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The ability to represent time is an essential component of cognition
but its neural basis is unknown. Although extensively studied both
behaviorally and electrophysiologically, a general theoretical
framework describing the elementary neural mechanisms used by
the brain to learn temporal representations is lacking. It is com-
monly believed that the underlying cellular mechanisms reside in
high order cortical regions but recent studies show sustained
neural activity in primary sensory cortices that can represent the
timing of expected reward. Here, we show that local cortical
networks can learn temporal representations through a simple
framework predicated on reward dependent expression of synap-
tic plasticity. We assert that temporal representations are stored in
the lateral synaptic connections between neurons and demon-
strate that reward-modulated plasticity is sufficient to learn these
representations. We implement our model numerically to explain
reward-time learning in the primary visual cortex (V1), demon-
strate experimental support, and suggest additional experimen-
tally verifiable predictions.
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Our brains process time with such instinctual ease that the
difficulty of defining what time is, in a neural sense, seems

paradoxical. There is a rich literature in experimental neuro-
science describing the temporal dynamics of both cellular and
system-level neuronal processes and many insightful psychophys-
ical studies have revealed perceptual correlates of time. Despite
this, and the clear importance of accurate temporal processing
at all levels of behavior, we still know little about how time is
represented or used by the brain (1). Temporal processing is
classically understood as a higher order function, and although
there is some disagreement (2, 3), it is often argued that
dedicated structures or regions in the brain are responsible for
representing time (4). Because different mechanisms are likely
responsible for computing timing at different time scales (1, 5,
6), and because there is evidence for modality specific temporal
mechanisms (7), an alternative possibility is that timing processes
develop locally within different brain regions.

Recent evidence indicates that temporal representations are
expressed in primary sensory cortices (8–10) and that reward-
based reinforcement can affect the form of stimulus driven
activity in the primary somatosensory cortex (11–13). In partic-
ular, Shuler and Bear (9) showed that neurons in rat primary
visual cortex can develop persistent activity, evoked by brief
visual stimuli, that robustly represents the temporal interval
between a visual stimulus and paired reward (Fig. 1). A mech-
anistic framework capable of describing how a neural substrate
can learn the observed temporal representations does not exist.

Here, we explain how these temporal signals can be encoded
in recurrent excitatory synaptic connections and how a local
network can learn specific temporal instantiations through re-
ward modulated plasticity. Although our model is potentially
applicable to different brain regions, we present it in terms of V1.
Our goal is not to fully reproduce the experimental results, but

rather to describe a theoretical mechanism that captures the key
temporal features of the experimental data. We first present a
description of our model that explains how a recurrent excitatory
network can represent time. We then demonstrate that reward
modulated synaptic plasticity allows local networks to learn
specific temporal representations. We describe functional con-
sequences of this form of learning that can be verified experi-
mentally and present experimental results that are consistent
with predictions specific to our model.

Representing Time in a Recurrent Cortical Network
Our aim is to construct and describe a model, with a minimal
number of assumptions, that describes how a network can learn
to represent time as a function of reward. Here, we describe the
model and its key features; for mathematical and implementa-
tion details, see SI Appendix.

We start with a simplified network structure (Fig. 2A) that is
generally appropriate for neurons in V1, which have large
numbers of synapses with local origin and where extrastriate
feedback accounts for a small percentage of total excitatory
current (14, 15). To gain insight into the functional role network
structure plays in determining the temporal activity profile of
individual neurons, we first analyze network dynamics following
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Fig. 1. Schematic illustration summarizing key features from experimental
results. Plots show the firing frequency response of a right-eye (RE) dominant
neuron to RE stimulation and a left-eye (LE) dominant neuron to LE stimula-
tion. In the naı�ve animal, both LE and RE neurons respond (gray lines) only
during the period of stimulation (shaded box). During training, LE and RE
stimulations are paired with rewards delivered after a short (ST) or long (LT)
delay period (dashed lines). After training, neuronal responses (black lines)
persist until the reward times paired with each stimulus. See Fig. S1 for
examples of real neural activity.
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external stimulation as a function of the excitatory synaptic
weights between linear passive integrator neurons.

