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The nuclear factor-kappaB (NF-jB) transcription factor system is a
crucial component that controls several important biological
functions, thus raising the need for mechanisms that ensure the
correct termination of its activity. Here, we identify a new
phosphorylation/ubiquitination switch in the NF-jB network that
controls the stability of the transactivating p65 subunit. Tumour
necrosis factor-induced phosphorylation of p65 at Ser 468 allows
binding of COMMD1 and cullin 2, components of a multimeric
ubiquitin ligase complex mediating p65 ubiquitination. Mutation of
p65 at Ser 468 largely prevents p65 ubiquitination and proteasomal
degradation. Inducible p65 elimination is restricted to a subset
of NF-jB target genes such as Icam1. Accordingly, chromatin
immunoprecipitation experiments reveal the selective recruitment
of Ser 468-phosphorylated p65 and COMMD1 to the Icam1
promoter. Phosphorylation of p65 at Ser 468 leads to ubiquitin/
proteasome-dependent removal of chromatin-bound p65, thus
contributing to the selective termination of NF-jB-dependent
gene expression.
Keywords: NF-kB; phosphorylation; ubiquitination; transcription;
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INTRODUCTION
Nuclear factor-kappaB (NF-kB) is a dimeric transcription factor
that controls the expression of a wide variety of genes involved not
only in innate and adaptive immunity, but also in apoptosis and
proliferation (Li & Verma, 2002; Wietek & O’Neill, 2007). The
DNA-binding capacity of NF-kB dimers is primarily controlled by
its interaction with inhibitory IkB proteins (Hacker & Karin, 2006).

Canonical NF-kB activation by a wide variety of signals, including
lipopolysaccharide (LPS), interleukin-1 (IL-1) or tumour necrosis
factor (TNF), triggers a signalling cascade that leads to the
phosphorylation of IkB, and its subsequent ubiquitination and
proteasomal elimination (Hayden & Ghosh, 2008). In addition,
several mechanisms mediate further layers of NF-kB regulation,
including the post-translational modification of the DNA-binding
subunits by phosphorylation, acetylation and ubiquitination. An
increasing number of p65 phosphorylation sites have been
identified such as Ser 468, which is contained in a carboxy-
terminal transactivation domain. Basal Ser 468 phosphorylation is
regulated by glycogen synthase kinase 3 (GSK3; Buss et al, 2004),
whereas stimulus-induced modification is mediated by IkB kinase
(IKK)-b and IKKe (Schwabe & Sakurai, 2005; Mattioli et al, 2006).
Both the p50 and p65 subunits were found to be ubiquitinated and
degraded in the nucleus, thus allowing termination of the nuclear
NF-kB response (Ryo et al, 2003; Saccani et al, 2004; Carmody
et al, 2007). Ubiquitination of p65 is controlled by various
ubiquitin E3 ligases, including suppressor of cytokine signalling
(SOCS1), PDZ and LIM domain 2 (PDLIM2) and COMM domain-
containing 1 (COMMD1; Ryo et al, 2003; Maine et al, 2007;
Tanaka et al, 2007). The p65-binding PDLIM2 protein is
responsible for LPS-induced polyubiquitination of p65 and
sequesters this transcription factor in subnuclear domains for
proteasomal degradation. Stimulation of TNF enhances p65
interaction with COMMD1 and further components of this
ubiquitin E3 ligase complex, including SOCS1 and cullin 2
(CUL2), thus resulting in inducible ubiquitination and destabiliza-
tion of p65. Immunoblotting experiments show that proteolytic
elimination occurs only for a limited subfraction of the p65
protein, suggesting that the turnover of p65 must be tightly
controlled by regulatory mechanisms. Here, we identify the
phosphorylation of p65 at Ser 468 as a regulatory switch for
ubiquitination of this transcription factor.

RESULTS AND DISCUSSION
TNF-triggered p65 degradation depends on phosphorylation
To find a signalling pathway suitable for the study of p65
degradation in mouse embryonic fibroblasts (MEFs), we compared
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the NF-kB-inducing stimuli LPS, IL-1 and TNF for their ability to
mediate p65 decay. As only a fraction of p65 undergoes
proteasomal degradation, MEFs were stimulated with a pulse of
TNF, LPS or IL-1 to induce a single wave of NF-kB activation,

