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ABSTRACT

Motivation: The study of complex biological relationships is aided by
large and high-dimensional data sets whose analysis often involves
dimension reduction to highlight representative or informative
directions of variation. In principle, information theory provides a
general framework for quantifying complex statistical relationships
for dimension reduction. Unfortunately, direct estimation of high-
dimensional information theoretic quantities, such as entropy and
mutual information (MI), is often unreliable given the relatively small
sample sizes available for biological problems. Here, we develop
and evaluate a hierarchy of approximations for high-dimensional
information theoretic statistics from associated low-order terms,
which can be more reliably estimated from limited samples. Due
to a relationship between this metric and the minimum spanning
tree over a graph representation of the system, we refer to these
approximations as MIST (Maximum Information Spanning Trees).
Results: The MIST approximations are examined in the context of
synthetic networks with analytically computable entropies and using
experimental gene expression data as a basis for the classification
of multiple cancer types. The approximations result in significantly
more accurate estimates of entropy and MI, and also correlate
better with biological classification error than direct estimation and
another low-order approximation, minimum-redundancy–maximum-
relevance (mRMR).
Availability: Software to compute the entropy approximations
described here is available as Supplementary Material.
Contact: tidor@mit.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
As the size and dimension of biological data sets have grown,
a variety of data mining and machine learning techniques has been
employed as analytical tools. Among these are techniques aimed
at a class of problems generally known as dimension reduction
problems (Golub et al., 1999; Janes et al., 2005; Slonim et al., 2005).
Dimension reduction techniques can improve the interpretability of
data, either by representing high-dimensional data in a reduced space
for direct inspection, or by highlighting important features of data
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sets that warrant more detailed investigation. For many biological
applications, notably the analysis of high-dimensional signaling
data, principal component analysis (PCA) and partial least squares
(PLS) decomposition are increasingly popular dimension reduction
techniques (Janes et al., 2005; Kumar et al., 2007). Whereas these
techniques reduce the number of variables in a system by including
only statistically important linear combinations of the full set of
variables, the related techniques of representative subset selection
(RSS) and feature selection (FS) instead aim to identify subsets of
variables that are statistically important. These techniques can be
used as preprocessing steps prior to application of machine learning
methods such as classification (Ding and Peng, 2005), and have also
been applied in chemical library design (Landon and Schaus, 2006)
and biomarker discovery (Liu et al., 2005).

While many tools reduce dimensionality to maintain variance
(variance-based techniques), recent directions have led to
information theoretic phrasings (Ding and Peng, 2005; Slonim
et al., 2005). Compared with variance-based methods, information
theory has notable advantages. Information theoretic statistics can
capture all relationships among a set of variables, whereas variance-
based methods may miss non-linear relationships. Additionally
many information theoretic values are invariant to reversible
transformations, limiting the need for such common (and somewhat
ad hoc) methods as mean-centering, variance-scaling and log-
transforming. Finally, information theory provides a framework for
treating both continuous and categorical data, in contrast to variance-
based methods, which are unsuitable for categorical data (Cover
and Thomas, 2006; MacKay, 2003). This common framework can
be especially important when incorporating categorical data, such as
the classification of a type of cancer, into the analysis of a continuous
data set, such as mRNA expression microarrays.

A variety of dimension reduction problems has already been
phrased using high-dimensional information theoretic statistics
(Landon and Schaus, 2006; Peng et al., 2005; Slonim et al.,
2005). Notably, the maximum-dependency criterion [maximizing
the mutual information (MI) between the feature set and the output]
has been proposed for FS (Peng et al., 2005). While the high-
dimensional phrasing is theoretically more correct, difficulties in
estimating high-dimensional statistics with finite sample sizes have
resulted in poor performance when compared with techniques using
only lower order statistics (Peng et al., 2005). That is, methods that
are better in principle perform worse in practice due to their need
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for larger sample sizes. While some low-order methods have been
shown to be related to the high-dimensional phrasing (Peng et al.,
2005), they have generally been developed for a specific application,
and their utility in other problems is unclear. To our knowledge,
there is no available method for systematically replacing high-order
metrics with associated low-order ones. Such a method would enable
utilization of the general high-dimensional phrasing but avoid the
sampling issues that plague direct applications.

In this article, we present a general framework for approximating
high-dimensional information theoretic statistics using associated
statistics of arbitrarily low order. Due to a relationship to the
minimum spanning tree over a graph representation of the system,
we refer to these approximations as Maximum Information Spanning
Trees (MIST). The framework is demonstrated on synthetic data and
a series of microarray data sets relevant to cancer classification, and
the performance is compared with other approaches.

