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The molecular mechanisms of endothelial nitric oxide synthase
(eNOS) regulation of microvascular permeability remain unre-
solved. Agonist-induced internalization may have a role in this
process. We demonstrate here that internalization of eNOS is
required to deliver NO to subcellular locations to increase endo-
thelial monolayer permeability to macromolecules. Using domi-
nant-negative mutants of dynamin-2 (dyn2K44A) and caveolin-1
(cav1Y14F), we show that anchoring eNOS-containing caveolae to
plasma membrane inhibits hyperpermeability induced by platelet-
activating factor (PAF), VEGF in ECV-CD8eNOSGFP (ECV-304 trans-
fected cells) and postcapillary venular endothelial cells (CVEC). We
also observed that anchoring caveolar eNOS to the plasma mem-
brane uncouples eNOS phosphorylation at Ser-1177 from NO
production. This dissociation occurred in a mutant- and cell-depen-
dent way. PAF induced Ser-1177-eNOS phosphorylation in ECV-
CD8eNOSGFP and CVEC transfected with dyn2K44A, but it dephos-
phorylated eNOS at Ser-1177 in CVEC transfected with cav1Y14F.
Interestingly, dyn2K44A eliminated NO production, whereas
cav1Y14F caused reduction in NO production in CVEC. NO produc-
tion by cav1Y14F-transfected CVEC occurred in caveolae bound to
the plasma membrane, and was ineffective in causing an increase
in permeability. Our study demonstrates that eNOS internalization
is required for agonist-induced hyperpermeability, and suggests
that a mechanism by which eNOS is activated by phosphorylation
at the plasma membrane and its endocytosis is required to deliver
NO to subcellular targets to cause hyperpermeability.

caveolae | endothelial nitric oxide synthase | endothelial permeability |
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N itric oxide (NO) is the signal for several outcomes in the
control of circulation. Its main source in the cardiovascular
system is endothelial (¢)NOS. The enzyme is modified by
N-myristoylation and palmitoylation, which targets it to the
caveolae in the plasma membrane where it is kept in a basal state
by binding to caveolin-1 through a consensus site (1, 2). Agonists
activate eNOS through multiple mechanisms: phosphorylation/
dephosphorylation of specific residues, interaction with different
proteins, S-nitrosylation, and specific subcellular localization (1,
3-7). Agonists such as platelet-activating factor (PAF) and
VEGEF phosphorylate eNOS via Akt (8, 9). Despite advances in
our understanding of the biochemistry of eNOS, the mechanisms
by which these molecular modifications determine the functional
outcome of eNOS activation remain unexplored.

NO derived from eNOS is a key mediator in the hyperper-
meability response to PAF and VEGF (7, 10, 11). We previ-
ously showed that eNOS internalization (endocytosis) is a
required step in the signaling cascade leading to PAF-induced
hyperpermeability (7). In this study, we tested the hypothesis
that caveolar internalization of eNOS is a requirement for
localized NO production and NO delivery to a subcellular

www.pnas.org/cgi/doi/10.1073/pnas.0812694106

target to cause hyperpermeability. To address this hypothesis,
we used ECV-304 cells (which lack endogenous eNOS) trans-
fected with CD8-GFPeNOSmyr~ (referred to hereafter as
ECV-CD8eNOSGFPmyr~) (12). This eNOS is mutated in its
myristoylation site and fused to the extracellular and trans-
membrane domain of the cell surface glycoprotein CDS8. This
mutated eNOS is unable to be myristoylated, but can be
palmitoylated. However, because of the transmembrane do-
main of the CDS8 protein, depalmitoylation does not cause
internalization. We also anchored eNOS-containing caveolae
to the plasma membrane with a caveolin-1 mutant that inhibits
phosphorylation at Y14 (cavlY14F-GFP) in ECV-CD8eNOSGFP
and in bovine coronary postcapillary venular ECs. Transfec-
tion with cavlY14F prevents scission of caveolae from the
plasma membrane. Our results show a direct correlation
between eNOS endocytosis by caveolae, NO production, and
hyperpermeability, in support of our hypothesis. Surprisingly,
experiments aimed at testing activation of eNOS in transfected
cells revealed dissociation or uncoupling between eNOS phos-
phorylation and NO production. These unexpected results
suggest a mechanism for endothelial hyperpermeability
whereby eNOS is activated by phosphorylation at the plasma
membrane, but production of efficacious NO occurs during or
at the end of endocytosis.

