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T-tubular invaginations of the sarcolemma of ventricular cardio-
myocytes contain junctional structures functionally coupling L-
type calcium channels to the sarcoplasmic reticulum calcium-
release channels (the ryanodine receptors), and therefore their
configuration controls the gain of calcium-induced calcium release
(CICR). Studies primarily in rodent myocardium have shown the
importance of T-tubular structures for calcium transient kinetics
and have linked T-tubule disruption to delayed CICR. However,
there is disagreement as to the nature of T-tubule changes in
human heart failure. We studied isolated ventricular myocytes
from patients with ischemic heart disease, idiopathic dilated car-
diomyopathy, and hypertrophic obstructive cardiomyopathy and
determined T-tubule structure with either the fluorescent mem-
brane dye di-8-ANNEPs or the scanning ion conductance micro-
scope (SICM). The SICM uses a scanning pipette to produce a
topographic representation of the surface of the live cell by a
non-optical method. We have also compared ventricular myocytes
from a rat model of chronic heart failure after myocardial infarc-
tion. T-tubule loss, shown by both ANNEPs staining and SICM
imaging, was pronounced in human myocytes from all etiologies of
disease. SICM imaging showed additional changes in surface struc-
ture, with flattening and loss of Z-groove definition common to all
etiologies. Rat myocytes from the chronic heart failure model also
showed both T-tubule and Z-groove loss, as well as increased spark
frequency and greater spark amplitude. This study confirms the
loss of T-tubules as part of the phenotypic change in the failing
human myocyte, but it also shows that this is part of a wider
spectrum of alterations in surface morphology.

calcium handling � heart failure � morphology � T-tubule

Chronic heart failure (HF) is a major cause of morbidity and
mortality, constituting approximately 25% of all hospital

admissions in those afflicted aged 65 years and over (1). Heart
failure is also a major contributor to sudden death due to
ventricular rhythm disturbances (2–4), with more than 300,000
deaths annually in the United States alone (5). Despite these
concerning statistics, detailed understanding of the processes in
HF is limited, with relatively ineffective pharmacologic therapy
in preventing sudden arrhythmic death (3, 6).

Deranged intracellular calcium handling (Ca2�) is germane in
the generation of these malignant arrhythmias (7–9). Increasing
evidence has accrued from experimental studies in the rodent
heart that spatial arrangements of Ca2�-handling proteins are
crucial for cardiomyocyte excitation–contraction (EC) coupling.
A close spatial relationship exists between L-type Ca2� channels
and clusters of sarcoplasmic reticulum (SR) Ca2�-release chan-
nels, the ryanodine receptors (RyRs). L-type Ca2� channels are
concentrated in transverse tubules (T-tubules), whereas RyRs
are embedded predominantly in the junctional SR membrane,
which is in close apposition to the invaginations of the T-tubular
membrane network (10–13). This spatial architecture is critically

important to the efficacy of Ca2�-induced Ca2� release (CICR)
and the stability of the amplification mechanism. Chronic HF is
characterized by a reduction of T-tubule density in rodent failing
hearts (14, 15). Cardiomyocytes isolated from failing spontane-
ous hypertensive rat hearts demonstrated temporal delay in EC
coupling related to increased spatial separation of the junctional
SR from the T-tubule membrane (15, 16), with an associated
increase in spontaneous Ca2�-release events (Ca2� sparks) (15).
Experimental disruption of T-tubule structures by culture or
osmotic shock produces changes similar to those observed in HF,
with dyssynchronous release of Ca2� leading to a slow Ca2�

transient and diminished and prolonged contraction (17–20).
However, in larger species with lower heart rates, in which the