2 THEORY
Information theory is a framework for describing relationships
of random variables (Shannon, 1948). The two most heavily
used concepts from information theory with regard to dimension
reduction are the concepts of information entropy and MI. The
entropy of a random variable, H(x), quantifies the uncertainty or
randomness of that variable and is a function of its probability
distribution, p(x), also called the Probability Mass Function (PMF)

H(x)=−
b∑

i=1

p(xi)log
[
p
(
xi

)]
, (1)

where the summation is over all b bins representing the states of x.
To describe the relationship between two random variables x and y,
one can consider the conditional entropy of x given that y is known,
H(x|y). If x and y are related in some way, knowledge of y may
reduce the uncertainty in x, thus reducing the entropy. Conditioning
can never increase the entropy of a variable, so H(x)≥H(x|y). The
difference between the entropy and the conditional entropy of a
variable is a measure of the amount of information shared between
the two variables. This difference is defined as the MI, I(x;y), and
is symmetric

I(x;y)=H(x)−H(x|y)=H(y)−H(y|x)= I(y;x). (2)

All of these concepts are similarly defined for vectors x and y,
where they are functions of the associated higher order probability
distributions (Cover and Thomas, 2006; MacKay, 2003).

MIST entropy approximation framework: the goal is to find an
approximation Hk

n to the joint entropy of n variables using entropies
of order no greater than some k < n,

Hk
n
(
H1 . . .Hk

)≈Hn
(
x1 . . .xn

)
, (3)

where Hi denotes a true entropy of order i and Hj
i denotes a j-th

order approximation to an entropy of order i. To arrive at such an
approximation, we begin with an exact expansion of the joint entropy
of n variables (Cover and Thomas, 2006)

Hn
(
x1 . . .xn

)=
n∑

i=1

Hi
(
xi|x1 . . .xi−1

)
. (4)

Note that Equation (4) produces the same LHS information
entropy Hn for all permutations of the indices of the xi and that
the RHS is a series of terms of increasingly higher order. We collect
the first k terms on the RHS and identify this as the k-th order
information entropy of the first k variables, giving

Hn
(
x1 . . .xn

)=Hk
(
x1 . . .xk

)+
n∑

i=k+1

Hi
(
xi|x1 . . .xi−1

)
. (5)

We replace each term in the summation by its k-th order
approximation. Because conditioning cannot increase the entropy,
each approximation term is an upper bound on the term it replaced,

Hn
(
x1 . . .xn

)≤Hk
(
x1 . . .xk

)+
n∑

i=k+1

Hi
(
xi|x1 . . .xk−1

)=Hk
n . (6)

All the terms in this sum are k-th order, providing an approximation,
Hk

n , which is formally an upper bound. Note that for k =n this
expression returns to the exact expansion from Equation (4).

Because the indexing of the variables is arbitrary, there
are a combinatorial number of approximations consistent with
Equation (6), all of which are upper bounds to the true joint entropy.
There are actually two levels of arbitrary indexing, one being which
variables make up the first k and the second being the selection
of k−1 variables used to bound each term beyond the first on
the RHS of Equation (6). The best of these approximations is
therefore the one that generates the minimum Hk

n , as this will provide
the tightest bound consistent with this framework. To complete
the approximation, we therefore desire a method for choosing the
indexing that produces the best of these bounds.

For low-dimensional problems one can enumerate the space of
consistent approximations and use the smallest one. To provide a
general solution, we first separate out elements that are independent
of the indexing. Each conditional entropy term can be divided into
an entropy and a MI component, as shown in Equation (2).

Hk
n =Hk

(
x1 . . .xk

)+
n∑

i=k+1

[
H1(xi)−Ik(xi;x1 . . .xk−1)

]
. (7)

Because all individual self-entropy terms will ultimately be included
in the summation, they are not affected by the indexing, whereas
the MI terms do depend on the indexing. For k =2, we arrive at a
compact expression of the best second-order approximation within
this framework that depends only upon the indexing of the pairwise
MI terms,

H2
n =

n∑

i=1

H1(xi)−max
�j

n∑

i=2

I2(xi;xji∈[1,i−1]). (8)

