is responsible for α-tocopherol uptake from the
circulating blood and plays a key role in maintaining α-
tocopherol in the neural retina [24].
Clinical importance: Protective effects of vitamin E have
been shown in almost all eye tissues with in clinical, in vitro,
and in vivo studies. For instance, vitamin E is known to double
the rabbit corneal endothelial cell survival time [25] and
enhances retinal cell survival via its effect on mitochondrial
activity [26]. Also, α-tocopherol can protect the retina from
light injury for up to 24 h of exposure [27]. Vitamin E plays
an important prophylactic role against several serious light-
induced diseases and conditions of the eye (cataractogenesis
and retinal photodeterioration) and skin (erythrocyte
photohemolysis, photoerythema, photoaging, and
photocarcinogenesis) that are mediated by photooxidative
damage to cell membranes [28]. These findings do not have
to be explained with antioxidant mechanisms, especially for
α-tocopherol. As Azzi [20] stated: “A number of lines of

Figure 1. Molecular structure of α-tocopherol. Shown is the molecular structure of α-tocopherol, consisting of two benzene rings with a
hydrocarbon chain

Figure 2. Antioxidant mechanism of tocopherols. LH: Lipid molecule, LOOH: Lipid peroxide, LOO+: Lipid Peroxide radical, a-Toc-OH: α-
Tocopherol, a-Toc-O+: α-Tocopherol radical, GSH: Glutathione, Vitamin C+: Vitamin C radical, GS+: Glutathione radical, GSSG: Oxidized
glutathione, NADPH: Reduced nicotinamide adenine dinucleotide phosphate, NADP+: Oxidized nicotinamide adenine dinucleotide
phosphate.
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evidence, evolutionary, genetic, biochemical, and functional,
have indicated that the natural function of α-tocopherol is that
of cell signaling. Such a property is not shared by any other
antioxidant molecule.”.

An association between α-tocopherol and some ocular
pathologies has also been demonstrated previously. For
example, retinitis pigmentosa is shown to be related to an
H101Q mutation in the α-tocopherol transfer protein gene
[29]. The combination of cryotherapy with vitamin E
prophylaxis appeared to decrease the severity and sequelae of
threshold retinopathy of prematurity [30]. Average levels of
α-tocopherol were shown to be lower in people with exudative
macular degeneration [31].

Developments in the understanding of these molecules
have increased the attention paid to properties beyond their
antioxidant function, including antiproliferative effects.
Retinal pigment epithelium cells migrating through the
damaged retina play an important role in the pathogenesis of
proliferative vitreoretinopathy. Majon et al. [32] found that
α-tocopherol inhibits proliferation of human retina pigment
epithelium (RPE) cells in culture without exerting cytotoxic
effects. Maximal inhibition was achieved with 100 μM α-
tocopherol. It has been found that α-tocopherol succinate
inhibits proliferation and migration of retinal pigment
epithelial cells in vitro [33]. α-Tocopherol and α-tocopheryl
acid succinate in saline solution presented a retardation of
proliferative vitreoretinopathy in retinal detachments [34].

The protective function of α-tocopherol against the
process of cataractogenesis in humans is reported in
epidemiologic studies [35]. In the Beaver Dam Eye Study, it
is shown that age-related lens opacities in humans are linked
inversely to vitamin E status [36].

Glaucoma is another possible area of usage for vitamin
E. Failure in glaucoma surgery is primarily due to fibrocellular
scar formation, derived from Tenon's capsule fibroblasts. It
has been found that d-α-tocopherol (vitamin E) was able to
inhibit proliferation of in vitro human Tenon's capsule
fibroblasts [37]. Following this, filtran surgery became
another model in which an antiproliferative effect has been
shown in vivo. α-Tocopherol derivatives showed
antiproliferative properties in the experimental models of
filtering surgery and showed better intraocular pressure (IOP)
control and bleb survival [38,39]. Cell culture studies further
illuminated this effect, and comparative studies with other
antimetabolites have been performed [40].

On the other hand, dual effects of α-tocopherol and PKC
on the eye are of interest in the means of glaucoma therapy.
Kunisaki et al. in 1995 [41] and Lee at al. in 1999 [42] showed
in different models that retinal vasculer dysfunction due to
hyperglycemia could be prevented by α-tocopherol via a
diachylglycerol-PKC pathway. In a study performed by Engin
et al. [43], 60 glaucomatous eyes from 30 patients were
divided into three groups. While group A patients recieved no

tocopherol, group B and group C patients were given 300 and
600 mg/day of oral α-tocopheril acetate, respectively. Visual
fields and retinal blood flows of ophthalmic and posterior
ciliary arteries with Doppler ultrasonography were evaluated
in the beginning of the study, as well 6 and 12 months after
treatment. Compared with group A, differences of pulsatilty
and resistivity indexes of ophthalmic and posterior ciliary
arteries were lower in groups B and C 6 and 12 months after
treatment. Posterior ciliary artery differences of resistivity
indexes in the 6th and 12th months and ophthalmic artery
differences of pulsatilty indexes reductions in the sixth month
were statistically significant. Differences of mean deviations
with visual fields in groups B and C were significantly lower
than that of group A.
Focus on protein kinase C: Among other signaling pathways
that have been shown to be affected by α-tocopherol, PKC
promises to be an important area of interest. It is a widespread
serin/threonine kinase responsible for transduction of the
signals taken from the G protein coupled, tyrosine kinase
receptors, and nonreceptor tyrosine kinases to the nucleus via
phospholipid hydrolysis [44]. c-Jun, c-fos, and c-myc are
reported to be the transcription factors that have been activated
[45]. Although AP-1 is the mostly considered family
[46-48], nuclear factor kappa-light-chain-enhancer of
activated B cells (NF-κB) [49] and Transcriptional enhance
factor-1 (TEF-1) [50] are among other transcription factors
known to be affected by PKC.