Results

PAF Activates and Internalizes eNOS to Cause Hyperpermeability in
ECV-CD8-GFPeNOSmyr—. We verified by Western blotting that
CD8-GFPeNOSmyr~ was expressed after transfection in ECV-
304 cells. Immunofluorescence microscopy demonstrated that it
distributes preferentially in the plasma membrane and Golgi, in
agreement with the eNOS distribution in ECs (6, 13, 14). To
assess the functional state of the transfected protein, we inves-
tigated eNOS activation by measuring eNOS phosphorylation,
NO production, and permeability of cell monolayers to macro-
molecules using PAF as an agonist. PAF significantly increased
phosphorylation of eNOS at Ser-1177 as early as 1 min (Fig. 14;
p-eNOS/total eNOS ratio was control, 0.97 = 0.07; 1 min, 1.32 =
0.09; 3 min, 1.19 = 0.16; and 5 min, 1.24 * 0.32), and dephos-
phorylated eNOS at Thr-495 significantly at 1 min (Fig. 1B,
p-eNOS/total eNOS ratio was control, 1.0 £ 0.01; 1 min, 0.74 +
0.13; 3 min, 1.02 = 0.21; 5 min, 0.93 = 0.28). PAF increased
pericellular NO concentration from 0 * 5 to 320 = 100 nM
(n = 3, P < 0.05) (Fig. 1C). Last, PAF increased endothelial
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Fig. 1. Functional Characterization of ECV-CD8-GFPeNOSmyr—. (A) PAF
significantly increases phosphorylation of eNOS at Ser-1177 as a function of
time (n = 3). (B) PAF induces eNOS dephosphorylation at Thr-495 (n = 3). (C)
PAF stimulates a robust increase in pericellular NO concentration (mean *+
SEM; n = 6; *, P < 0.05). (D) 10~7 M PAF increases permeability to FITC-Dx-70
in CD8-GFPeNOSmyr~ cells. Data are mean *+ SEM. (¥, P < 0.05, n = 4. (E) PAF
induces eNOS translocation in CD8-GFPeNOSmyr~ cells. The Western blotting
shows that PAF induces the disappearance of eNOS from plasma membrane
(n=3).

permeability to FITC-conjugated dextran (FITC-Dx-70) from
0.82 £ 0.3 X 1075t0 10.0 = 0.97 X 10~° cm/s (Fig. 1D; P < 0.05).
Because fusion to CDS8 is expected to anchor eNOS to the plasma
membrane in ECV-CD8-GFPeNOSmyr~, the PAF-induced hy-
perpermeability results were unexpected. To determine whether
or not PAF induced traffic of CD8-GFPeNOSmyr~ away from
the cell surface, we used biotin labeling of cell surface proteins,
followed by Neutravidin precipitation and Western blotting for
eNOS. Fig. 1E shows that PAF induced internalization of
CDS8-GFPeNOSmyr~, as indicated by a reduction in eNOS
expression in the plasma membrane by 31.6 = 3.9%. Na/K
ATPase, a marker for plasma membrane protein, was not
affected by PAF, indicating that the effect was specific for eNOS.

PAF-Induced Hyperpermeability Requires eNOS Internalization in ECV-
CD8-GFPeNOSmyr—. To further test the functional role of eNOS
endocytosis in PAF-induced hyperpermeability, we inhibited
eNOS internalization by 2 methods that block caveolar endocy-
tosis: (i) transfection with dyn2K44A (15, 16); and (i) transfec-
tion with cavlY14F. Using the cell surface biotinylation tech-
nique, we confirmed that dyn2K44A blocks PAF-induced eNOS
endocytosis, (Fig. 24). Subsequently, we corroborated that
transfection with cavlY14F blocks PAF-induced eNOS endocy-
tosis (Fig. 2B). Fig. 2C shows that dyn2K44A inhibited PAF-
induced hyperpermeability. Transfection with cavlY14F also
significantly inhibited PAF-induced hyperpermeability (Fig.
2D). Cells transfected with empty vector served as controls in
these experiments.