In our network of N neurons, the firing rate of each single
neuron is approximated by an abstract activity variable, V, with
dynamics described by a first order ODE:

�m

dVi

dt
� �Vi � Iext,i � �

N

LijVj [1]

where Iext,i is the external feed-forward input to neuron i and Li,j
is the weight connecting presynaptic cell j to postsynaptic cell i.
For the sake of analytical tractability, this model makes the
simplifying assumption that neural activity increases linearly
with input (16). Absent recurrent connections, the activity of
each neuron decays with an intrinsic neuronal time constant (�m)
after brief feed-forward stimulation (Fig. 2B, black line). If,
however, the neurons are connected laterally via small excitatory
synapses (Eq. 2) reverberatory propagation of activity in the
network will decrease each neuron’s effective activity decay rate
(Fig. 2B, gray line). This phenomenon, through which the
network structure modifies the response duration of individual
neurons, explains how excitatory synapses can serve as a physical
substrate of temporal representations.

We define encoded time as the effective decay rate of indi-
vidual neurons responsive to a given stimulus engendered by
network structure. Given 2 orthogonal input vectors, I�, corre-
sponding to inputs from the left (� � 1) and right (� � 2) eyes,
it is possible to encode a desired decay rate, �d

�, by constructing
a recurrent weight matrix L such that the connection between
each neuron i and j has the form:

Lij � �
��1

2

��Ii
�Ij

� [2]

where

�� � 1 �
�m

�d
� [3]

In the Shuler and Bear study (9), animals were trained to lick a
‘‘lick-tube’’ for a water reward while the activities of single
neurons were recorded extracellularly in V1. Each trial was
initiated with delivery of a brief (400-ms) full-field visual stim-

ulus to either the left or right eye and reward was delivered with
a temporal offset, specified by number of licks, depending on
which eye was stimulated (n licks for left eye, 2n licks for right).
Following this paradigm, our goal is to encode the offset between
stimulation and reward. We next propose a learning rule that
explains how the network can learn appropriate weights as a
function of reward timing.

Encoding Time Through Reward-Dependent Expression of
Synaptic Plasticity (RDE)
Eqs. 2 and 3 specify that synapses between neurons coactive
during stimulation should be potentiated to a level dependent on
the timing of the paired reward. Because reward in the naı�ve
animal comes long after evoked activity returns to baseline levels
(see Fig. 1), it is unclear how neural activity at the time of reward
can be used to set the correct weights (an example of the
temporal credit assignment problem). To correlate a visual
stimulus with its associated time of reward, the brain has to
bridge the gap in time-scales between �m (tens of milliseconds)
and the reward time T (a few seconds). Accomplishing this
necessarily requires some process operating with sufficiently
slow dynamics to maintain an evoked activity trace until the time
of reward. We therefore propose a learning rule that postulates
that reward signals can regulate the expression of a slow mo-
lecular process, which we refer to as a ‘‘proto-weight,’’ that leads
to long-term synaptic potentiation.

Our proposed plasticity rule, which depends on the reward
dependent expression of these proto-weights, has 4 tenets (see SI
Appendix for details):

1. There are 2 activity dependent processes: the permanent
(expressed) weight matrix L and a temporary (unexpressed)
proto-weight matrix LP.

2. Proto-weights increase in an activity dependent Hebbian
manner and decay with time constant �p., We assume that �p
is sufficiently long so that the proto-weights do not decay to
baseline before the time of reward (i.e., �p � T).

3. Reward signals express proto-weights into permanent synap-
tic weights only at the time of reward, T, and the change in the
permanent weights is proportional to the concurrent value of
the proto-weights.

4. Ongoing cortical activity inhibits the ability of the reward
signal to express proto-weights into permanent weights. This
ensures that the weights will not continue to increase beyond
the correct values with continued training.