The goal is to select the ordering of the indices, i, and the
conditioning terms, j, to minimize the expression. The selection of i
and j has no effect on the left-hand sum, so it can be ignored during
the optimization. We are then left with n−1 second-order terms to
consider. To phrase the optimization of indices over these terms,
consider a graph where the nodes are the variables and the edges are
all possible pairwise MI terms. The result is a fully connected graph
of n nodes from which we choose n−1 edges to maximize the sum
of the edge weights. The choice of edges is constrained such that
every node must have at least one edge. Because only n−1 edges
are chosen, this also constrains the graph to be acyclic.
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By negating the edge weights and adding a sufficiently large
constant to ensure positivity, the problem is equivalent to the
Minimum Spanning Tree (MST) from graph theory. A variety
of algorithms has been developed to find the optimal solution,
including Prim’s algorithm (Cormen et al., 2001), a greedy scheme
in which the smallest allowed edge is chosen during each iteration.
Using this algorithm, we define a method for efficiently finding the
best second-order approximation consistent with Equation (8). The
computational complexity of Prim’s algorithm for a fully connected
graph, and thus of our method, is O(N2). For the higher order
approximations, we apply the greedy algorithm to select the best
k-th order approximation consistent with Equation (6). Although
it is not guaranteed to be optimal, in small test systems where
enumeration is possible, the greedy scheme resulted in bounds
nearly as tight. Note that the MST phrasing, as used here, is
merely an optimization method for finding the best approximation
consistent with the mathematical framework, and is not necessarily
an inherently meaningful representation.

Bias-estimation and propagation: the bias associated with
computing the MIST approximation can be estimated by propagating
the bias associated with estimating each of the low-order terms.
For clarity we focus on the second-order approximation (MIST2)
although the method can be easily extended for arbitrarily high
approximation order. The error model we use takes advantage
of two properties of entropy estimation: (i) higher entropy variables
are more difficult to estimate (have higher errors), and (ii) entropy
estimates are negatively biased (direct estimates are generally
underestimates) (Paninski, 2003). While neither of these properties
is guaranteed for any single estimate, they are true on average. We
also assume that the estimation errors associated with the first-order
entropies are negligible with respect to the errors in the higher
order terms.

We first consider the bias associated with estimating a single
second-order entropy. For any pair of variables with fixed self
entropies, non-zero MI between them will reduce the joint
entropy of the pair. Because higher entropy variables have higher
estimation bias, the highest possible bias comes when the variables
are independent. By forcibly decoupling any pair of variables
(by shuffling their order with respect to each other), we compute
an estimate that is greater than or equal to the true bias,

H(x,y)−
〈
H(x,y)

〉
≤ Hind(x,y)−

〈
Hind(x,y)

〉
(9)

� H(x)+H(y)−
〈
Hind(x,y)

〉

where the angled brackets indicate averages over repeated samples
and the overbars indicate entropy estimates. All quantities on
the RHS are directly computable, and by repeating the shuffling
procedure, the average estimation bias can be estimated or
confidence limits can be established quantifying the likelihood of
the true estimation error being greater than the computed value.

With a reasonable estimate of the bias associated with computing
each second-order entropy, we need to propagate the bias through the
MIST approximation. We start by rewriting Equation (8) assuming
that the indexing i,j has been determined using the MST approach
as described above, and by expanding the MI term into the

corresponding difference of entropies

H2
n =

n∑

i=1

H1(xi)−
n∑

i=2

[
H1(xi)+H1(xj)−H2(xi,xj)

]
(10)

=H1(x1)−
n∑

i=2

[
H1(xj)−H2(xi,xj)

]
.

Because we assume the bias in estimating first-order entropies to
be small with respect to the bias in higher order terms, the propagated
bias in this expression is dominated by the errors in approximating
the n−1 second-order entropies. Because all of these terms are
negatively biased, we expect the overall propagated error to be
negatively biased as well; i.e. the computed H2

n is expected to be an
underestimate of the approximation assuming no estimation errors
in the low-order terms. Consequently, by summing the second-order
bias approximated by Equation (9), we arrive at an expected bias
for the full approximation:

H2
n −

〈
H2

n

〉
�

n∑

i=2

[
H(xi)+H(xj)−

〈
Hind(xi,xj)

〉]
. (11)

As with Equation (9), repeated shuffling allows one to estimate the
expected bias and to compute confidence limits on the calculation.

3 METHODS
Direct entropy estimation: while the framework developed here is equally
applicable to continuous phrasings of information theory, all variables in this
work were treated as discrete. For continuous data, variables were discretized
into three equiprobable bins unless otherwise stated. Similar results were
achieved using different binning protocols and numbers of bins. For discrete
data no preprocessing was performed. Entropies of arbitrary order were
computed from data by approximating the PMF by the frequencies and using
the resulting PMF estimate in Equation (1). The MIs were then computed
from the estimated entropies according to Equation (2).

