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Abstract

Background: A variety of N-glycans attached to protein are known to involve in many important biological functions.
Endoplasmic reticulum (ER) and Golgi localized enzymes are responsible to this template-independent glycan synthesis
resulting glycoforms at each asparagine residues. The regulation mechanism such glycan synthesis remains largely
unknown.

Methodology/Principal Findings: In order to investigate the relationship between glycan structure and protein
conformation, we analyzed a glycoprotein of Drosophila melanogaster, chaoptin (Chp), which is localized in photoreceptor
cells and is bound to the cell membrane via a glycosylphosphatidylinositol anchor. Detailed analysis based on mass
spectrometry revealed the presence of 13 N-glycosylation sites and the composition of the glycoform at each site. The
synthetic pathway of glycans was speculated from the observed glycan structures and the composition at each N-
glycosylation site, where the presence of novel routes were suggested. The distribution of glycoforms on a Chp polypeptide
suggested that various processing enzymes act on the exterior of Chp in the Golgi apparatus, although virtually no enzyme
can gain access to the interior of the horseshoe-shaped scaffold, hence explaining the presence of longer glycans within the
interior. Furthermore, analysis of Chp from a mutant (RNAi against dolichyl-phosphate a-D-mannosyltransferase), which
affects N-glycan synthesis in the ER, revealed that truncated glycan structures were processed. As a result, the distribution of
glycoforms was affected for the high-mannose-type glycans only, whereas other types of glycans remained similar to those
observed in the control and wild-type.

Conclusions/Significance: These results indicate that glycan processing depends largely on the backbone structure of the
parent polypeptide. The information we obtained can be applied to other members of the LRR family of proteins.
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Introduction

Many proteins exposed on the surface of cells are modified with

various types of oligosaccharide. For example, N-linked oligosac-

charides are attached to the asparagine residues in the consensus

sequence NXS/T, where X can be any amino acid other than

proline. It is known that a variety of oligosaccharides are present at

certain asparagine residues giving rise to different glycoforms; this

consequently makes the structural and biological investigation

of these molecules more difficult. In some cases, the NXS/T

sequences at different sites of a single polypeptide are modified

with different types of N-linked oligosaccharide, such as high-

mannose, complex, and hybrid types, in a site-specific manner.

However, it remains largely unknown how this site-specific

modification is regulated within the Golgi apparatus.

In order to investigate these processes, we selected chaoptin

(Chp), a large Drosophila glycoprotein containing 16 potential

N-linked glycosylation sites, as a model protein [1]. Chp is

required for the development and maintenance of photoreceptor

cells, probably through its adhesive activity [2–4]. It is anchored to

the extracellular surface of the plasma membrane via covalent

attachment to a glycosylphosphatidylinositol (GPI) anchor [5]. On

the basis of the available genetic information (Swiss-Prot/

TrFMBL database: P12024), the deduced molecular mass for

the 1,286 amino acids of Chp is 148,550 Da. Chp is a member of

the leucine-rich repeat (LRR) (an average length of 24 amino

acids) family of proteins and consists of 38 LRRs that constitute

approximately 90% of the entire polypeptide. Proteins belonging

to the LRR family are found in yeast, Drosophila, and humans

[1,6,7], and generally fold into a non-globular horseshoe shape.

Eleven-residue segments, LxxLxLxxN/CxL (where X can be any

amino acid and L can also be replaced by V, I, or F),

corresponding to the b-strand and adjacent loop regions are

conserved in Chp and other LRR proteins [8,9]. Thus, Chp is
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thought to have a folded configuration similar to that of other

reported LRR family members [1,10].

The potential N-glycosylation sites are readily identified within

the Chp consensus sequence. The heavy glycosylation of Chp has

been demonstrated by glycosidase treatment that dramatically

reduced the apparent molecular mass of Chp (160 kDa), as

estimated by sodium dodecyl sulfate-polyacrylamide gel electro-

phoresis. The involvement of N-glycans in intercellular recogni-

tion and formation of the eye structure has previously been

suggested; however, the role of individual N-glycans at each site is

not known [11]. Therefore, it is essential to reveal the structure of

glycans at individual glycosylation sites, since the glycan at a

particular site or a specific glycan structure might have a crucial

function [12–16].

Despite interest in the nature of adhesion capabilities, the

elucidation of glycan structure, the glycoforms, and the position of

glycan attachment remains a challenging task [17]. Mass

spectrometry (MS)-based methods are considered to be advanta-

geous in this respect, owing to their high sensitivity and lower

sample consumption [18–21]. In order to clarify the role of glycan

structure in glycoproteins in general, a methodology capable of

elucidating the structure of glycoproteins of a relatively large size

(greater than 100 kDa) is essential. To this end, we decided to

analyze the structure of Chp in order to resolve its glycan

components. It is envisaged that the information thus obtained will

be useful in functional investigations based on mass spectrometry.

Here, for the first time, we describe a detailed glycoform at each

N-glycosylation site of Chp, an attainment achieved using a

technique based on matrix-assisted laser desorption ionization

time-of-flight mass spectrometry (MALDI-TOF-MS). The results

revealed that high-mannose-type glycans do not co-exist with

shorter glycans consisting of extra N-acetylgulcosamine (GlcNAc)

and/or fucose (Fuc) residues at the same site, thereby giving rise to

different glycoforms, and suggesting the existence of a secondary

structure-dependent regulatory mechanism for glycan synthesis.

To the best of our knowledge, this is the first demonstration of a

relationship between protein structure and glycan processing.

Having performed the Chp analysis, a knockdown experiment

based on RNA interference (RNAi) against dolichyl-phosphate a-

D-mannosyltransferase (Dol-P-ManTase), defects of which are

related to carbohydrate-deficient glycoprotein syndrome (CDGS)

type IV [22], was carried out. The knockdown experiment failed

to yield any detectable eye phenotypes, suggesting that either a

‘‘sufficient amount’’ of wild-type equivalent Chp was synthesized

and correctly expressed or that the affected part of the glycans was

not essential for adhesion. However, the glycan analysis revealed

similar glycan abundance at individual sites, except for the

truncated glycan structure in the high-mannose-type glycoform,

suggesting that glycan processing in the Golgi apparatus is

restricted by protein conformation.