speed of contraction and relaxation is slower, the requirement
for such a highly defined T-tubular structure is not so clear.
Although both pig and dog models of HF showed significant
reductions in T-tubule density (21, 22), the most striking feature
in these large animals was the large number of areas of low
T-tubule density in the normal hearts. A direct comparison in
one study showed less than half the degree of T-tubulation for
pig compared with mouse (23). The finding of a T-tubule ratio
of 0.26 in myocytes from failing human heart (not significantly
different from normal pig) (21) therefore left the question of
whether low T-tubule density was failure related or a normal
feature of human heart. Ultrastructural studies describe T-tubules
as being less abundant or having a patchy distribution (24, 25) or as
being dilated (25, 26) in failing human heart, but without quanti-
fication of effects. In the present study we use a variety of exper-
imental approaches to compare ventricular myocytes from normal
human heart with those from patients with different etiologies of
chronic failure (ischemic, idiopathic dilated, and hypertrophic
cardiomyopathy), and we show that T-tubule density is reduced in
all these conditions. The variety of approaches is a hierarchy of
investigations beginning with (near) nano-surface topography [with
a scanning ion conductance microscope (SICM)]; surface staining
(with di-8-ANEPPS); intracellular Ca2� imaging (with fluorescent
dye Fluo-4); and whole-heart contractility studies.

Quantification of T-tubule density is generally performed by
cardiomyocyte surface staining with the lipophilic membrane
marker di-8-ANEPPS, and we initially used this method in the
present study. However, detailed changes to the cardiomyocyte
surface topology are not evident owing to the limited spatial
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resolution of this technique. Using a unique method (SICM) to
form topographic images of the live myocyte (27), we have
confirmed the loss of T-tubular openings in ventricular myocytes
from failing human hearts. We have previously shown that
disruption of the myocyte surface during experimental detubu-
lation is not confined to T-tubule loss but includes flattening and
loss of Z-groove structures, which we have quantified by the
Z-groove index (ratio of actual to total extrapolated Z-grooves)
(28). Here we use the SICM to produce a detailed surface
topography of the normal and failing human cardiomyocyte and
demonstrate that disruption of Z-groove structure occurs in
addition to T-tubule loss. Parallel experiments on a rat chronic
post–myocardial infarction model of HF show that similar
alterations in both T-tubules and Z-grooves occur, and we go on
to relate these changes in surface structure of ventricular myo-
cytes to alterations in contraction and SR Ca2� release.

Results
T-Tubule and Z-Groove Ratios of Normal and Failing Human Cardio-
myocytes. We compared ventricular myocytes from hypertrophic
obstructive cardiomyopathy (HOCM), ischemic heart disease
(IHD), dilated cardiomyopathy (DCM), and unused donor
(nonfailing) human hearts. In comparison with cells isolated
from hearts with normal ventricular function (Fig. 1A), the
SICM showed lower T-tubule density in cells from failing human
hearts (Fig. 1B). This was confirmed using confocal microscopy
after staining with the membrane dye di-8-ANNEPS (Figs. 1 D
and F). T-tubule ratios were reduced from 0.68 � 0.06 in
nonfailing cardiomyocytes (n � 8 cells) to 0.27 � 0.02 in failing
cardiomyocytes (n � 17) (P � 0.001), with values similar in
HOCM (n � 6), IHD (n � 5), and DCM (n � 6) (Fig. 1G).
Additionally, SICM line scan profiles showed that the surface
was flattened and the regular Z-groove structures disrupted in
failing cardiomyocytes, with loss of Z-groove length and depth
(Figs. 1 C and E). The Z-groove ratio was reduced from 0.82 �
0.07 in nonfailing cardiomyocytes (n � 11) to 0.30 � 0.07 in failing

cardiomyocytes (n � 16; P � 0.01), with similar effects between
HOCM (n � 6), IHD (n � 4), and DCM (n � 6) (Fig. 1H).