Bias estimation: Bias estimates were computed as described in Section 2.
The bias of all pairs of variables was first estimated using Equation (9) by
shuffling the ordering of samples for each pair and recomputing the entropy
directly. This procedure was repeated until the bias estimate computed from
two halves of the shuffling samples agreed within 0.01 nats. The pairs’ biases
were then used to approximate the bias of each high-order approximation
according to Equation (11). The terms included in the summation were
chosen according to the MIST method prior to any error analysis. Two
cases were examined for computing the term in angled brackets. Either the
converged mean value was used to compute the expected bias, or 100 samples
were drawn and the maximum error from this set was used for each term in
the sum, resulting in a P=0.01 confidence limit that the true value of the
entropy approximation lies below this max-error value.

Validation framework: to evaluate the approximation, we developed a
framework for generating relational models with analytically determinable
entropies from which we could draw sample data. These networks consisted
of 5–11 discrete nodes connected by randomly placed unidirectional
influence edges. All nodes initially had an unnormalized uniform probability
of 1 for each state. If node A influenced node B with weight w, then B
was favored to adopt the same state as A by adding w to the unnormalized
probability of that state in B. For higher dimensional influences, the states of
all parents where summed and remapped to the support of the child, and the
corresponding state in the child was favored by adding the influence weight
to that state. Influences including 1–4 parents were included, with 4–19
influences of each order, depending on the number of nodes in the system.
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Influence weights ranged from 1–10 and all variables had three bins. For
each system, the joint entropy of all combinations of nodes was computed
analytically and 10 000 samples were drawn from each network.

FS and classification error: for the FS task, an incremental method was
used in which features were added one at a time to the set of already chosen
features either at random or in order to maximize the score of the new feature
set according to: (i) maximum dependency using direct estimation, (ii)
maximum dependency using MIST of order two (MIST2), or (iii) a second-
order approximation proposed elsewhere specifically for feature selection
known as minimum-redundancy–maximum-relevance (mRMR) (Ding and
Peng, 2005). All FS methods were evaluated by training on 75% of the
samples and testing on the remaining 25%. This procedure was repeated
200 times and the mean behavior is reported. The data were discretized
and the features chosen using only the training data. The frequency of each
gene across the 200 trials was also recorded, and the Bonferroni-adjusted
P-value for each gene occurring this many times was computed compared to
a null model in which features are chosen at random. The subset of features
was then used to train support vector machine (SVM) using a linear kernel,
linear discriminant analysis (LDA), 3-nearest neighbor (3NN) or 5-nearest
neighbor (5NN) classifiers (Gokcen and Peng, 2002, and references therein).
Additional SVM kernels (polynomials of order 2 and 3, Gaussian Radial
Basis Function and Multilayer Perceptron) where also examined; while these
kernels generally resulted in better fits to the training sets, they performed
worse than the linear kernel in cross-validation. To compute the correlation
between the metric scores and classification error, 100 subsets each of 1–15
features were chosen at random and the cross-validation classification error
was computed. Additionally, the MI of each feature set was computed using
all samples according to MIST2, mRMR and direct estimation.

Data sets: gene expression data sets relating to the classification of four
cancer types were used for the FS task. Samples from prostate (Singh et al.,
2002), breast (van de Vijver et al., 2002), leukemia (Golub et al., 1999) and
colon (Alon et al., 1999) were analzyed. Additional information on the data
sets is available in Supplementary Table S1.

4 RESULTS

4.1 Direct validation
To validate the method, we examined the performance of the MIST
approximation in systems with analytically computable entropies.
For real-world applications the entropies of the true distribution are
estimated from limited data sets, and the corresponding numerical
experiments were performed here. To serve this function, we
developed a framework to generate networks with a variable number
of nodes, interactions, orders of interaction, discrete states and
weights of influence between nodes. For each of these networks, all
of the joint entropies were analytically determined for comparison
to the approximations (see Section 2).