To gain insight into how the plasticity rule affects network
activity it is useful to consider the conditions necessary for
synaptic change at the time of reward. The values of the synaptic
proto-weights are determined by the network dynamics and the
Hebbian plasticity function, H. Assuming an appropriate selec-
tion of H, Li,j

p will be greater than zero between all neurons i and
j responsive to a given stimulus at the time of reward. If network
activity decays quickly (as it will in the naı�ve case) the reward
signal will be uninhibited by cortical activity and synapses
between neurons in the responsive population will potentiate.
This potentiation will decrease the network decay rate in sub-
sequent trials. As training progresses, the activity level at the
time of reward will increase, resulting in an inhibition of reward
and a decrease in the magnitude of expressed synaptic change.
Eventually, activity will be sufficiently high to completely inhibit
reward and plasticity will cease. If the cortical activity at the time
of reward is too large, RDE will cause a decrease in the synaptic
weights. A critical insight is that proto-weights act as markers,
transiently storing information about coincident activation of
presynaptic and postsynaptic neurons, and play no role in driving
network activity; changes in their values are antecedent to
changes in actual synaptic efficacies.
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Fig. 2. Representing time. (A) Network structure. Neurons in the recurrent
layer are shown with a subset of the recurrent excitatory synaptic connections
(curved black arrows) and labeled with their associated activity levels (Vi).
Actual network connectivity is all-to-all. Each neuron also receives external
input from the left or right eye. The reward signal (R) projects to all neurons
in the recurrent layer. (B) Example neural activity profiles from a single
rate-based neuron after stimulation (shaded box) when isolated (black line,
no recurrent stimulation, decay rate set by �m) and when embedded in a
network with small lateral synaptic weights (gray line, decay rate �d

�). In our
model, encoded time is represented by the decay rate of neural activity in the
recurrently connected layer.

Gavornik et al. PNAS � April 21, 2009 � vol. 106 � no. 16 � 6827

N
EU

RO
SC

IE
N

CE

http://www.pnas.org/cgi/data/0901835106/DCSupplemental/Appendix_PDF
http://www.pnas.org/cgi/data/0901835106/DCSupplemental/Appendix_PDF


Training the Network to Represent Reward Time Intervals
Using RDE
Training was based on the experimental protocol outlined above.
Our simulated networks were trained by randomly presenting
either a ‘‘left’’ or ‘‘right’’ eye stimulus pattern and delivering
rewards at associated offset times. We first implemented the
deterministic linear neuron model in a network of 40 neurons.
The 40 � 40 weight matrix was initialized to small random values
and the proto-weight matrix was initialized to zero. During each
trial, 1 of 2 orthogonal (monocular) binary input patterns was
randomly chosen and presented for 400 ms as feed-forward input
to the network. Reward was given at either t � 1,000 or t � 1,600
depending on which input was selected and plasticity was based
on RDE.

Fig. 3 shows results of simulations with the linear model
trained with RDE. Initially the neural responses decayed with
the intrinsic neuronal time constant. The duration of cortical
activity increased monotonically during training and stabilized
when the cortical activity at the time of reward reached the
desired level (see Fig. S2). The SI Appendix also demonstrates
that our framework can train binocularly responsive neurons
(Figs. S3 and S4) and works when reward activity is inhibited by
either the average network activity (global form) or the activity
of individual neurons (local form).

The linear neuron model, although mathematically tractable,
captures neither the nonlinear spiking of cortical neurons nor the
complex interactions between ionic species responsible for driv-
ing the subthreshold membrane voltage. To verify that our
approach works in a more realistic neural environment, we also
implemented RDE in a network of conductance based integrate
and fire neurons with biologically plausible parameters (17),
where current is a function of membrane voltage and various
ionic conductances (see SI Appendix for details). These nonlin-
ear neurons receive stochastic feed-forward inputs and constant
background noise that generates spontaneous activity. In this
stochastic implementation, firing times and rates are not precise.

The network architecture and training used with the integrate
and fire model were similar to those used to train the continuous
neuron model. The network contained 100 neurons, and noise
was introduced by stimulating each neuron in the recurrent layer

with independent inhibitory and excitatory Poisson spike trains,
approximately balanced to produce spontaneous firing rates of
2–3 Hz in the naı�ve network. Injected noise was independent
from neuron to neuron and recurrent weights were entrained
using RDE.