Human Cardiomyocyte Contractility Studies. This cohort of myo-
cytes from failing human hearts showed slowing of contraction
and relaxation similar to those previously described (29). Con-
traction and relaxation [time to peak (TTP), time to 50%
relaxation (R50), and time to 90% relaxation (R90)] were
significantly impaired in 14 myocytes (4 failing hearts) compared
with myocytes from 6 nonfailing hearts (P � 0.01, P � 0.001)
(Fig. 1I). Nonfailing samples are rare: the data presented here
have been gathered over a number of years and were included
in previous publications (e.g., refs. 29 and 30). Because exper-
iments were carried out at a stimulation frequency of 0.2 Hz,
where the frequency–responses for failing and nonfailing human
ventricular myocytes cross (29), contraction amplitude was not
significantly reduced in myocytes from failing hearts (3.68% �
0.60% shortening, n � 14, vs. 5.03% � 0.95%, n � 6, for
nonfailing) .

Rat Post-Infarction HF Model. Coronary ligation produced trans-
mural infarcts constituting more than 30% of left ventricular
circumference (Fig. 2A). Sixteen weeks after infarction, animals
had significantly increased heart weight/body weight ratios (g/kg)
compared with sham-ligated controls (HF vs. Sham: 4.7 � 0.2 vs.
3.8 � 0.1, P � 0.01, n � 6 each group), reflecting hypertrophy
of the viable left ventricular myocardium. Serum brain natri-
uretic peptide (BNP) levels were undetectable in sham controls
and elevated in HF rats [205 � 43 pg/mL vs. undetectable (�80
pg/mL), P � 0.01]. Pressure–volume (PV) analysis (Fig. 2 B–D)
demonstrated ventricular dilatation [left ventricular end-
diastolic volume (LVEDV): 258 � 27 �L vs. 173 � 8 �L, P �
0.01], with reduced ejection fraction and elevated end-diastolic
pressure: [left ventricular ejection fraction (LVEF): 32% � 4%
vs. 76% � 2%, P � 0.001; left ventricular end-diastolic pressure
(LVEDP): 24.0 � 3.3 mm Hg vs. 8.5 � 0.5 mm Hg, P � 0.001].

Fig. 1. SICM images from the surface of cardiomyocytes isolated from nonfailing (A) and failing (B) human hearts. The black dotted line represents the linear
selection presented as a 1-dimensional surface contour map from nonfailing (C) and failing (E) human cardiomyocytes. Confocal images after staining with
di-8-ANNEPPS in nonfailing (D) and failing cardiomyocytes (F). T-tubule (G) and Z-groove (H) ratios in cardiomyocytes isolated from patients with DCM, HF
secondary to IHD, or HOCM. NF, nonfailing. (I) Prolonged TTP and relaxation times (R50 and R90) in human failing cardiomyocytes (solid bars, n � 12) compared
with nonfailing human cardiomyocytes (open bars, n � 6). **, P � 0.01 vs. nonfailing.
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Dynamic measures of contractile function [end-diastolic PV
relationship (EDPVR); 0.60 � 0.12 mm Hg/mL vs. 1.89 � 0.24
mm Hg/mL, P � 0.01; time-varying maximal elastance (Emax):
1.4 � 0.2 mm Hg/mL vs. 3.1 � 0.5 mm Hg/mL, P � 0.05; preload
recruitable stroke work (PRSW): 61 � 21 mm Hg vs. 110 � 11
mm Hg, P � 0.05] and ventricular compliance [end-diastolic PV
relationship (EDPVR): 0.11 � 0.01 mm Hg/mL vs. 0.03 � 0.01
mm Hg/mL, P � 0.01] were also significantly impaired in these
animals, consistent with the HF phenotype.

Rat Cardiomyocyte Contractility Studies. Contraction parameters
(Fig. 3 A and B) reflect differences in Ca2� regulation between cells
isolated from sham-operated and HF rat hearts. Both TTP and R50
were prolonged in HF: TTP HF 313 � 17 ms vs. Sham 222 � 15
ms, P � 0.001; R50 HF 261 � 20 ms vs. Sham 192 � 7 ms, P � 0.01.