Results

Analysis Flow of Chp Glycoforms
The protocol followed in the current investigation is summa-

rized in Figure 1. Briefly, Chp obtained by affinity chromatogra-

phy using an anti-Chp antibody (MAb24B10) was digested by

trypsin, dephosphorylated, and then guanidinated. The mixture

thus obtained, which contained both peptides and glycopeptides,

was passed through a cellulose cartridge column in order to enrich

the glycopeptides [23]. The enriched glycopeptide fractions were

used in the subsequent analyses. A portion of the crude

glycopeptide was further treated with PNGase F to determine

the sites of N-linked glycan attachment. This step, which involves

the conversion of a glycosylated asparagine residue to aspartate,

was necessary for a rapid assessment of glycan presence and

location.

Figure 1. Flow chart of the sequence analysis of a glycoprotein.
The purified glycoprotein is denatured and alkylated prior to tryptic
digestion. The digests are subsequently subjected to guanidination in
order to overcome the problem of ion suppression caused by peptides
lacking arginines. Following the enrichment of glycopeptides using a
cellulose cartridge column, the guanidinated tryptic digests were
divided into 2 portions. One portion was subjected to PNGase F
treatment followed by reverse-phase cartridge purification to deter-
mine the sites of N-glycosylation. The fraction containing multiple
potential N-glycosylation sites was further treated with endoproteinase
AspN. The other portion was fractionated by reverse-phase HPLC
followed by MS and MS/MS analysis to obtain the glycan sequence.
doi:10.1371/journal.pone.0005434.g001

Glycoform of Chaptin
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Mass spectrometric analysis of the tryptic digests of a

glycoprotein with multiple glycosylation sites is complicated.

Furthermore, the direct analysis of tryptic digests of glycoproteins

is often unproductive since the presence of heterogeneity (glyco-

forms) at each glycosylation site means that only small amounts of

individual glycopeptides are present. The analytical difficulty is

compounded by the problem of ion suppression that arises from

the presence of non-glycosylated peptides in a fraction. Hence, in

the present investigation, the major portion of the glycopeptide

mixture was further purified by HPLC and individual fractions

were analyzed by MS. We decided to use the combination of a

TOF mass analyzer, which is advantageous for detecting relatively

large ion species, and MALDI as the ionization method, since this

permits the ionization of trace amounts.

Determination of N-Glycosylation Sites
The tryptic peptide sequences containing potential N-glycosyl-

ation sites are listed in Table 1. Twelve out of 16 potential N-

linked glycosylation sites with expected m/z values were detected

from MS analysis of the peptide fractions obtained by PNGase F

treatment of enriched glycopeptides (Figure 1). From a comparison

of the expected m/z values calculated for a peptide with known

sequences and the observed values, we were able to determine the

sites of N-glycan attachment within a margin of error.

Peptide modifications are often observed in mass spectra and

provide useful information for the annotation of amino acid

sequences. Methionines in tryptic peptides (see Nos. 1, 6, 7, 11,

and 14 in Table 1) were oxidized, and thus ions such as

[M(Met)+1(H)+16(O)]+ and [M(Met)+1(H)+16(O)264(CH3-

SOH)]+ were observed as well as a protonated molecule,

[M(Met)+1(H)]+. Further, glutamine at the N terminus (see

No. 7 in Table 1) was partially observed as a pyroglutamate

[Q(Gln)+1(H)217(NH3)]+ [24] (Figure S1). A sequence for the

peptide I711–R728 (No. 9) was obtained even though there was no

report that trypsin cleaves the linkage between arginine and

proline for a sequence of …FRP…

Among the peptides that were confirmed to be N-glycosylated,

peptide Y334–K364 (No. 4) had 2 potential N-glycosylation sites

(N339 and N361). It appeared from the MS analysis of N-

glycosylation sites that an increase in m/z value by only 1 amu

could not be reliably made for the analysis of ions over m/z 3000.

As an alternative, we decided to treat the peptides obtained by

PNGase F treatment with AspN endoproteinase. AspN cleaves the

N terminus of aspartate (D), and therefore should produce a new

peptide terminating with D instead of N. As a result, the peptide

YCGLTN339ISPVAFDSLVNSLQILDLSGNN361LTK yielded

D361LTK and YCGLTN339ISPVAF in which only N361 was

converted to D, indicating that this particular position in the

peptide was N-glycosylated (Figure S2).

With regard to positions N422 and N1171, it was not possible to

ascertain the presence or absence of a glycan since glycanase is

unable to hydrolyze glycans when the N-terminal asparagine is

glycosylated [25]. Therefore, we performed MS/MS analysis of

the RP-HPLC fractions (Figure 1) in order to confirm the presence

Table 1. Masses of Tryptic Peptides from Chaoptin Following PNGase F Treatment.

Peptide
number Tryptic fragment

Sequence containing
N-glycosylation site

Average
mass of M+H+ Detected

M+H+ (m/z)
M+16+H+

(m/z)a
M-48+H+

(m/z)b
M-17+H+

(m/z)c

1 75–80 MVD77QSKg 749.83 750.4 766.4 702.7

2 253–273 TLDISHNVIWSLSGD267ETYEIKg 2463.68 2462.7

3 300–306 YFDTVD305R 915.97 916.6

4 334–364 YC*GLTN339ISPVAFDSLVNSLQILDLSGND361LTKg 3411.83 3410.9

5 422–425 N422MTR 521.61 n.d.

6 650–687 LEILDMAFNQLPNFNFDYFDQVGTLSNLNVD680VSHNQIR 4443.93 4442.2 4457.8 4394.6

7 688–698 QLMYD692SSWSGR 1330.45 1330.2 1346.5 1283.2 1313.7

8 711–749 ILDLSHND718ISIIHPGYFRPA EISLTHLHLGYNSLMD746TTR 4463.06 n.d.