Inhibition of eNOS Endocytosis Reduces Hyperpermeability Indepen-
dent of Cell Type. We used cavlY14F to test our hypothesis in ECs
derived from postcapillary venules (CVEC). This microvascular
segment constitutes the main target for inflammatory agents,
and, therefore, provides a clinically relevant correlation. Con-
firming our earlier observation that transfection of CVEC with
dyn2K44A inhibits PAF-induced hyperpermeability (7), trans-
fection of CVEC with cavl Y14F inhibited PAF-induced increase
in permeability (Fig. 34). We performed additional tests using
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Fig. 2. Inhibition of caveolar internalization decreases PAF-induced hyper-
permeability in ECV-CD8-GFPeNOSmyr~ cells. (A) Western blotting showing
that cotransfection of dyn2K44A inhibits PAF-induced eNOS endocytosis. (B)
Western blotting showing that cotransfection of cav1Y14F inhibits PAF-
induced eNOS endocytosis. (C) Transfection of ECV-CD8-GFPeNOSmyr~ cells
with dyn2K44A inhibits PAF-induced hyperpermeability to FITC-DX-70 (¥, P <
0.05 vs. control, n = 5). (D) Transfection of ECV-CD8-GFPeNOSmyr~ cells with
cav1Y14F inhibits PAF-induced hyperpermeability to FITC-DX-70. (*, P < 0.05
vs. control, n = 5).

cyclodextrin, an agent that removes cholesterol and causes
disarray of caveolar structure (17). Topical administration of 5
mM cyclodextrin inhibited PAF-induced hyperpermeability in
CVEC monolayers (Fig. 3B). Topical administration of 10 mM
cyclodextrin inhibited PAF-induced hyperpermeability in ECV-
eNOSGFP (ECV-304 transfected with wild-type eNOSGFP)
(Fig. 3C). These results support our hypothesis regarding eNOS
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Fig. 3. Inhibition of eNOS endocytosis blocks hyperpermeability indepen-
dent of cell type. Different treatments that prevent caveolar endocytosis of
eNOS in different cells block PAF-induced hyperpermeability. (A) Transfection
of CVEC with cav1Y14F. (B) Treatment of CVEC with 5 mM cyclodextrin (CD).
(C) Treatment of ECVeNOSGFP cells with 10 mM cyclodextrin.
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Fig. 4. Effect of inhibition of PAF-induced eNOS endocytosis in ECV-CD8-
GFPeNOSmyr~ cells and CVEC. Except for control, all measurements were
performed after stimulation with 10-7 M PAF. (A-D) The times on the bar
graphs are in the same order as in the Western blotting panels. (A) Phosphor-
ylation of CD8-GFPeNOSmyr~ in the presence of the dynamin mutant. (B)
Phosphorylation of eNOS in CVEC in the presence of the dynamin mutant. (C)
Phosphorylation of CD8-GFPeNOSmyr~ in the presence of the caveolin mu-
tant. (D) Phosphorylation of eNOS in CVEC in the presence of the caveolin
mutant. (E) NO production in CVEC transfected with dyn2K44A, cav1Y14F, or
treated with 5 mM cyclodextrin (Cyd).

endocytosis, and indicate that this requirement is independent of
cell type.