Using this framework we randomly generated 100 networks
containing between 5 and 11 variables each with widely varied
topologies, and we sampled 10 000 points from the joint distribution.
For each network, we then computed the joint entropy of all variables
in the network either (i) analytically, (ii) directly from the data,
(iii) using the the second- through fifth-order MIST approximations
with analytical low-order entropies up to and including k or (iv)
using MIST after estimating the low-order entropies from the
sampled data. Additionally, half of the nodes in each network
were randomly chosen and the MI between the chosen set and the
unchosen set was computed according to all the metrics. The results

Fig. 1. Direct validation of MIST entropy approximation. To evaluate the
MIST framework, we simulated 100 randomly generated networks with
analytically computable joint entropies and applied the metrics using a range
of sample sizes. When the analytical entropies are known exactly (A), the
higher order approximations perform increasingly well. When the entropies
are estimated from a finite sample, however (C–E), the approximations
provide the best estimates, with the higher order approximations performing
better as more data become available. This behavior is quantified by
computing the sum-of-squared error of each metric as a function of the
sampling regime (B). The best approximation to use depends upon the
amount of data available, but for all cases examined with finite sample
size, the approximations outperform direct estimation and the second-order
approximation provides a good estimate.

for entropy and MI approximation are shown in Figure 1 and
Supplementary Figure S1, respectively.

The scatter-plots show the relationship between each of the
MIST approximations and the analytical value. As guaranteed
by the theory, when the exact low-order entropies are known
(Figs 1A and S1A), all joint entropy approximations are greater
than or equal to the true joint entropy, and the higher order
approximations are increasingly accurate. Although there are
no guarantees for the behavior of the MI approximation, all
approximations tend to underestimate the true MI and the higher
order approximations generally perform better. In some cases
the lower order approximations are able to fully represent the
network, resulting in perfect accuracy and in all cases the MIST
approximations tend to be fairly accurate.

For biological applications, the exact low order terms are not
available and must instead be estimated from a finite sample
of the underlying distribution (Figs 1C–D and S1C–D). Because
estimating high-order joint entropies requires larger sample sizes
than estimating low-order entropies, the relative performance of
the approximations is crucially tied to the number of samples
available. In the least sampled case shown here (100 points, Figs 1C
and S1C), the second-order approximation (MIST2) yielded more
accurate results than any of the other methods for computing entropy,
while the second- and third-order approximations performed about
equally well for MI. As more samples were used to estimate
the low-order terms, the higher order approximations began to
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Fig. 2. Bias-adjusting for the MIST entropy approximation. Networks were
generated and simulated as in Figure 1. The joint entropy of each network
was computed by the second-order MIST approximation with (BA-MIST2)
or without (MIST2) bias adjusting. (A) The performance of both metrics
as well as a P=0.01 confidence limit for MIST (CL-MIST2) approach the
analytical MIST2 with increasing samples. (B) The SSE for estimating the
analytical MIST2 is shown to decrease as a function of sample size. (C–D)
MIST2 and BA-MIST2 were computed using 10, 50 or 100 samples and are
plotted against the analytical MIST2.

outperform the lower order ones. This trend is quantified in the
upper-right plots (Figs 1B and S1B), which show the sum-of-squared
error (SSE) for each approximation tested. For all sample sizes
tested here, direct estimation performed the worst, demonstrating
the impracticality of estimating high-order information theoretic
terms directly. Furthermore as can be seen in Figure 1C–E and
Supplementary Figure S1C–E, the MIST2 approximation is quite
accurate for all sample sizes. When more data are available, the
higher order approximations can provide even better accuracy than
MIST2, but MIST2 itself appears to be a good metric for all sample
sizes tested.

We also examined the behavior of our bias approximation
framework in the same systems for MIST2. For each pair of
variables, we computed the converged bias and the maximum
observed error over 100 shuffling iterations. For each MIST-
approximated joint entropy we propagated both error sets through
to determine a bias-adjusted entropy (BA-MIST2) and P=0.01
confidence limit. We then compared these values with the
analytically determined ones in different sampling regimes (Fig. 2).

In these systems, the bias-adjusted entropy proved to be a
significantly better estimator of the MIST approximation than the
unadjusted estimator. This result is not necessarily expected, as the
bias was computed using the different, but related, system in which
all variables were forcibly decoupled. That the bias-adjusted values
are not strictly greater than the approximation using analytically
determined values is likely a result of the approximations made
in the analysis: namely, neglecting the errors in first-order terms
and adjusting from a single observed value, rather than a mean
from repeated samplings. As expected, the bias decreases as more

samples are used, resulting in the bias-adjusted and unadjusted
approximations converging for higher sampling regimes. Because
the BA-MIST is always greater than MIST without bias-adjusting,
and the MIST approximation itself is an upper bound to the true
entropy, for higher sampling regimes, bias-adjusting actually results
in poorer performance with respect to the analytical answer. While
the bias is likely to be small in these cases, this result suggests that
while BA-MIST is likely more accurate for low-sampling regimes,
when more data are available, MIST without bias-adjusting may
have lower error with respect to the true joint entropy.