Fig. 4 shows the response of this network to monocular inputs
in both naı�ve and trained networks. As before, the naı�ve network
responds transiently only during stimulus presentation; after
training, network driven activity persists until the associated
reward times. Because of increased lateral weights, both the
baseline spontaneous and stimulus evoked spike frequencies in
the trained network are higher than in the naı�ve network. Unlike
the rate-based neuron model, dynamics in the spiking network
are not exponential. After stimulation, firing rates decay slowly
before dropping abruptly back to baseline levels at the approx-
imate time of reward. Despite an inherent sensitivity to the
precise setting of synaptic weights, RDE training is sufficient to
learn temporal representations even with a noisy, stochastic
implementation.

Evaluating Activity Changes with Training
An implication of our model is that training will increase the
firing rate of neurons participating in temporal representations
as increasing recurrent excitation amplifies network activity
through excitatory feedback. This effect can clearly be seen by
comparing both evoked responses and spontaneous firing rates
in naı�ve and trained model networks; as expected, higher levels
of activity exist in the trained network than in the naı�ve.

To determine whether biological neurons show the increased
activity predicted by our model, we calculate and compare the
average firing rate of neurons recorded by Shuler and Bear (9)
in naı�ve and trained animals in a 100-ms window immediately
before stimulation (spontaneous rate) and in the 100-ms window
immediately after the onset of stimulation (evoked response).
Means and standard deviations were calculated for dominant eye
responses in the group of neurons recorded before training and
for all neurons classified as showing a sustained increase after
training. The t test was used to determine whether changes in
these measures over training are statistically significant.
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Fig. 3. RDE in a network of passive integrator neurons. In the naı�ve network
(left column), monocular stimulation of either the left (LE, stimulation of units
1–20) or right eye (RE, stimulation of units 21–40) elicits a brief period of
activity (V, with values indicated by colorbar) that decays rapidly after the end
of stimulation (green bar). There is no activity at the time of reward (cyan lines)
for either input pattern. In the trained network (right column), stimulus-
evoked activity decays with a time constant associated with the appropriate
reward time. Plotting V (normalized, Insets) for example neurons (unit num-
ber 5 for LE, 25 for RE) in naı�ve (blue) and trained networks (red) shows that
training increases the effective decay time constant.
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Fig. 4. RDE with stochastic spiking neurons. Each subplot shows a raster plot
for all neurons in the network over the course of a single stimulus evoked
response (Upper) and the resultant spike histogram (Lower) indicating the
average firing frequency in Hz for the whole network. (A and B) The 2
monocular stimulus patterns elicit brief periods of activity during stimulation
(gray bar) in responsive subpopulations of the naı�ve network that decay
before the times of reward (dashed lines) for each input. (C and D) After
training with RDE, evoked activity persists until the appropriate reward times.
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As shown in Fig. 5, there is a statistically significant increase in
both spontaneous (40% increase) and evoked responses (74%
increase) in the experimental data (recorded from 65 neurons
before training and 65 neurons classified as belonging to the
sustained response class after training). These results, in agreement
with the predictions of our model, suggest that a recurrent mech-
anism may be responsible for the timing responses seen in V1.

Discussion
We contend that the duration of evoked activity, as seen in V1
after brief periods of visual stimulation, could be used by the
brain to represent time and that lateral excitatory connections
between neurons in local cortical networks can create reverber-
ations that underlie these temporal representations. In this
paradigm, time is encoded using mechanisms similar to those
thought to underlie working memory (2, 3, 10). We propose that
the brain can learn specific temporal intervals through reward
dependent plasticity and have demonstrated that our RDE
framework is sufficient to create de novo neural representations
of the interval between seemingly disparate external events.