Inhibition of eNOS Endocytosis and Activation of eNOS. Because
inhibition of caveolar endocytosis may impair the ability of
eNOS to produce NO, we tested eNOS activation by measuring
eNOS phosphorylation at Ser-1177 and NO production in the
transfected cells. PAF caused phosphorylation of eNOS at
Ser-1177 in ECV-CD8-GFPeNOSmyr~ cotransfected with
dyn2K44A (Fig. 44) and in CVEC transfected with dyn2K44A
(Fig. 4B), as well as in ECV-CD8-GFPeNOSmyr~ cotransfected
with cavlY14F (Fig. 4C). In contrast, PAF caused dephosphor-
ylation of eNOS at Ser-1177 in CVEC transfected with cavl Y14F
(Fig. 4D). Fig. 4E shows PAF-induced NO production in CVEC
transfected with dyn2K44A, transfected with cavlY14F-GFP
(GFP served to identify the transfected cells) or treated with 5
mM cyclodextrin. We observed a strong inhibition in PAF-
induced NO production in the presence of dyn2K44A and with
cyclodextrin treatment, whereas only partial inhibition was ob-
served in the presence of the caveolin mutant. Because
cavlY14F reduces NO production, whereas dyn2K44A and
cyclodextrin abolish NO production, these results demonstrate a
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Fig. 5. Inhibition of permeability and eNOS translocation by cav1Y14F. (A)
Inhibition of eNOS endocytosis abolishes VEGF-induced hyperpermeability.
Transfection of CVEC with cav1Y14F significantly inhibited VEGF-induced
hyperpermeability to FITC-DX-70 (*, P < 0.05 vs. control, n = 5). (B) Transfec-
tion of CVEC with cav1Y14F blocks eNOS translocation to cytosol. PAF and
VEGF decrease the brightness of eNOS (red fluorescence) from the plasma
membrane relative to control. Transfection with cav1Y14F inhibits the PAF-
and VEGF-induced movement of eNOS away from the plasma membrane.

previously undescribed uncoupling or dissociation between
eNOS phosphorylation at Ser-1177 and NO production.

Inhibition of eNOS Endocytosis Inhibits VEGF-Induced Hyperperme-
ability. To test whether or not the association between eNOS
endocytosis and hyperpermeability is a universal functional
requirement, we measured the impact of transfecting CVEC
with cavlY14F on VEGF-induced hyperpermeability. In Fig. 54,
we demonstrate that inhibition of caveolar endocytosis also
effectively abolishes VEGF-induced hyperpermeability. Fig. 5B
shows a series of images demonstrating that: (/) PAF and VEGF
induce translocation of eNOS from the plasma membrane
(caveolae) to the cytosol in postcapillary ECs; and (if) transfec-
tion of ECs with cavlY14F inhibits the translocation of eNOS.
Translocation of eNOS is indicated mainly by the disappearance
of eNOS from the cell plasma membrane and the enhanced
brightness in the cytosol (6, 7).

Discussion

Our results demonstrate that eNOS location and internalization
are important factors for determining endothelial function. We
tested our hypothesis in the functional context of endothelial
monolayer permeability to macromolecules. We demonstrate
that eNOS endocytosis via caveolae to an as yet undetermined
subcellular target is a necessary signaling step for NO production
and NO delivery in the development of hyperpermeability in
response to at least 2 proinflammatory agonists, PAF and
VEGF. We also report a previously undescribed experimental
dissociation between eNOS phosphorylation at Ser-1177 and
NO production, which occurs when eNOS is activated under
conditions that anchor caveolae to the plasma membrane.

Endothelial NOS Endocytosis and Permeability. ECV-CDS§-
GFPeNOSmyr~ transfected cells were used as an initial cell
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model to assess the significance of anchoring eNOS to the
plasma membrane in the regulation of endothelial monolayer
permeability. These cells show (i) eNOS distribution similar to
endogenous eNOS in ECs; (if) eNOS phosphorylation at Ser-
1177, and dephosphorylation at Thr 495; (iii) NO production in
response to PAF; and (iv) increase in permeability after PAF
stimulation. Also, PAF causes internalization of eNOS to the
cytosol as it does in ECVeNOS-GFP cells and CVEC (6, 7).
Anchoring eNOS to the caveolae via dyn2K44A and cavlY14F
transfection or by causing caveolar disarray with cyclodextrin
inhibited PAF-induced hyperpermeability. The fact that ECV-
CDS8-GFPeNOSmyr~ is attached to the membrane by the fused
CD8 (12) indicates that eNOS is not internalized by a depalmi-
toylation mechanism in these cells, and supports the role of
caveolar endocytosis of eNOS in the control of hyperpermeabil-
ity responses.