Calcium Sparks. Spontaneous Ca2� spark frequency and ampli-
tude were increased in myocytes isolated from HF rats. Spark
frequency (sparks per 100 �m per second) increased by 100%,
(HF 2.89 � 0.34 vs. Sham 1.43 � 0.36, P � 0.05), and amplitude
(� F/F0) increased by 43% (0.99 � 0.03 vs. 0.69 � 0.06, P �
0.001) (Figs. 3 C–E). Spark width and duration and spontaneous
Ca2� wave velocity were similar in myocytes from HF and
age-matched controls.

Calcium Release. Line scan images recorded as Ca2� transients
were evoked and showed that HF myocytes display less homo-
geneous release than cells isolated from sham controls (Fig. 3F).
This has been quantified in Fig. 3F by measuring the fraction of
the line 20 ms after the start of the transient that had fluores-
cence values less than 50% of the maximum fluorescence. HF
cells had a large number of sites showing delayed release (P �
0.05) compared with cells isolated from age-matched controls.

T-Tubule and Z-Groove Ratios of Cardiomyocytes from HF Rats.
T-tubules and Z-grooves were clearly visible on a SICM topo-
graphic image of the cell surface of control cardiomyocyte (Fig.

4A). A confocal image shows T-tubules after staining with
Di-8-ANNEPS (Fig. 4C). Ventricular myocytes from the rat HF
model showed disruption and flattening similar to those from
human failing heart (Fig. 4B). The fluorescent image shows the
partially detubulated HF cardiomyocyte (Fig. 4D), and the
T-tubule density ratio was reduced from 0.79 � 0.05 in controls
to 0.40 � 0.06 in HF cardiomyocytes (P � 0.001) (Fig. 4E). The
Z-groove ratio was reduced in rat cardiomyocytes from 0.81 �
0.01 in control cells (n � 12) to 0.54 � 0.03 in the HF cells (n �
16) (P � 0.001) (Fig. 4F).

Discussion
This study confirms the loss of T-tubule structures in ventricular
myocytes from patients with heart disease, in a cell population
that was typical of myocytes isolated from failing human ventricle
as evidenced by contractile properties. Interestingly, T-tubule
changes were seen not only in ischemic and dilated cardiomyopathy
but in myocytes isolated from sections taken during septal reduc-
tion of hearts with HOCM. We have recently demonstrated that
these share the slow contraction and relaxation kinetics that char-
acterize end-stage failing human heart (31). This implies that the
change in T-tubule structure is not a direct result of the initial insult
or genetic mutation but rather is part of the ongoing process of cell
adaptation and damage that occurs during the development of HF.

These findings in the human heart give relevance to the studies
that have linked detubulation of parts of the cell to delays in the
Ca2� transient in animal models (16, 21). The model used here,
chronic post–myocardial infarction HF in the rat, showed a
similar loss of T-tubular structures. Progression toward end-
stage cardiac failure was evident in these animals, with impaired
systolic and diastolic function, hypertrophy, and raised BNP
levels. Disordered Ca2� handling at the cellular level was also
apparent, with increased spontaneous Ca2� spark frequency and
amplitude, and dyssynchrony of SR Ca2� release. Contractile
changes were typical of the chronic failing phenotype, with
prolonged TTP and relaxation. Increased TTP may reflect the

Fig. 2. The rat chronic post–myocardial infarction (MI) HF model. (A) Midventricular 10-�m section from a sham control rat heart (Left) and a chronically
infarcted rat heart (Right) after staining with Masson’s trichrome. (Scale bar, 2 mm.) (B) Representative in vivo PV loops during transient inferior vena caval
occlusion from an HF rat and a Sham control. ESPVR (red broken lines) and EDPVR (black broken lines) relationships are presented. (C) Representative in vivo
steady-state PV loops demonstrating increased ventricular volumes and elevated end-diastolic pressure in HF rats (black arrow) compared with Sham controls
(red arrow). (D) Steady-state PV data demonstrating decreased LVEF, increased LVEDP, and reduced peak velocities of pressure change (dPdt) during isovolumic
contraction (Peak � dPdt) and isovolumic relaxation (Peak � dPdt) in rats with HF. *, P � 0.05; **, P � 0.01; ***, P � 0.001.
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SR Ca2� release dyssynchrony present at the subcellular level
throughout the failing cardiomyocyte (see Fig. 3F).