9$ 711–728 ILDLSHND718ISIIHPGYFRd 2111.40 2111.2

10 932–946 LGLED936V#SLSTVPEIR 1628.86 1627.9

11 955–975 LGYNELPSIPQELAHD970MSNLR 2398.69 2397.6 2412.4 2349.3

12 1000–1031 LMLSGNPITSLND1012NSFDGVNEDLEMLDISNFR 3572.93 3571.8 3587.4 3524.4

13 1120–1136 LTD1122ITFSGPQFTNLNER 1954.14 1955.0

14 1143–1164 SPYLYMQLFD1152TSLQALPPNFFKg 2664.07 2662.6 2678.4 2616.1

15 1171–1177 N1171ISLDIR 830.47 n.d.

aThe observed m/z value for the oxidized Met [M(Met)+1(H)+16(O)]+.
bThe observed m/z value for the [M(Met)+1(H)+16(O)-64(CH3SOH)]+.
cThe observed m/z value for the pyroglutamate [Q(Gln)+1(H)-17(NH3)]+.
dA peptide corresponding to a sequence P729–R749 was not observed because it was removed by the purification step using the cellulose cartridge column.
D: N-glycosylation site determined by PNGase F treatment.
C*: carbamidomethyl cysteine.
Kg: guanidinated lysine.
V#: undetermined.
Underline: non-glycosylated N.
n.d.: not detected.
The sequence of 9$ is a fragment of 8.
doi:10.1371/journal.pone.0005434.t001
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of a glycan at these sites. One of the asparagine residues (N1171)

that was not initially identified as being glycosylated was

additionally established to be a site carrying an N-glycan based

on MS/MS analysis of the glycopeptide fraction. Thus, a total of

13 N-glycosylation sites were confirmed among the 16 potential

sites.

Glycoform Analysis at Each Glycosylation Site
Following separation by reverse-phase (RP) HPLC, the

glycopeptide fractions were analyzed by MALDI-TOF-MS and

MS/MS. The fractions containing glycopeptides were identified in

a chromatogram by the presence of a series of signals due to the

glycoform. The retention of glycopeptides depends on the

hydrophobicity associated with hydrophobic residues in peptides;

thus, a series of glycopeptides sharing the same peptide sequence

results in a series of peaks. Following MS, the glycopeptide peaks

were shown to differ by m/z 203 (GlcNAc, Gn), 162 [mannose

(Man), M or glucose (Glc), G], or 146 (Fuc, F). We assessed glycan

composition on the basis of the m/z values only because it is

practically impossible to determine the linkage position and

anomeric configuration based on the current setup of the MS

experiment without methylation that provides information regard-

ing linkage position. Examples of the mass spectra of glycopeptides

with different glycoforms are shown in Figure 2A and 2B. Analysis

of the glycopeptides containing N970 revealed the presence of 4

glycans that were of the pauci-mannose type (Figure 2A). The

glycoform found at N1122 consisted of high-mannose-type glycans

containing 5 to 11 hexoses (Figure 2B). We were concerned that

immature glycoproteins being synthesized in the endoplasmic

reticulum (ER) and Golgi might be analyzed together with mature

forms. However, immunostaining of photoreceptor cells using

anti-Chp antibody (24B10) revealed that the Chp was accumulat-

ed in the rhabdomeres, indicating that the majority of the glyco-

proteins we analyzed were of the mature form (Figure 2D–2F).

Drosophila N-glycans are classified into 3 types; namely, high-

mannose, pauci-mannose, and complex types. The relationship

between observed glycan structure and the site of attachment is

shown in Figure 2C, where the numbers along the horizontal axis

indicate the position of the observed N-glycosylated asparagine in

the polypeptide sequence, and the color indicates observed glycan

structures. High-mannose-type glycans were observed at 10

positions (N77, N305, N361, N680, N692, N718, N936, N1122, N1152,

and N1171). In contrast, complex-type glycans were observed at 2

positions (N267 and N1012), whereas pauci-mannose-type glycans

were observed at 5 positions (N77, N267, N305, N692, and N970).

The glycans at positions N77 and N305 contained relatively short

high-mannose-type and pauci-mannose-type glycans consisting of

only Man residues other than chitobiose, whereas the glycans at

position N692 contained a Fuc residue. The distribution of

glycoforms at each site appears to be controlled since high-

mannose-type glycans and shorter glycans that contain extra

GlcNAc and/or Fuc residues (pauci-mannose and complex types)

do not co-exist at the same site, thereby giving rise to different

glycoforms. On the basis of these observations, it would appear

that the state of the glycoform is, to a certain extent, dependent

upon its position within the peptide.

The glycan structures expected from the observed glycan

compositions are summarized in the predicted synthetic pathway

depicted in Figure 3. This confirmed the presence of most of the

reported glycan structures, although some of the important

intermediates are absent. The structures indicated in parentheses

in route a (M5Gn2RM5Gn3RM4Gn3RM3Gn3) and route b

(M3Gn3RM3Gn4RM3FGn4), which are the accepted synthetic

pathways, denote undetected glycans; these structures could exist

as intermediates, although they may be present in undetectable

amounts (see Discussion).

Glycan structures can be categorized by the processing enzymes

involved in their synthesis. GM9Gn2 (Figure S3A), which is

processed by a-glucosidase I and II (Glcase I and II) following

attachment of the oligosaccharide G3M9Gn2 to a polypeptide in

the ER, but not completely processed by Glcase II in the ER, was

found at positions N680, N936, N1122, and N1171. Glycan structures

formed by the a-mannosidase I (Manase I) reaction in the Golgi

apparatus, subsequent to the reactions of Glcase I and II in the

ER, were observed at positions N361 and N1152. High-mannose-

type glycans were also observed at positions N77, N305, and N718.

The glycans at N77 and N305 were of a pauci-mannose type,

although the glycan at N718 was of a high-mannose type only.