Our results complement current knowledge about regulation
of eNOS, and advance the field by proposing a step that
determines a defined functional outcome. Currently, several
agonists are known to stimulate the same pathways in EC and
lead to changes in phosphorylation of key consensus sites (18)
and initiation of NO production. However, these biochemical
studies have not addressed the regulation of eNOS in terms of
microvascular function. We provide several lines of evidence in
support of eNOS internalization via caveolae as an important
determinant in regulating endothelial monolayer permeability.

The target molecule or acceptor of eNOS-derived NO in the
subcellular compartment remains to be identified. Soluble gua-
nylyl cyclase is a candidate, because it is the main receptor for
NO, and participates in the signaling cascade that leads to
hyperpermeability (19). The mechanisms by which eNOS inter-
nalization and NO production, possibly via soluble guanylyl
cyclase, modify junctional proteins to induce hyperpermeability
to proteins remain unresolved. It is plausible that NO production
in the cytosol may influence cytoskeletal proteins; thus, pro-
moting EC contraction and hyperpermeability (20-22). One may
alternatively speculate that NO-driven S-nitrosylation of pro-
teins may induce changes in trafficking and permeability. In-
creased S-nitrosylation of proteins has been reported in in-
creased permeability (23). NO could modify endothelial
junctional proteins and increase permeability either promoting
their internalization or inhibiting their arrival. S-nitrosylation
modifies proteins either by enhancing their phosphorylation (23)
or inhibiting phosphorylation (24). Because some junctional
proteins are phosphorylated when hyperpermeability is acti-
vated, it is plausible that S-nitrosylation may regulate the phos-
phorylation of junctional proteins.

Activation of eNOS and NO Production. PAF activates eNOS and
causes phosphorylation of the enzyme in vivo and in vitro (6, 25).
A key phosphorylation site is Ser-1177 (3). We determined that
anchoring eNOS to the plasma membrane caveolae with
dyn2K44A, or destroying the caveolar structure with cyclodex-
trin, still allowed PAF-induced phosphorylation of eNOS at
Ser-1177, but blocked PAF-induced NO production. The reasons
for these results are unknown. The mutation at K44 is located far
away from the amino acids in dynamin-2 that interact directly
with eNOS (26); thus, direct interference is unlikely. We cannot
a priori disregard (7) the possibility that, due to the mutation,
structural changes in the dynamin2 can occur and affect the
interaction between dynamin and eNOS leading to impaired NO
production, or (if) the speculation that caveolar scission and
endocytosis are necessary for PAF-induced NO production.
Nonetheless, these experiments do reveal a novel uncoupling
between eNOS phosphorylation and NO production.

To clarify the above issue, we used cavlY14F to anchor
caveolae to the plasma membrane. This construct works by
blocking phosphorylation of caveolin-1 at Y14 (27), a site far
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away from the caveolin scaffolding that inhibits eNOS function
(2). Interestingly, we observed cell line-dependent differences
with this construct. PAF caused phosphorylation of eNOS at
Ser-1177 in ECV-CD8-eNOSGFPmyr~, whereas it caused de-
phosphorylation of eNOS at Ser-1177 in CVEC (Fig. 4C). Also,
PAF caused a reduced NO production in CVEC transfected with
cavlY14F relative to control CVEC. As with dyn2K44A, the
mechanisms of these observations remain unknown, and the
same speculations apply. However, together, the data unques-
tionably show an experimental dichotomy between eNOS phos-
phorylation and NO production.

Importantly, the fact that PAF induced reduced NO produc-
tion and no increase in permeability to macromolecules in
monolayers of CVEC transfected with cavlY14F supports our
argument that location of NO delivery is fundamental for
microvascular function (6). Presumably, because cavlY14F an-
chors caveolae to the plasma membrane the eNOS-derived NO
in these cells is of “plasma membrane” origin and is not delivered
at the appropriate concentration to the subcellular target that
signals for permeability outcomes.