followed by the administration of cycloheximide (CHX) to prevent
resynthesis of the eliminated protein and to allow the convenient
detection of p65 diminishment. Western blot experiments
revealed that TNF had the highest efficacy for the degradation of
p65 (Fig 1A). Although treatment with CHX alone triggered
caspase activity (as revealed by the occurrence of the caspase-
cleaved, truncated form of poly (ADP-ribose) polymerase),
induction of TNF signalling was necessary to trigger p65 decay.
As LPS can trigger the degradation of p65 in RAW264.7
macrophage cells (Tanaka et al, 2007), our data imply that LPS
controls p65 stability in a cell type-specific manner. TNF-induced
elimination of p65 was also detectable in other cell types such as
HeLa cells (supplementary Fig 1 online). Given the need for a
tightly controlled regulation of p65 stability, we investigated
the occurrence of phosphorylation-dependent destabilization, as
seen, for example, for IkBa (Yaron et al, 1998). To investigate this
question, p65-deficient MEFs were retransfected with wild-type
p65 or a p65 mutant in which the phosphorylated Ser 468 is
replaced by an alanine (p65 S468A). TNF-induced degradation of
the wild-type p65 protein was detectable after 6 h, whereas the
unphosphorylatable p65 mutant remained largely stable (Fig 1B).
Accordingly, TNF-induced phosphorylation of p65 at Ser 468
occurred only for the wild type, but not for the point-mutated p65
protein (supplementary Fig 2 online). It has been shown previously
that p65 degradation is more prominent in IkBa�/� cells in which
the IkBa-dependent removal of NF-kB from its target genes is
absent (Saccani et al, 2004). Thus, we compared the stabilities
between the p65 wild-type and Ser 468 mutant in IkBa�/�MEFs to
observe potential differences in the absence of IkBa-mediated
promoter clearance. In addition, this experimental setting revealed
the importance of Ser 468 for the control of p65 stability
(supplementary Fig 3 online). The differential stabilities of p65
and its point-mutated version were also shown by pulse-chase
experiments, which showed a clearly increased half-life for the
mutant p65 protein at early time points (Fig 1C). The amount of
the mutant p65 protein was significantly reduced at later time
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Fig 1 | Phosphorylation of p65 at Ser 468 controls TNF-induced p65

degradation. (A) NF-kB p65 degradation in response to various stimuli.

MEFs were stimulated with TNF (15 min), LPS (30 min) or IL-1b (30 min)

as shown. After washout of the stimuli, the protein synthesis blocker

cycloheximide (CHX; 10 mg/ml) was added for 10 h. Equal amounts

of protein contained in the total cell extracts were analysed by

immunoblotting (IB) for the occurrence of p65, the caspase-cleaved

PARP fragment (indicated as PARP*) and b-actin as shown.

Phosphorylation of IkBa was shown by a phospho-specific antibody.

(B) p65�/� MEFs were transiently transfected to express HA-p65 or the

HA-p65 S468A mutant as indicated. After 36 h, cells were stimulated with

a 15-min pulse of TNF, followed by the addition of cycloheximide for the

indicated periods. Total cell extracts were tested by immunoblotting for

p65 and b-actin protein levels. (C) HEK 293 cells transfected to express

p65 or p65 S468A were metabolically labelled with 35S-methionine

and cysteine. After the addition of TNF and unlabelled cysteine and

methionine, lysates were prepared at the indicated time points and the

p65 protein was immunoprecipitated by aHA antibodies. The p65

protein was further analysed by SDS–PAGE, and an autoradiography of a

dried gel is shown. HA, haemagglutinin; HEK, human embryonic kidney;

IL-1b, interleukin-1b; LPS, lipopolysaccharide; MEF, mouse embryonic

fibroblast; NF-kB, nuclear factor-kappaB; PARP, poly (ADP-ribose)

polymerase; SDS–PAGE, SDS–polyacrylamide gel electrophoresis;

TNF, tumour necrosis factor.
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of His-tagged ubiquitin on Ni-NTA agarose columns (Qiagen, Hilden, Germany). Upper panel: the eluted proteins were shown by
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points, which suggests the occurrence of further degradation
mechanisms such as caspase- or serine protease-mediated
elimination of p65 (Franzoso et al, 1994; Ravi et al, 1998).
Accordingly, prolonged treatment of cells with TNF and CHX also
resulted in the destabilization of the p65 S468A mutant
(supplementary Fig 4 online), suggesting that this phosphorylation
site regulates early, but not late, degradation of p65. As
phosphorylation of p65 at Ser 468 can be mediated either by
IKKb (Schwabe & Sakurai, 2005) or IKKe (Mattioli et al, 2006), we
compared TNF-induced p65 decay between wild-type MEFs and
cells lacking either IKKb or IKKe (Fig 2A). A comparative analysis
of TNF-induced p65 degradation showed that the protein was
completely degraded in wild-type cells 10 h after the TNF pulse,
whereas cells lacking IKKb showed incomplete p65 decay at this
time point. The residual p65 degradation at later time points might
be attributable to other degradation pathways using Ser 468
phosphorylation-independent mechanisms (Lawrence et al, 2005).
By contrast, the p65 protein was largely stable in cells deficient
for IKKe, revealing a crucial contribution of IKKe-mediated p65
phosphorylation for the control of its stability. NF-kB p65
phosphorylation was absent in the knock-out cells (Fig 2B), thus
revealing another phosphorylation-dependent ubiquitination switch
in the NF-kB system.