The proposed network structure is minimal, requiring only
recurrent excitation and a globally available reward signal.
Importantly, our framework does not require specialized net-
work structures, such as stimulus-locked tagged delay lines or
phase-locked oscillators, used in many previous models (6, 18).
Our RDE model combines elements of reinforcement learning
(19, 20), reward modulated plasticity (21–24) and models of
recurrent network dynamics (25–28). The framework is able to
qualitatively account for the most prevalent class of reward-
timing sensitive neurons recorded by Shuler and Bear (9) and can
serve, in principle, as a general model of how reward timing can
be learned locally in different brain regions.

Previous studies in multiple brain regions have described
timing processes manifested by climbing neural activity after
stimulation (25, 29), and various models have been developed to
account for these results (30, 31). The V1 neurons we are
modeling do not exhibit this ramping behavior; instead they show
evoked activity that decays slowly until the time of reward.
Because different mechanisms are thought to be responsible for
representing time at different scales (1, 5, 6), and within different

sensory modalities (7), it is plausible to assume that these
different types of responses could result from different neural
machinery. It is also possible that persistent activity generated by
RDE in primary sensory regions could serve as the input to
higher order timing processes, analogous to the way orientation
selective receptive fields in V1 project to higher order receptive
fields in other visual areas.

In addition to the sustained neuronal responses that we have
modeled, Shuler and Bear also reported smaller numbers of
neurons that were inhibited until reward or whose firing rates
peaked at the time of reward. The temporal representation
generated in our model can conceptually form the basis for these
other forms of representation. For example, the efferent target
of inhibitory neurons driven by our recurrent layer will naturally
show a decrease from their baseline spontaneous firing rates that
will persist until the time of reward (Fig. S5). Our model as
proposed however, does not include a substantive role for
inhibition in the creation of temporal representations. Nonethe-
less, as Fig. S6 demonstrates, our network can continue to report
reward time in the presence of inhibitory interneurons, and our
learning rule can in principle create weight matrices that com-
pensate for inhibition. Previous models of working memory (28,
32, 33) have shown that persistent activity driven by excitatory
feedback can exist in recurrent networks including biologically
plausible ratios between excitation and inhibition.

One distinctive property of the theory proposed here is that a
network can learn temporal representations without requiring
any specialized timing mechanisms. Other models of temporal
processing that do not require these specialized mechanisms
have been proposed (34–36) based on the idea that changes in
network state, dictated by intrinsic neuronal and synaptic dy-
namics, can be decoded to infer the elapsed time since an input
was presented. The capacity and robustness of these models is
currently under investigation. They are similar to our model in
that they use network dynamics to encode time, but differ in that
they do not use plasticity to modify the network structure to
encode specific temporal instantiations.

Our results might seem to contradict previous work demon-
strating that background activity decreases the effective mem-
brane time constant (37). The previous analysis, however, was
based only on feed-forward background stimulation. By includ-
ing feed-back excitation, our model allows the closed-loop
network to increase evoked activity duration with both the linear
rate-based and conductance-based spiking neuron models.
Spontaneous background activity will still result in a reduction
of the effective time constant, but RDE is able to learn the
correct weights to obtain desired temporal dynamics despite the
shorter effective time constant.

A unique implication of our model is that activity levels will
increase as the network learns temporal representations. An
increase in activity is evident in our simulated data (Figs. 3 and
4) and present in the reported experimental data (Fig. 5 and Fig.
S1). The agreement between model prediction and experimental
observation suggests that the brain may be using a mechanism
based on recurrent stimulation to produce the responses re-
ported in V1.

The theory proposed here has other specific testable conse-
quences. Our assumption that the representation of timing is
stored in lateral connections implies increased noise correlations
between neurons selective to the same stimulus in a trained
network (38). Because the change in synaptic weights constitut-
ing the neural substrate of temporal encoding in our model is
spread over the entire recurrent weight matrix, increases in
cross-correlation between individual neurons in the network are
very small. As explained in SI Appendix, we are able to demon-
strate significant noise correlations in our trained network only
by grouping responses across populations of neurons known to
participate in a particular temporal representation (Fig. S7).
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Fig. 5. Experimental results demonstrating that training increases sponta-
neous firing rates and evoked responses as predicted by the model. Training
evokes a 40% increase in the spontaneous firing rate and a 74% increase in
evoked response. Error bars show standard deviation. Differences between
naı�ve and trained responses are statistically significant for both metrics (spon-
taneous P � 0.01, evoked P � 1.5 � 10�4).
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Because of limitations of current recording methods, the original
study did not record sufficient spontaneous out-of-task spiking
activity to confirm this prediction of the model.