In summary, we report (i) data in support of the hypothesis
that eNOS location and internalization are key signals in the
regulation of permeability, and (ii) experimental uncoupling
between eNOS phosphorylation and NO production. Phosphor-
ylation of eNOS has been classically associated with production
of NO (1, 3). We demonstrate that eNOS phosphorylation at
Ser-1177 and NO production can be separated experimentally by
anchoring caveolar eNOS to the plasma membrane. We suggest
that phosphorylation alone does not constitute an absolute index
of eNOS activation, and that traffic of eNOS and NO production
should be determined for assessment of eNOS activity. Because
the eNOS signaling pathways of PAF and VEGF are shared with
bradykinin and histamine (9, 19, 28), our proposed mechanisms
are likely to be a universal characteristic of ECs. In a broader
context, our data contribute to the advancement of knowledge
of the regulation of microvascular permeability in response to
proinflammatory agents, and may impact the fields of cardio-
vascular medicine and surgery.

Materials and Methods

Drugs and Antibodies. PAF and methyl-beta-cyclodextrin were from Sigma-
Aldrich. VEGF was from R & D Systems. Antibodies recognizing TGN-46 was
from Serotec; flag was from Sigma-Aldrich; eNOS, eNOS-Ser-1177, eNOS-T495,
and GFP were from BD Biosciences.

Cell Culture and Transfection. ECV-304, ECV-eNOSGFP (provided by William C.
Sessa, Yale University, New Haven, CT) and CVEC cultures were grown accord-
ing to published protocols (6, 7). ECV-304 were transfected with a CD8-
GFPeNOSmyr~ expression plasmid (provided by T. Michel, Harvard Medical
School, Boston) by using Lipofectamine and following the instructions of the
manufacturer (Invitrogen). ECV-CD8-GFPeNOSmyr~ and CVEC were trans-
fected with dyn2K44A-GFP, cav1Y14F-GFP (both provided by M. McNiven,
Mayo Clinic College of Medicine, Rochester, MN) or cav1Y14F-flag (provided
by M. del Pozo, National Center of Cardiovascular Research, Madrid) expres-
sion plasmids by electroporation by using the manufacturer’s instructions
(Amaxa Biosystems). All of the experiments were run 72 h after transfection.

Monolayer Permeability Experiments. We determined control and PAF- or
VEGF-stimulated permeability across cellular monolayers using an established
method (6, 29).

Immunoblot Analysis. We extracted protein from cells grown to confluence in
100-mm plates and detected the proteins of interest, as previously described
(6, 7). We used the National Institutes of Health Image J Program to quantify
Western blottings.

Cell Surface Biotinylation. Confluent cells growing in a 60-mm plate were
serum starved overnight. Cells were left untreated or 10-7M PAF was applied
to the cells for 5 min. They were washed 2 times with PBS and incubated with
1 mL of EZ-Link Sulfo-NHS-Biotin (Pierce) for 30min at 4 °C. The monolayers
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were washed 3 times with Tris buffered saline, scraped in 500 uL lysis buffer
(50 mM Tris/150 mM NacCl/0.1 mM EDTA/0.1 mM EGTA/1% Triton X-100/
protease inhibitor mixture), and incubated on ice with shaking for 30 min.
Precleared lysates were obtained by centrifugation at 10,000 X g for 5 min at
4 °C, and incubated afterward for 2 h at 4 °C with 50 uL NeutrAvidin-coated
agarose beads (Pierce). Beads were collected by centrifugation at 14,000 X g
and washed 6 times with lysis buffer. The beads with biotinylated proteins
were resuspended in loading buffer and run in PAGE-SDS gels. Separated
proteins were blotted to nitrocellulose and detected with antibodies specific
for eNOS.

NO Measurements. \We measured NO production using NO-sensitive recessed-
tip microelectrodes and published protocols (30, 31). Coverslips containing
confluent cells were placed in a perfusion chamber. The cells were superfused
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