Delayed SR Ca2� release after sarcolemmal depolarization
may represent the functional consequence of spatial disruption
of the T-tubule network. Litwin et al. (32) noted that the leading
edge of the Ca2� transient in myocytes from failing hearts
showed poor coordination of release sites, resulting in the

slowing of contractions and Ca2� transients. Song et al. (15)
reported T-tubule restructuring in HF, and this correlated with
the poor coordination of Ca2� release. They proposed that the
changes to T-tubule cellular organization produce ‘‘rogue’’ or
‘‘orphaned’’ RyRs that might respond differently to local Ca2�

changes, with loss of normal local control. This idea provides a
mechanistic link between T-tubule loss and dyssynchronous

Fig. 3. (A) Representative tracings from stimulated (0.5 Hz) isolated rat cardiomyocytes demonstrating reduced amplitude and prolonged relaxation in
cardiomyocytes from failing hearts. Mean contraction amplitude in isolated cardiomyocytes from sham-ligated (white bars; n � 11 cells) and failing (black bars;
n � 14 cells) rat hearts. (B) Cytoplasmic Ca2� transient data with TTP, R50, and R90 in isolated cardiomyocytes from sham-ligated (white bars) and failing (black
bars) rat hearts. (C) Representative examples of confocal line scan images demonstrating spontaneous Ca2� sparks from failing (Top) and control (Bottom)
cardiomyocytes. Spontaneous Ca2� spark frequency (D) and amplitude (E) in cardiomyocytes from sham-ligated (white bars) and failing (black bars) rat hearts.
(F) Images show the onset of 2 sample transients taken from control and HF cells, illustrating synchronous and less-homogeneous release. Regions of delayed
Ca2� release have been quantified as detailed in Materials and Methods and averaged from 10 sham control cells and 8 HF cells. *, P � 0.05 vs. HF.

Fig. 4. SICM images from the surface of cardiomyocytes isolated from sham-ligated (A) and failing (B) rat hearts. Confocal images from a section of the
sarcolemmal membrane after staining with di-8-ANNEPPS in control (C) and failing myocytes (D). The T-tubule (E) and Z-groove (F) ratio for sham (open bars;
n � 12) and failing myocytes (n � 16) (***, P � 0.001 vs. sham).
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Ca2� release, in addition to changes and enlargement of the gap
between L-type Ca2� channel and underlying RyRs proposed
earlier by Gomez et al. (33). Recently this has been reinforced
by Meethal et al. (34), who demonstrate that Ca2� sparks are not
uniformly distributed within HF cells and disappear from areas
devoid of T-tubules.

The reasons for the increase in Ca2� spark frequency, which
presumably underlies enhanced SR Ca2� leak in failing hearts,
are controversial and multifactorial (9, 35–38). Although we do
not investigate the cellular distribution of Ca2� sparks, the
increased spark frequency in HF that we observe has also been
seen by Kubalova et al. (39), who proposed that this was due to
an increased sensitivity of the RYRs to luminal SR Ca2�.
Whether the phosphorylation of RyRs by protein kinase A or
Ca2�-calmodulin-dependent protein kinase II, or redox modifi-
cation of RyR by locally generated reactive oxygen species, alters
the sensitivity of both luminal and cytoplasmic Ca2� binding
sites, and whether these effects are modulated by a spatial loss
of local control mechanisms, remain uncertain.