The particular form of reward-modulated plasticity described
by RDE implies that changing the probability of reward will not
change the firing pattern of V1 neurons in trained animals
although it might alter the rate at which neurons learn these
representations. Our theory also predicts that blocking the
putative reward signal locally in V1 will eliminate the learning of
cue-reward intervals. Conversely, experimental delivery of a
biochemical reward signal directly to V1 after visual stimulation
could be used to mimic the effects observed after pairing of
visual cues with behaviorally achieved reward. This method
could distinguish between local and global loci of reward inhi-
bition (see SI Appendix for discussion); if global, mimicry should
bypass the inhibition of reward nuclei and prevent convergence
to the appropriate timing. Alternatively, if the mechanisms of
inhibition are local, the network should converge to the timing
of the mimicked signal.

To provide a complete account of this model, concrete
physiological and biochemical processes must replace our ab-
stract notions of ‘‘reward signal,’’ ‘‘inhibition of reward,’’ and
proto-weights. Because it is well established that neuromodula-
tors are essential for experience dependent plasticity in cortex
(39, 40), and that they regulate synaptic plasticity in cortical slices
(41, 42), they are natural candidates for our reward signals. It is
often assumed that dopamine is responsible for implementing
rewards (43), and it is known to modulate the perception of time
(2) in both human (5, 44) and non-human (45) subjects. Dopa-
mine projections into V1, however, are relatively sparse (46).
Another possibility is that cholinergic nuclei, which are known to
be involved in the satiation of thirst (47, 48) and which project
into V1 (49, 50) could signal reward to the visual cortex. Effects
similar to the reported voltage sensitivity of G protein coupled
ACh receptors (51) could provide a biochemical mechanism of
reward inhibition.

Our model predicts the presence of biological proto-weights.
Although we do not propose specific molecular processes as
proto-weight candidates, neural modulators are known to effect
synaptic plasticity by regulating critical kinases (42) and we can
speculate that they are implemented by a posttranslational

modification of some kinase or receptor type (52). An implica-
tion of this work is that the activity dependent modifications of
postsynaptic proteins may play an important computational role
in solving credit assignment problems.

Because the duration of response is set by network structure,
it is robust to the specific dynamics of the processes associated
with learning. The form of learning does, however, set loose
bounds on functionally acceptable dynamical ranges. The dura-
tion of the reward signal in our model should be significantly
shorter than the interval between stimulus and reward, consis-
tent with the brief response duration (�200 ms) of dopamine
neurons after delivery of liquid reward (43, 53). Likewise, our
model requires that the time course of proto-weight activation be
less than the intertrial interval and greater than the reward
interval, a range consistent with the time course of phosphor-
ylation de-phosphorylation cycles in some proteins (54, 55). The
molecular substrates of the RDE theory can be explored using
biochemical analysis of tissue extracted from trained and
untrained animals or explored directly in analogous slice
experiments.

Sustained activity and reward dependent processing are not
classically assigned to the low level sensory regions. Demonstra-
tions of reward dependent sustained activity in somatosensory
cortex (11) and sustained responses in auditory cortex (8) might
indicate that temporal and reward processing occur in lower
order areas of the brain than previously thought. Additionally,
because local neural populations throughout the cortex meet our
model’s minimal requirements, the fundamental concept of
using an external signal to modulate plasticity (23, 24) could be
the basis of elementary mechanisms used throughout the brain
to process time. Our RDE framework conceptualizes and for-
malizes how such networks can reliably learn temporal repre-
sentations and leads to predictions that can be tested experi-
mentally. Experimental demonstration that temporal
representations emerge endogenously within local neuronal
populations would indicate that the brain processes time in a
more distributed manner than currently believed.
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