These glycans are thought to be the products formed by the

reactions of Manase without any subsequent reactions mediated

by N-acetylglucosaminyltransferase I (GnTase I) and fucosyltrans-

ferase (FucTase).

In contrast, the products of the sequential reactions of both

GnTase I and FucTase(s), which are classified as the complex type,

were observed at positions N267 and N1012. These glycans

contained both a-(1R3)- and a-(1R6)-linked Fuc residues. It has

been reported that a-(1R3)-linked Fuc is abundant in the neural

system [26], an observation that has been confirmed by using anti-

HRP antibody [27]. Although we confirmed the presence of the a-

(1R3)-linked Fuc, immunostaining experiments using anti-HRP

antibody indicated that the residue was not abundant in Chp [28].

In Drosophila, Fuc can be attached to the core GlcNAc by a-(1R3)

and/or (1R6) linkages [29]. Thus, the linkage position of mono-

fucosylated glycans, which are of the pauci-mannose type, in the

glycoforms at N267, N692, N970, and N1012 could not be

determined by MS (Figure S3B). The knockdown mutant analysis

of a-(1R3) FucTase or a-(1R6) FucTase, or more practically

PNGase A treatment [30], could provide more detail information,

although we may be able to determine glycan structure by

referring to the synthetic pathway [31–33].

Relationship between Protein Conformation and Glycan
Structure

In Figure 4, we present a schematic representation of Chp in

order to illustrate the relationship between glycan structure and

protein conformation based on the characteristic folding of the

LRR motif. Figure 4A shows the secondary structure of Chp

predicted by PSIPRED ver. 2.6 (http://bioinf.cs.ucl.ac.uk/

psipred/psiform.html) in which the glycan attachment sites and

glycoform contents are indicated. The polypeptide structure of

Chp is thought to be constructed of a b-strand and a-helix or to be

alternately coiled owing to the LRR motifs (Figure 4B). Although

the crystal structure of Chp is not currently available, the

conformation might be similar to that of other LRR family

proteins, e.g., the Toll-like receptor [34]. Furthermore, this

conformation was confirmed by the observation of arch-shaped

Chp molecules by atomic force microscopy (Figure 4C). The fact

that the individual molecules observed had an arch shape suggests

that the Chp folded correctly overall. This was also supported by

the localization of the glycoprotein in the rhabdomeres.

In Figure 4A, the content of color-coordinated glycan structures

are indicated as percentages estimated from the height of the

signals in the mass spectra for individual sites (also see Figure 2C).

This representation was made possible based on the fact that the

ionization tendency of glycopeptides depends mostly on the

peptide portion; thus, quasi-quantitative data analysis of a

glycopeptide can be performed [35,36]. The spectrum shown in

Figure 4A clearly indicates that high-mannose-, pauci-mannose-,

Glycoform of Chaptin
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Figure 2. Mass spectra and structural variation of the N-glycans of chaoptin. (A) Mass spectrum of a glycopeptide fraction containing
pauci-mannose-type glycans following RP-HPLC. The structures of the 4 glycans observed at N970 are shown schematically. The glycopeptide signals
are spaced by 162 amu (mannose, M) or 146 amu (fucose, F). (B) Mass spectrum of a glycoprotein fraction that contains high-mannose-type glycans in
which 7 glycans are observed at N1122. The signals spaced by 162 amu correspond to a number of mannose (M) or glucose (G) residues. (C) Observed
glycan structures at each glycosylation site are shown. The horizontal and longitudinal axes show the position of asparagine (Asn) in the polypeptide
and glycan structures, respectively. Distinctive colors are assigned to the individual glycan structures, which are used in the paper hereafter. (D) The
majority of Chp is localized in the rhabdomeres as determined by staining with anti-Chp antibody and Alexa Fluor 488-conjugated anti-mouse IgM.
TMR (tetramethylrhodamine)-phalloidin staining against F-actin. (E) A longitudinal conforcal image: same staining as in D. (F) Photorecepter cells were
stained (longitudinal image) using TMR-phalloidin and anti-KDEL antibody and Alexa-Fluor-488 conjugated anti-mouse IgG.
doi:10.1371/journal.pone.0005434.g002
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and complex-type glycans exist independently at different positions

within the Chp polypeptide.

With the exception of N77, which is not located in the LRR, the

N-glycosylation sites attached with high-mannose-type glycans are

located in the b-strand region in the interior of the arch. At other

N-glycosylation sites located outside of the b-strand, the glycans at

positions N267 and N1012 were found to be of a complex type.

Moreover, the glycans at positions N692 and N970 were found to be

of a pauci-mannose-type. These glycans are thought to be located

in either the loop or the a-helix at the exterior of the arch-shaped

Chp. These results revealed that complex- and pauci-mannose-

type glycans are located on the more exposed surface of the

protein.

Glycan Analysis of Chp from a Knockdown Mutant
The results of the glycoform analysis described above reveal not

only the structures of the glycans but also information on the

enzymes involved in their synthesis. Consequently, an analysis of

the relevant mutants could provide important insights into the

regulation of glycan synthesis. In order to confirm the quasi-

quantitative analysis of a glycoform based on the MS of mutants

and to obtain control values for analysis of the subsequent

knockdown experiments prior to interference, we initially

performed an analysis of organisms carrying green fluorescent

protein-inverted repeat (GFP-IR) as a control [37].

In addition, we analyzed Chp from an organism in which the

gene (CG10166) encoding the enzyme Dol-P-ManTase [2.4.1.83]

had been knocked down (Figure 5). Deficiency in this gene is

known to cause CDGS type IV in human. Patients with this

condition are characterized by the production of a truncated lipid-

linked oligosaccharide containing only 5 Man residues, whereas

normal individuals produce an oligosaccharide containing 9 Man

residues (Figure 5A). Although this oligosaccharide is faithfully

transferred to a protein, subsequent oligosaccharide processing is

abnormal in the hybrid-type glycans [22]. Dol-P-ManTase

transfers a Man residue from GDP-Man to dolichyl-phosphate,

and the resulting product, dolichyl-phosphate a-D-mannose (Dol-

P-Man), is used as a substrate in the synthesis of M9Gn2PPDol

from M5Gn2PPDol (Figure 5A). Dol-P-Man is also used as a

substrate in the synthesis of the GPI anchor. Thus, the knockdown

of Dol-P-ManTase may disrupt the synthesis of both N-glycan and

the GPI anchor owing to the resulting shortage of Dol-P-Man.