However, our study also shows that T-tubule loss cannot be
considered as an isolated phenomenon in failing human heart;
rather, it occurs as part of a general disruption of the sarco-
lemma. Significant changes to the remaining sarcolemmal ar-
chitecture included loss of Z-grooves and reduced depth of the
remaining Z-grooves interconnecting the T-tubule openings in
failing ventricular cardiomyocytes. The pathologic surface
changes seemed again to be independent of the underlying HF
etiology. Similar changes were observed in the ventricular car-
diomyocytes from infarcted failing rat heart, with Z-groove
structures markedly disrupted. The parallels between the human
and rat myocytes suggest that the surface structure alterations are
an integral part of the remodeling process that occurs during
cardiac failure. Our previous work also shows that targeted exper-
imental loss of T-tubules causes similar surface flattening and
Z-groove disturbance (28). In fact, the degree of contractile dys-
function was found to correlate more closely with the Z-groove than
the T-tubule ratio after osmotic shock or prolonged culture (28).

Z-groove disruption may add to T-tubular disorder as a trigger
for aberrant Ca2� release via a number of potential mechanisms.
Inhomogeneous sarcomeric contraction pattern can affect in-
tracellular Ca2� handling and may lead not only to Ca2� waves
(40) but also to increased spark frequency (41). These mechan-
ically induced intracellular Ca2� changes can be complex and
may result from myocardial stretch (weaker sarcomeres) open-
ing stretch-activated channels (42), and/or altered Ca2�–
troponin interaction at different sarcomere lengths (43). The
Z disc has additionally been implicated in extensive cell signal-
ing, which may be affected when the disc itself is disordered (44).
Several Z disc proteins are intimately involved in sensing me-
chanical stress (45), and as myocardial failure progresses, Z line
proteins play roles in inter- and extracellular signaling pathways.
Z line disruption and altered mechanics could herald dysfunctional
signaling paths, even influencing local Ca2� release (46, 47).

The flattening of the surface may also be linked to mitochon-
drial disruption or atrophy, which is often present in failing or
animal human heart (48). The pronounced dome and valley
surface structure in rat and human myocytes can often be linked
on electron micrographs to mitochondria lying between the
sarcolemma and underlying myofilaments (26, 49). One study
shows clearly the loss of subsurface mitochondria in acutely
detubulated rat ventricular myocytes (49). Given the continuing
debate about the involvement of mitochondria in acute- or
medium-term control of contractile Ca2� (50–52) and their poten-
tial influence on RyR function as the major cellular source of
reactive oxygen species, mitochondrial spatial reorganization dur-
ing the development of HF could be an additional contributory
factor to the changes in contraction and Ca2� handling we observe.

In conclusion, we have confirmed that the changes seen in
animal models of HF do indeed reflect the alterations in failing
human heart and in various etiologies of disease. However,
T-tubule reorganization is only part of a spectrum of changes to
surface morphology that occur in the failing human ventricular
myocyte, and other alterations could equally impinge upon
calcium movements. Understanding the mechanisms underpin-
ning these complex structural changes may yield novel thera-
peutic targets for the treatment of chronic HF and associated
arrhythmias.

Materials and Methods
Detailed descriptions of the cell isolation and animal procedures are available
in the SI Materials and Methods.

Measurement of Cardiomyocyte Contraction. Contractile characteristics of
single myocytes were measured as described previously (53, 54) (see SI Mate-
rials and Methods).

Scanning Ion Conductance Microscopy. The basic arrangement of the SICM for
topographic imaging of living cells has been described previously (55, 56) (see
SI Materials and Methods).

T-Tubule Labeling. T-tubule density was measured after sarcolemmal labeling
with Di-8-ANEPPS (21, 57) (see SI Materials and Methods).

Z-Groove Ratio calculation. We calculated Z-groove ratio as described previ-
ously (28) (see SI Materials and Methods).

Calcium Sparks and SR Release Events. The Ca2�-sensitive fluorescent dye
Fluo-4 was used to monitor localized changes in cytoplasmic [Ca2�] (58) (see SI
Materials and Methods).

Statistics. Results are presented as mean � SEM and were compared between
study arms using Student’s t test, with Welch’s correction where appropriate.
A P value of �0.05 determined statistical significance.
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