The confidence limit also shows the expected behavior. While it is
not as good an estimator as the bias-adjusted metric, it does provide
an upper bound to the approximation computed with analytical
entropies within the resolution of the estimation techniques. As such,
this metric can provide a guide towards the convergence of the
MIST approximation techniques and may lend some insight into
the selection of the appropriate order of approximation.

4.2 Biological application
To further characterize the MIST approximation and to evaluate
performance in tasks relevant to the interpretation of biological data,
we employed MIST in the task of FS, which has been previously
phrased using information theory (Peng et al., 2005). FS is the task
of choosing a subset of available features for use in some learning
task, such as classification; the information theoretic phrasing seeks
the feature subset with maximal MI with the classification. A well-
studied example is that of selecting a subset of gene expression levels
to use when building classifiers to discriminate among cancer types
(Ding and Peng, 2005; Draminski et al., 2008; Goh and Kasabov,
2005). To explore the performance of the MIST approximation in
this task, we analyzed four gene expression data sets (which varied
both in the number of samples and the number of genes) that had
previously been used to classify cancer type in prostate (Singh et al.,
2002), breast (van de Vijver et al., 2002), leukemia (Golub et al.,
1999) and colon (Alon et al., 1999).

The rationale behind using MI to choose gene subsets comes
from the relationship between MI and classification error (Ney,
2003). To evaluate the relationship between MIST2 and the true
relationships in these biological data sets, we therefore computed
the cross-validated classification error using 100 randomly chosen
subsets including 1–15 genes and a range of classifiers. We also
computed the MI of the same feature sets with the class variable
according to MIST2 and direct estimation, as well as an existing
incremental FS metric that has been shown to be an approximation
of high-dimensional MI known as mRMR (Peng et al., 2005). The
Pearson correlation coefficient between the SVM cross-validation
classification error and the MI metrics for each set size is shown
in Figure 3. Results using 3NN, 5NN or LDA classification error
showed similar trends, as did those using the fit error rather than
the cross-validation error (data not shown). The SVM classifier was
chosen due to its superior performance across the four data sets.

For all four systems, all three metrics have a strong negative
correlation coefficient for the feature sets of size one, indicating
that high MI corresponds to low classification error, as expected.
For larger numbers of features, however, while the MIST2
approximation maintains reasonable negative correlation for all sizes
and data sets, the direct estimation has virtually no correlation with
classification error for sets larger than five. For breast (A) and
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Fig. 3. Correlation of MI metrics with classification error. The classification
error of randomly chosen subsets of 1–15 genes was computed through
cross-validation with an SVM-based classifier. The same sets were then
scored by MIST2, MI computed with direct estimation, and mRMR. The
Pearson correlation between each metric and the error was computed for
gene expression data sets collected in (A) breast, (B) leukemia, (C) colon and
(D) prostate tissue. For all cases, MIST2 shows strong negative correlation
with cross-validation error, meaning high MI is associated with low error.
While correlated in some cases, both mRMR and direct estimation show
poor correlation for some set sizes and data sets.

leukemia (B), MIST2 and mRMR are relatively close though
MIST2 generally exhibits slightly better correlation. For colon
(C) and prostate (D), however, MIST2 exhibits significantly better
correlation for larger feature sets. The correlation across sets of
different size was also computed and is shown in Supplementary
Figure S4. While correlation between different sizes is not necessary
for standard FS phrasings, the strong negative correlation of
MIST2, even across sets of varied size is further evidence that the
approximation reflects the underlying relationships of the system.

In practice, for FS the MI metric would be used to select a single
subset of features that is expected to have low classification error.
In this task, correlation across all sets is not necessary as long as
the top ranked set is a good one. To evaluate the utility of MIST
in this application, we included it, as well as direct estimation and
mRMR, in an incremental FS task to choose subsets of genes with
which to build a classifier for each of the four tissue types. For
each data set, 75% of the samples were used to select the best
set of size 1–15 (or 1–10 for direct estimation) according to each
metric in an incremental fashion. SVM classifiers were then trained
on the same 75% and used to predict the class of the remaining
25% of the samples. This procedure was repeated 200 times to
determine the average cross-validation error of the FS/classification
methods. The performance of randomly chosen feature sets was also
computed and in all cases was significantly worse than all tested
methods (Supplementary Fig. S2). Parallel studies were performed
using 3NN, 5NN and LDA classifiers (Supplementary Fig. S3), as
well as ones in which features were preselected using the full data
set rather than only 75% (data not shown). Leave-one-out cross-
validation schemes were also examined (data not shown). While
the results in all cases showed similar trends, the SVM classifier