Since Chp is a glycoprotein linked to a GPI anchor, the correct

expression of Chp at the plasma membrane may rely on the

Figure 3. Schematic representation of N-glycan processing in Drosophila. The N-glycan synthetic pathway in wild-type Drosophila is shown.
The scheme was created based on a previously reported synthetic pathway and the results presented in Figure 2C. An enzyme indicated as Manase X
has not been identified. Route a and route b are the predicted pathways, although intermediates, described in parentheses, within the 2 pathways
have not been observed.
doi:10.1371/journal.pone.0005434.g003

Glycoform of Chaptin

PLoS ONE | www.plosone.org 6 May 2009 | Volume 4 | Issue 5 | e5434



Glycoform of Chaptin

PLoS ONE | www.plosone.org 7 May 2009 | Volume 4 | Issue 5 | e5434



complete synthesis of the GPI anchor as well as the N-glycans. An

additional important objective in this context is to provide

evidence for the suggested regulation of glycan processing that

relates to the conformation of the Chp polypeptide. The

knockdown of Dol-P-ManTase would result in a shortage of

Dol-P-Man, and thus yield Chp with truncated glycans.

The differences in glycan structure can also be addressed

by considering processing on the interior and exterior of the

arched-shape Chp molecule. First, the overall profile of the

observed glycoform of the control and the wild-type closely

resembled each other showing good reproducibility where the MS-

based analysis could be performed in a quasi-quantitative manner

(Figure 5B). Analysis of Chp from the CG10166 mutant

revealed that it exhibited no obvious physical phenotypes.

Furthermore, detailed analysis of the mutant revealed that the

constitution of the rhabdomeres was not affected, as confirmed

Figure 5. M9Gn2PPDol synthesis and the relative abundance of N-glycan in wild-type, control, and mutant (CG10166) Drosophila. (A)
Dolichyl-phosphate a-D-mannosyltransferase (Dol-P-ManTase) [2.4.1.83], is converted to Dol-P-Man from GDP-Man, and serves as a donor substrate in
the synthesis of M9Gn2PPDol from the donor M5Gn2PPDol in N-glycan synthesis. (B) Contents of glycoforms at individual glycosylation sites are
indicated as percentages (colors are coordinated with those in Figure 2 and Figure 4). Due to the detection limit of mass spectrometry, the
glycopeptide signals at position N267 in the mutant did not provide sufficient intensities to enable an estimation of glycoform abundance; thus, the
data are not shown. Observed glycans are M3, M3F, GnM3F, and Gn2M3F.
doi:10.1371/journal.pone.0005434.g005

Figure 4. Predicted secondary structure of chp with details of the glycoforms at each glycosylation site. (A) Protein secondary structure
was predicted by PSIPRED ver. 2.6. N-glycosylation sites are indicated by red dots and the contents of individual glycoforms are shown (color
coordinated with those in Figure 2). (B) A slice section of LLR (AA648–AA729) with b-strands located on the inner side and a-helices or coils located on
the outer side. The positions of N-glycosylation sites, N680 carrying high-mannose-type glycans only, and N692 carrying shorter glycans are shown as
space-filled representations. The model was generated using Swiss-PdbViewer ver. OSX 3.9b2. (C) Atomic force microscopy image of Chp (wild-type
with glycans attached) showing the overall horseshoe-shaped structure. The image shows possibly 8 individual Chp molecules. Each object
represents a single Chp molecule carrying one of the glycoforms. Most of the molecules have similar arch-shaped structures with some variations.
This might reflect an inherent feature of the glycoform but is considered more likely to be due to the resolution of the method used.
doi:10.1371/journal.pone.0005434.g004
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immunohistochemically using an anti-Chp antibody. Moreover,

an accumulation of Chp in the ER was not evident from these

experiments (Data not shown). Thus, it was considered that a

sufficient amount of Dol-P-Man was synthesized under the RNAi

conditions. On the basis of the glycoform analysis of Chp in the

CG10166 mutant, it was determined that the structure of only the

high-mannose-type glycans was affected, whereas the distribution

of pauci-mannose- and complex-type glycans remained similar to

those observed in the control and wild-type. It is conceivable that

M5Gn2PPDol was transferred to Chp polypeptide instead of

M9Gn2PPDol in patients with CDGS type IV. Furthermore, the

shorter glycans transferred to the outer surface of Chp were

correctly processed, which suggests that the oligosaccharyltrans-

ferase, Glcases, Manase I, and possibly GnTase I do not require

the missing branch structure for substrate recognition. In spite of

these features, glycans containing shorter chains attached to the b-

strands were not further processed, which strongly suggests the

involvement of steric factors in the regulation of glycan processing.

Since a portion of the transferred glycan structures was shorter

than normal in circumstances where glycan processing was

affected by the RNAi, we performed a further structural analysis

of these glycans. The HPLC fractions of glycopeptides containing

M9Gn2 or GM9Gn2 were treated with PNGase F in order to

release glycans; these glycans were then pyridylaminated and

separated by RP-HPLC (Figure 6A). The fractions thus obtained

were analyzed by MS. This analysis revealed the presence of the

glycans M5Gn2 and GM5Gn2 that lack an entire branch on a-

Man-(1R6)-b-Man in fractions (i) and (ii), respectively (Figure 6B).