Beside its role in retinal vasoregulation mentioned above,
the PKC pathway boasts a decisive factor in the pathogenesis
for and on the clinical course of glaucoma. Glaucoma is one
of the neurodegenerative conditions arising from a
compromised glutamate homeostasis. Glutamate transporter
activity has been shown to be modulated by PKC [51]. PKC
have been shown to affect nonvascular smooth muscle cells
such as the iris sphincter [52]. Wiederholt et al. [53] have
reported that various pathways and ion channels affect PKC
isomers producing different responses in eye nonvascular
smooth muscle cells, but in general, PKC inhibitors relax
trabecular meshwork while leaving the ciliary muscle
comparatively unaffected.

Alexander and Acott [54] have reported that the PKC
pathway is crucial in glaucoma therapy for the intraocular
pressure-lowering effects of Prostaglandin F 2α (PGF2α) and
its analog, latanoprost. The cytokine, Tumor Necrosis Factor
α (TNFα), is a strong modulator of trabecular meshwork
matrix metalloproteinase (MMP) and tissue inhibitor (TIMP)
expressions. TNFα treatment triggered some PKC isoform
translocations. Exposure of trabecular cells to TNFα for 72 h
differentially downregulated several PKC isoforms.
Treatment with a phorbol mitogen that stimulates most PKC
isoforms produced strong increases in these MMPs. Effects
of TNFα on MMP and TIMP expressions were completely
blocked by only one PKC inhibitor.
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Further studies were conducted to identify signal-
transduction pathways involved. In a study performed
concerning cat iris sphincter smooth muscle cells, the relaxing
effects of PGF2α and carbachol have been shown to be
produced by mitogen activated protein (MAP) kinases in a
PKC-dependent manner [55]. On the other hand, PKC
activators strongly stimulate the phosphorylation of AQP4
(aquaporin in the ciliary body) and inhibit AQP4 activity in a
dose-dependent manner [56].

The prevention of posterior capsule opacification (PCO)
is another area for future studies. Despite recent advances in
cataract extraction, lens epithelial cells remaining in the
capsule proliferate and eventually cause opacification within
days of surgery [57]. Although inhibition of lens epithelial
cells can be observed with various agents, toxic side effects
to the ciliary body, cornea epithelium, and iris limit their use
in human subjects [58-60]. PCO is a process mainly involving
proliferation and migration of the lens epithelium [61], and
PKC is a signaling pathway that is known to result in major
effects on this process.

PKC activity exists in the cytosol and particulate fractions
of bovine lens epithelial cells [62], and its role in both cell
differentiation [63] and proliferation [64] have been shown in
rabbit lens epithelial cells. Furthermore, it is shown in lens
epithelial cells that, 12(S)HETE-dependent activation of
PKCα and βII acts in concert with other epidermal growth
factor (EGF)-dependent signals to induce c-fos mRNA and
that this is independent of the extracellular signal-regulated
kinases 1/2 (Erk1/2) pathway [65]. The PKC dependent
inositol signaling system also regulates K+ fluxes in these
highly proliferative lens epithelial cells primarily by affecting
the rate via a Na+-Cl--K+ cotransport mechanism [66]. In
addition, PKCγ has a direct or indirect inhibitory effect on gap
junction communication in lens epithelial cells [67,68] via
phosphorylation of Connexin43 on serine and this causes
disassembly and loss of gap junction from the cell surface
[69]. PKC also plays a role in cataractogenesis by
phosphorylating proteins from calf lens fiber membranes
[70] and activating neutral proteases [71]. The PKC-inhibiting
effect of vitamin E is known to exist in epithelial cells [72].
Intramuscular vitamin E supplementation is sufficient in
protecting histopathologic changes in the lens epithelium
[73].

Intracellular functions of vitamin E -beyond its general
antioxidant role was an interesting issue even in 1946 [20].
Today, molecular biology is an important discipline to solve
curent challenges in ophthalmology. It is already known that
certain isomers of vitamin E exert specific effects, and this
suggests that proper use of a correctly selected type of vitamin
E is likely to provide a significant improvement in the
prevention and treatment of many ocular pathologies.
Numerous drugs with the potential to manipulate intracellular
signal transmission pathways are still being tried. However,

both the variations between the receptor and ion-chanel
subtypes and the fact that a certain blocker binds to various
regions in a condition-dependent manner preclude the
production of therapeutics that will bind correctly to the
appropriate location. Also, side effects of those substances
gravely limit their clinical use. Currently, it is evident that
regarding correct and safe intracellular signal modulation, α-
tocopherol, a natural, safe, and cost effective drug, merits a
careful look beyond its mere antioxidant properties.
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