Fig. 4. Gene subset selection for cancer classification. Subsets of gene
expression levels were chosen incrementally to maximize the information
with the cancer class according to MIST2, direct estimation of MI or mRMR
and scored by the cross-validation error of an SVM classifier. For all data
sets, 75% of the data were separated and used to select features and train the
model; the classifier was then used to classify the remaining 25%. The mean
classification error and standard error of the mean for 200 training/testing
partitionings are reported. Genes were selected for data sets relating to (A)
breast, (B) leukemia, (C) colon and (D) prostate cancer.

consistently outperformed the other classifiers and the 75% cross-
validation scheme seemed to be the most stringent test. The mean
SVM classification errors are shown in Figure 4.

For all cases, the MIST2 feature sets showed lower classification
errors relative to direct estimation and mRMR when choosing
a small number of features (2–5). This is consistent with the better
correlation with the classification error for MIST2 shown in Figure 3.
For the breast data, this improvement was maintained for feature
sets of all sizes. For the other three systems, however, both direct
estimation and mRMR generated sets with lower classification errors
for sets including more than 5–7 genes. This result is particularly
surprising given that this is the regime in which MIST showed
improved correlation with classification error relative to the other
metrics. Regardless, while MIST appears to select superior subsets
of size 2–5, this behavior does not generally appear to extend to
large set sizes and deserves further study.

In the above validation scheme, many different feature sets
were chosen using different subsets of sample data so as to
characterize the expected performance of the metric for predictive
tasks. In application however, the features would be selected using
all the samples available for training. We therefore incrementally
selected the set of 10 most informative genes according to MIST2
for each of the data sets. An ordered list of these genes along with
references demonstrating the relevance to cancer biology or cancer
diagnosis for a subset of the genes can be found in Supplementary
Table S2. All of the selected feature sets contained genes that have
been either statistically or functionally related to cancer. Many of
the genes have also been identified in other computational studies.
The most informative gene for all four data sets had previously been
identified in multiple studies. For the highly studied leukemia and
colon data sets, nearly all of the genes have been identified in some
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study, though not always in the top 10 ranked genes. Notably, three
of the genes identified in the breast data set (NM_003981, AI918032
and AF055033) consistently appeared in the globally optimal feature
sets of sizes 2–7 in Choudhary et al. (2006).

We also evaluated the robustness of the chosen genes by observing
how often they were chosen in the 200 cross-validation trials. The
P-value for having at least this frequency for each of the chosen
genes is shown in Supplementary Table S2. While some of the
globally chosen genes are not robustly reselected, the majority
(32/40) of the genes appear in the 200 trials more often than expected
at random (Bonferroni-corrected P-value < 0.01), particularly for the
breast (8/10) and prostate (10/10) data sets which have larger sample
sizes.

5 DISCUSSION
Here, a novel framework for approximating high-order information
theoretic statistics with associated statistics of arbitrarily low
order has been developed and validated. Due to the generality of
information theory, the MIST approximation should allow the use
of high-dimensional information theoretic phrasings for a variety
of problems, even in cases when data quantities are limited.
Information theoretic phrasings exist for such tasks as FS (shown
here), RSS (Landon and Schaus, 2006), clustering (Slonim et al.,
2005), network inference (Liang et al., 1998) and other applications
where relationships of multiple variables are important. Though
high-dimensional phrasings are theoretically correct, difficulties in
estimating these terms has led to low-order approximations having
better performance. While these approximations have been applied
to many problems, task-specific metrics were usually developed that
are not generally usable across multiple applications. Instead, by
developing a principled approximation to joint entropy and MI, we
propose a general method for application to many problems.

In regards to the FS task shown here, while MIST2 correlates
well with the classification error and generates low-error sets when
picking a small number of genes, the overall behavior for choosing
larger sets could still likely be improved. For incremental FS, MIST
and mRMR are similar with the primary difference being that MIST
selects a subset of MI terms to consider, whereas mRMR averages
all gene–gene terms to compute the redundancy. While both have
been shown to relate to the maximum dependency criterion, MIST
represents a more general framework for extension to different
problem phrasings. In contrast, mRMR has been well calibrated
for FS, and some features of mRMR may be useful in improving
the performance of MIST in FS. In particular, preliminary work on
incorporating weighting factors to influence the relative importance
of the relevance and redundancy suggests that such a scheme
may result in a better FS method. Additionally, while the current
work has focussed on incremental FS, the generality of MIST and
the good correlation with classification error suggest that global
search methods using MIST could be feasible. In its current form,
MIST provides a well-principled framework without any ad hoc
parameterization that performs comparably to current FS methods.
Furthermore, MIST can be generalized and ported to other problem
phrasings and takes advantage of larger data quantities when they
become available.