Discussion

Most secreted and membrane-anchored proteins are posttrans-

lationally modified. One of the major types of protein modification

is glycosylation; however, the regulation of this process is not fully

understood. The difficulty in characterizing this process lies in its

template-independent nature in the Golgi apparatus. The

investigation of this mechanism is of importance since it is well

known that changes in the structures of glycans attached to a

protein occur depending on the status of a cell and that such

changes are also related to certain diseases [22]. We investigated

the relationship between glycan structure and backbone protein

folding using Chp, a glycoprotein found in Drosophila photorecep-

tor cells, which has 16 potential N-glycan attachment sites. The

protein is a member of the LRR family of proteins and is thus

thought to fold into an overall horseshoe-shaped structure. Our

detailed analysis of the site-specific N-glycan structures based on

MS confirmed the presence of 13 N-glycosylation sites, and, for

the first time, identified the individual glycoforms at each site.

These results highlight 2 important aspects of glycan processing:

(1) the nature of the synthetic pathways, since glycans are

synthesized by the sequential action of multiple enzymes; and (2)

the relationship between glycan structure and protein conforma-

tion based on the characteristic folding of LRR family proteins.

Although knowledge of the synthetic pathways of N-glycans in

Drosophila has been limited to the difference between hybrid-type

and pauci-mannose-type glycans [38], the synthetic pathways

could be predicted in detail based on the observed glycan

structures (Figure 3). We first focused on the synthetic pathway

of pauci-mannose-type glycans. It is conceivable that there are 2

routes to produce M3Gn3. Manase II is known to act on substrates

after the transfer of Gn onto M5Gn2 (route a) [39,40]; however,

intermediates such as M5Gn3 and M4Gn3 (shown in parentheses

in Figure 3) were not detected in our analysis. In contrast, M4Gn2

and M3Gn2, which lack certain Man residues without additional

Gn, were observed. This does not necessarily preclude the

presence of route a, but it does suggest the following 2 possibilities:

(1) the addition of a Gn residue may not be required for the Man

cleavage in Drosophila, and (2) the reaction rate of GnTase I might

be considerably faster than that of Manase II. A study of Manase

II-deficient mice suggested that an alternative enzyme with

overlapping activity might be responsible for the processes yielding

the observed structures (shown as Manase X in Figure 3) [41].

Drosophila might have other Manases, or one having a substrate

specificity different to that of mammalian Manase I. In this

respect, a glycoform analysis of a Manase mutant could provide

further information. Another interesting observation was that no

intermediates of the structure M3Gn4 (indicated with parentheses

in Figure 3) were found in the expected pathway (route b). This

also suggests the presence of an alternative route.

Furthermore, the existence of different types of glycans at

different positions in the Chp molecule makes it possible to discuss

the relationship between the regulation of glycan structure within

the protein conformation and the reactions of glycan-processing

enzymes. Among the different types of glycans, those mainly

containing M9Gn2 and GM9Gn2 were found in the b-strand

regions. We cannot exclude the possibility that the observed

G2M9Gn2 (N1122) and GM9Gn2 (N680, N718, N936, N1122, and

N1171) associate with immature glycoprotein in the ER (Figure 2C);

however, localization of Chp clearly revealed the accumulation of

Chp in the rhabdomeres (Figure 2D–2F). Taking the observed

intensities of GM9Gn2 (Figure 2B) into account, we believe that

the majority of glycoproteins we analyzed were mature. It is

suggested that the bulky glycans are located in the interior of the

Chp arch (Figure 4A–4C). On the other hand, it was found that

complex-type and pauci-mannose-type glycans were located on

the more exposed surface of the protein. Various processing

enzymes act on the exterior of Chp, although virtually no enzyme

can gain access to the interior of the horseshoe-shaped scaffold,

hence explaining the presence of longer glycans within the interior.

These observations were further corroborated by a knockdown

experiment. Mutant analysis revealed that truncated N-glycan

structures were processed in the same manner. The changes in N-

glycan structure occurring in the ER did not affect further

modification of the Chp glycans in the Golgi apparatus, and the

results strongly suggested the presence of a regulation of N-glycan

processing based on the 3-dimensional structure of the backbone

polypeptide [12,13].

Information regarding the quality control was also obtained

from mutant analysis. The protein sorting of Chp was normal

without any accumulation in the ER. This suggests that the

dolichyldiphosphooligosaccharide-protein oligosaccharyltransfer-

ase did not require modification (chain elongation) onto a-Man-

(1R6)-b-Man. Although it was shown that the oligosaccharyl-

transferase recognized the shorter glycan as a substrate, the

transfer efficiency might be affected. This was evident from the

HPLC analysis of glycopeptides released from the control and

mutant Chp, which revealed a decrease in the total amount of

glycopeptide in the mutant (Figure S4). This observation is well

supported by the observation of an increase in the incompletely

glycosylated transferrin in a patient with CDGS type IV [22].

In addition, the abovementioned structures were not important

for the quality control by Calnexin (CNX) and/or Calreticulin

(CRT) [42,43]. Indeed, it is also conceivable that Chp might not

require these controls for correct folding since the normal

distribution of Chp was observed in a cnx99A knockdown fly

[44]. It should be noted that, owing to the nature of the

knockdown experiments, normal glycans were also found;

however, the detection of glycans carrying Glc residue(s)
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Figure 6. Mutant Glycan analysis based on HPLC and mass spectrometry. (A) RP-HPLC chromatograms of pyridylaminated (PA)-sugars,
which were prepared from mutant glycopeptides containing the following N-glycosylation sites: N936 and N1152 (a-1), and N680, and N1122 (a-2).
Chromatogram a-3 shows commercially available PA-sugars as a reference. A peak of unknown identity indicated by an asterisk that might be
associated with a reagent used for the fluorescent labeling appeared in all fractions. (B) Mass spectra of peak i (a-1) and peak ii (a-2) from the
chromatograms shown in (A). M9Gn2 and M5Gn2 were observed in the fraction containing peak i. GM9Gn2 and GM5Gn2 were observed in the
fraction containing peak ii.
doi:10.1371/journal.pone.0005434.g006
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(GM9Gn2), such as those at positions N680, N936, N1122, and

N1171, indicates that modification of at least these locations was not

important for the quality control of Chp [45].