One natural extension of the MIST approximation is FS
with multiple outputs. Typical FS phrasings focus on a single
output variable, resulting in most FS methods not being directly

applicable to multiple-output scenarios. Instead, separate subsets
may be chosen for each output and combined subsequently, or
multiple outputs can be combined into a single variable. With
high-dimensional statistics, rephrasing the maximum dependency
criterion for multiple outputs is trivial, by replacing the single
output variable with the set of all outputs of interest (i.e. find
the set that maximizes MI between the gene set and the output
set). In cases where different feature sets can be used for each
output, such as preprocessing before machine learning, multiple
output FS may not be appropriate, as a single consensus set will
not represent each output as well as the individually chosen sets.
In other cases, however, a fixed number of features may be needed
to describe multiple outputs and a single optimization for this task
could be valuable. Considering the relationships between multiple
outputs could be particularly important if the outputs are closely
related. For example, in the case of FS for cancer classification, one
might consider tumor progression measurements at multiple time
points. Alternatively, defining a compact set of features that can
classify multiple disease states could be valuable in more efficient
diagnostic tools. Designing experiments that are richly informative
of a particular set of output variables might also benefit from such
methods. In general, having metrics that support multiple outputs
allows phrasing FS problems that better reflect questions of interest.

The ability to maintain the general information theoretic phrasing
also allows the results between different tasks and experiments
to be compared. Information theory is able to treat data from
different experimental modalities within the same framework,
enabling one to quantitatively compare the information content of
different data types without significant preprocessing. Information
theory also allows the treatment of categorical and continuous data,
and can consider non-linear relationships, unlike variance-based
techniques. While these benefits of information theory have long
been understood, the inability to estimate information theoretic
terms has often precluded their use in biological systems. By
reducing the data requirements for computing high-order entropies,
MIST enables the use of information theoretic statistics even when
few samples are available, as is often true in biological systems.

Although we have used only the second-order MIST
approximation here, the framework provides a range of
approximations of higher order, allowing increased accuracy
when sufficient quantities of data are available. As high-throughput
data collection continues to improve, the framework extends to
incorporate third- and fourth-order relationships. Even as larger
quantities of data become available, MIST is likely to be useful,
as in our synthetic system, even with 104 samples, all orders of
approximation tested outperformed direct estimation. In Figure 1,
we have shown how one might select an approximation order
based on the sample size. For applications where the analytical
solutions are unknown, however, it is unclear how to choose the
best approximation order. Additional work is required to fully
enable such a method. Despite this, it is encouraging that the
second-order approximation performs well both on synthetic and
microarray data, even though high-order relationships are known
to exist.

While the MIST framework arises from a mathematical
approximation, it can alternatively be thought of as a method to infer
a relational model of low-order interactions. This model is then used
to estimate the high-order statistics of interest. Currently, this model
is used only for the approximation, however, the good agreement
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between the approximation and the analytical entropies suggests
that the inferred model captures many of the relevant relationships.
The generation of relational models for biomarker discover has
been previously proposed (van der Greef et al., 2007), and network
inference tools have been proposed that use pairwise MI as the
primary metric (Liang et al., 1998; Meyer et al., 2007). There is
reason to believe, therefore, that the relational models inferred may
be meaningful, as they reasonably represent the system’s statistical
relationships.

6 CONCLUSIONS
Here, we have presented a novel method for approximating
high-dimensional information theoretic statistics with significantly
improved performance when data quantities are limited, as is
often true when dealing with biological data. While we have
demonstrated the utility of this approximation in FS, the generality
of information theory should enable application in a number of
different learning tasks, including RSS, clustering and network
inference. While previous low-dimensional information theoretic
phrasings exist for these problems, they have generally been
developed on a problem-by-problem basis, and are thus not
directly portable between tasks. Instead, by focusing on ways to
approximate the information theoretic statistics directly, we can take
advantage of general information theoretic phrasings in a variety of
problems. In addition, our MIST approximation naturally allows
for incorporating arbitrarily high-order information as sample sizes
increase, providing a consistent framework as the collection of
biological data continues to increase in scale.
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