To conclude, our analysis of one of the major glycoproteins in

Drosophila photoreceptor cells, chaoptin (Chp), confirmed the

presence 13 N-glycosylation sites out of 16 potential sites. On the

basis of the MS and MS/MS analyses of proteolytic digests, it is

suggested that N-glycan processing in Chp depends largely on

protein folding. Various processing enzymes act on the exterior of

Chp, although virtually no enzyme can gain access to the interior

of the horseshoe-shaped scaffold, hence explaining the presence of

longer N-glycans within the interior. These observations were

further corroborated by a knockdown experiment. Although the

crystal structures of some LRR proteins have recently been

determined [34], no detailed information is currently available

regarding glycans since these are cleaved prior to crystallization.

The information we obtained can be applied to other members of

the LRR family of proteins. We also demonstrated, firstly, that

quasi-quantitative analysis was possible by performing analyses of

both wild-type and mutant Chp glycans, and, secondly, that

immature glycan structures lacking a-Man-(1R2)-a-Man-(1R3)

and a-Man-(1R2)-a-Man-(1R6) disaccharides, which under

normal circumstances should be attached to an a-Man-(1R6)-b-

Man branch, did not affect glycan maturation, and that the glycan

structure might not be important for the correct folding based on

CNX and/or CRT in Chp. On the basis of the observed glycan

structures, alternative glycan processing routes can be predicted

where these structures suggest the presence of a new route [41].

Finally, it should be noted that the MS-based technique described

herein could also be applied to the investigation of other

glycoproteins, since it is still quite difficult to perform analysis of

large glycoproteins with molecular masses exceeding 100,000 Da.

It is important to establish such a method as an analytical tool for

assessing any changes in glycan structures related to disease state,

differentiation, cell types, and glycoprotein as pharmaceutical.

Materials and Methods

Preparation of Chaoptin from Drosophila Heads
Heads of adult wild-type Canton-S Drosophila melanogaster were

homogenized in lysis buffer consisting of 10 mM sodium

phosphate (pH 7.0), 100 mM NaCl, 0.5% Triton X-100, and

complete protease inhibitor (Roche), using a Teflon homogenizer.

The lysate was centrifuged at 13,0006g for 10 min in order to

remove nuclei and debris. Clarification of the lysate was achieved

by passing it through a 0.22-mm PES filter (Millipore). Immu-

noaffinity purification of Chp was performed using columns of

protein G-Sepharose (GE Healthcare), to which anti-Chp

antibody (24B10) (University of Iowa DSHB) had been covalently

coupled [46–48]. The lysate was incubated with 24B10/protein

G-Sepharose for 2 h. The affinity column was subsequently

washed with the lysis buffer minus protease inhibitor, followed by

50 mM triethylamine-acetic acid (pH 4.5). Chp was eluted with

50 mM triethylamine-acetic acid (pH 3.5).

Mutant fly–RNAi fly lines were generated as described

previously [37]. Two transgenic fly stocks, GAL4-driver and

upstream activating sequence system-inverted repeat (UAS-IR),

were used in this system. The GAL4-driver fly has a transgene

containing the yeast transcriptional factor GAL4, the expression of

which is under the control of a cytoplasmic actin promoter. The

UAS-IR fly has a transgene containing the inverted repeat of

the target gene ligated to the UAS promoter, a target of GAL4.

In this investigation, GMR-GAL4 was used to eye-specifically

control RNA expression. In the F1 progeny of these flies, the

double-stranded RNA of the target gene is expressed ubiquitously

in all cells to induce the gene silencing.

Preparation of Glycopeptides
RapiGest (Waters) and dithiothreitol were added to 200 ml of a

0.1 mg/mL protein solution (adjusted to pH 8.0 with 1 M

ammonium bicarbonate) to final concentrations of 0.1% (w/v)

and 5 mM, respectively. This mixture was then incubated for

30 min at 60uC. Iodoacetoamide was added to a final concentra-

tion of 15 mM, and reacted in the dark at room temperature for

30 min. Modified trypsin (Promega) was then added to a final

trypsin/glycoprotein ratio of 1/50 (w/w) and CaCl2 solution was

added to a final concentration of 1 mM. Tryptic digestion was

achieved by incubating overnight at 37uC. The digestion was

terminated by the addition of 1% trifluoroacetic acid (TFA). In

order to remove salt and trypsin, the tryptic digest was applied to a

Sep-Pak Light C18 cartridge column (Waters). The peptide

mixture was eluted using 60% acetonitrile containing 0.1% TFA

(4 mL) followed by washing with 0.1% TFA (10 mL). Dephos-

phorylation was achieved by incubating at 37uC overnight with

alkaline phosphatase (2.4 U; Toyobo) in 200 mL of 50 mM

ammonium bicarbonate (pH 8.0) containing 10 mM MgCl2.

The peptide mixture was guanidinated using a Guanidination kit

(SIGMA) following the manufacturer’s protocol [38,49]. The

reaction mixture was dried and dissolved in 500 mL of 500 mM

NH4OH. This resuspension was then mixed with 250 mL of

500 mM O-methylisourea hemisulfate. Following incubation of

the mixture at 60uC for 30 min, 750 mL of 10% TFA was added.

A quarter of the reaction mixture was applied to a cellulose

cartridge column, and the peptide mixture was eluted with 3 mL

ethanol/75 mM ammonium bicarbonate (1:2) followed by wash-

ing with 10 mL n-butanol/ethanol/water/acetic acid

(4:1:0.97:0.03).

Peptide:N-glycanase F (PNGase F) Digestion of
Glycopeptides

A half volume of the cellulose cartridge eluent was dried and

dissolved in 50 mL of 20 mM phosphate buffer (pH 7.0). PNGase

F (0.5 U) was added to the peptide solution and digestion was

achieved by incubating at 37uC overnight. A portion of the

peptide mixture was desalted using a ZipTip m-C18 prior to MS

analysis.

HPLC Separation of Glycopeptides and Peptides
Glycopeptide and peptide mixtures were separated by RP-

HPLC using a 1.0-mm i.d.6100 mm, 5-mm Inertsil C18 column

(GL Science). All separations were performed using a mobile phase

of 0.1% TFA and 70% acetonitril containing 0.1% TFA with a

linear gradient mode at 35uC. The flow rate was set at 50 mL/min

and UV detection was performed at 215 nm.

Endoproteinase Asp-N Digestion of Peptides
HPLC peptide fractions were dried and dissolved in 20 mL of

20 mM phosphate buffer (pH 7.0). To each mixture, 0.5 units of

endoproteinase Asp-N were added. The digestion was carried out

at 37uC for 3 h. The mixture was desalted using a ZipTip m-C18

prior to MS analysis.

MS Analysis of Glycopeptides and Peptides
The matrix for peptide analysis by MALDI-TOF-MS consisted

of either 10 mg/mL cyano-4-hydroxycinnamic acid in 50%

acetonitril or 0.1% TFA or 10 mg/mL 2,5-dihydroxybenzoic

acid in 10% ethanol. MALDI-TOF-MS spectra were acquired
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using a Voyager mass spectrometer (Applied Biosystems, Foster

City, CA). Mass spectra were acquired in the positive linear mode.

MS/MS measurements were performed using an Ultraflex TOF/

TOF mass spectrometer with the LIFT-MS/MS facility in the

positive mode. (Bruker Daltonics GmbH, Hamburg, Germany).

Phalloidin- and Immuno-histochemistry
Adult Canton-S Drosophila were anesthetized with CO2 and then

decapitated. Retinas were excised from the heads using a razor

blade and a tungsten needle, immersed in 4% paraformaldehyde

in PBS containing 0.1% Triton X-100, and then incubated on ice

for 1 h. After rinsing in 0.1% Triton X-100 in PBS, the specimens

were incubated in 0.1% Triton X-100 and 0.1% BSA in PBS

(PBSTB) for 30 min at room temperature. The specimens were

then incubated with anti-Chp antibody (24B10) in PBSTB for 2 h

at room temperature. Following a rinse in PBSTB, the specimens

were incubated with rhodamine phalloidin (1:20; Invitrogen) in

PBSTB for 2 h at room temperature. The secondary antibody

used was Alexa Fluor 488-conjugated anti-mouse IgG (1:200;

Invitrogen). After rinses in PBSTB, the specimens were mounted

with Vectashield (Vector Laboratories, Burlingame, CA, USA)

and observed using a FluoView FV500 Laser Scanning Confocal

Microscope (Olympus, Tokyo, Japan).

Atomic Force Microscopy (AFM)
Freshly cleaved mica surfaces (20620 mm; Ted Pella, Redding,

CA, USA) were incubated with 20 mL 0.01% aminopropyl-

triethoxysilane (Gelest Inc.) water solution at room temperature

for 10 min, which was subsequently aspirated off. A 5-mL drop of

cosmid DNA 380H5 (0.1 mg/mL) bearing elongation complexes

was then spread on a mica surface by covering it with a clean glass

coverslip. The coverslip was peeled off after 5 min, and the mica

surface air-dried before imaging. Using a BioScope system with a

NanoScope IIIa controller (Digital Instruments, Santa Barbara,

CA, USA), tapping mode scans on mica in air were performed

with Metrology Probe Tap 300 tips (Ted Pella).

Pyridylamination of Glycans
HPLC fractions of glycopeptides were treated with PNGase F

and then dried. The reaction reagent was pyridylaminated using a

Pyridylamination Reagent kit (Takara Bio, Japan) according to the

manufacturer’s protocol [50,51]. The solutions for reduc-

tive amination were prepared as follows. 2-Aminopyridine

(300 mg) was dissolved in 100 mL of acetic acid at 80uC and

borane-dimethylamine complex (20 mg) was dissolved in 100 mL

of acetic acid. Reductive amination was performed by the addition

of 20 mL 2-aminopyridine solution to the treated fractions

followed by heating at 90uC for 1 h, and the subsequent addition

of 20 mL borane-dimethylamine complex solution with further

heating of the mixtures at 80uC for 1 h. Following concentration,

the mixtures were applied to a cellulose cartridge column.

Supporting Information

Figure S1 Mass spectra of tryptic peptides separated by Zip

Tipm-C18 with 10% (a), 30% (b), 50% (c), and 70% CH3CN (d)

after treatment with PNGase F of concentrated glycopeptides.

The numbers indicate the peptide numbers in Table 1, where a, b,

and c indicate the oxidized Met [M(Met)+1(H)+16(O)]+,

[M(Met)+1(H)+16(O)-64(CH3SOH)]+, and the pyroglutamate

[Q(Gln)+1(H)-17(NH3)]+, respectively.

Found at: doi:10.1371/journal.pone.0005434.s001 (0.14 MB TIF)

Figure S2 Tandem mass spectrum of the signal (m/z 1341.5)

appeared after AspN treatment that was the peptide sequence

containing N339 from a peptide Y334–K364 (No. 4 in Table 1).

Found at: doi:10.1371/journal.pone.0005434.s002 (0.10 MB TIF)

Figure S3 Tandem mass spectra of the glycopeptides of m/z

2858.0, which consisted of GlcM9Gn2 attached to N1171ISLDIR

(a) and that of m/z 3703.2, which consisted of GnM3FGn2

attached to TLDISHNVIWSLSGN267ETYEIKg (b).

Found at: doi:10.1371/journal.pone.0005434.s003 (0.23 MB TIF)

Figure S4 RP-HPLC chromatogram of a glycopeptide-enriched

fraction of Chp from CG10166 knock down mutant (22 mg) (a) and

that from GFP-IR control (15 mg) (b). *: The peak containing

glycopeptides.

Found at: doi:10.1371/journal.pone.0005434.s004 (0.22 MB TIF)
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