p65 Ser 468 phosphorylation enables ubiquitination
Many proteins that mediate the termination of the NF-kB
response are themselves target genes of this transcription factor
(Hayden & Ghosh, 2008). To investigate whether gene expression
is required for p65 destabilization, transcription was blocked by
actinomycin D before TNF treatment and the analysis of p65
stability. These experiments showed full degradation of p65 in the
absence of transcription (Fig 3A), revealing that this process does
not depend on de novo gene expression. Similarly, preincubation
with CHX also allowed the occurrence of p65 degradation
(supplementary Fig 5 online). The stability of p65 can be
controlled by caspases (Ravi et al, 1998), serine proteases
(Franzoso et al, 1994) and the proteasome (Saccani et al, 2004).
To reveal the pathway involved in TNF-induced elimination of
p65, cells were preincubated with various inhibitors targeting
distinct pathways. Inhibition of various NF-kB-regulating kinases
did not have any impact on p65 stability (supplementary Fig 6
online). The test of various protease inhibitors showed only a slight
stabilization of p65 by the caspase inhibitor Z-VAD-FMK, whereas
inducible degradation of p65 was largely blocked by the
proteasome inhibitors, MG132 and lactacystin (Fig 3B). Given
the relevance of the proteasome for the control of p65 stability, we
next compared p65 ubiquitination between unstimulated and
TNF-treated cells. Although ubiquitination of p65 was already
detectable in unstimulated cells, it was significantly increased by
TNF treatment (Fig 3C). We then compared ubiquitination
between the wild-type transcription factor and the point mutant
defective in Ser 468 phosphorylation. Cells were transfected with
the various p65 expression plasmids and either left untreated or
stimulated for 5 h with TNF. Cell extracts were analysed by
immunoblotting for p65 phosphorylation and ubiquitination.
Basal p65 ubiquitination was enhanced in TNF-stimulated cells,
whereas the p65 S468A mutant showed a strongly impaired
ubiquitination of p65 (Fig 3D). To explore p65 ubiquitination using
another approach, the transfected cells were lysed and His-tagged

ubiquitin was enriched on nickel-nitrilotriacetic acid (Ni-NTA)
columns. Subsequent immunoblotting clearly identified the
upshifted bands as both ubiquitinated and Ser 468 phosphorylated
p65, and also confirmed the strongly diminished ubiquitination in
the Ser 468-mutated p65 protein (Fig 3E). A steadily growing
number of enzymes from the ubiquitination machinery have been
identified in the NF-kB system (Krappmann & Scheidereit, 2005;
Wullaert et al, 2006). Many of these modifiers show functional
redundancy, as, for example betaTrCP—the receptor subunit of
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a Skp1–Cul1–F-box (SCF)-type ubiquitin E3 ligase—controls
the ubiquitination of IkB and also the p50 precursor p105 (Yaron
et al, 1998; Lang et al, 2003). Thus, we screened a large set of
ubiquitin-modifying proteins with relevance to NF-kB regulation
for binding to p65. Coimmunoprecipitation experiments under
buffer conditions maintaining ubiquitination confirmed published
interactions and also revealed several new p65 interaction
partners (data not shown). All p65 interacting proteins were then
systematically compared for potential differences in binding to
p65 wild-type or the p65 S468A mutant. Most interactors showed
no differences in binding affinities, as exemplified by SOCS1
(supplementary Fig 7 online). By contrast, binding of COMMD1
and CUL2, which are both contained in a multimeric ubiquitin
ligase complex targeting p65, was only detectable for the
wild-type subunit (Fig 4A,B). Control experiments ensured the
occurrence of p65 phosphorylation at Ser 468 under these
conditions (supplementary Fig 8 online). Accordingly, expression
of COMMD1 triggered p65 ubiquitination, whereas ubiquitination
of p65 S468A was largely unaffected. In addition, CUL2-induced
p65 ubiquitination was strongly diminished for the Ser 468 mutant
(Fig 4C). How can phosphorylation of a single amino acid control
the binding to a multimeric ubiquitin ligase complex? It is
tempting to speculate that the phosphorylation of Ser 468 affects
the p65 conformation. A previous study revealed intramolecular
binding between the C- and amino-terminal p65 portions
(closed conformation) that could be disrupted by Ser 276
phosphorylation (open conformation; Zhong et al, 1998). This
model implicates that relief of intramolecular masking by Ser 468

phosphorylation allows for binding of the COMMD1 complex and
subsequent ubiquitination.

p65 degradation occurs at selective promoters
At which NF-kB target genes does elimination of p65 occur?
To investigate this question, p65-deficient MEFs retransfected to
express p65 wild-type or the S468A point mutant were left
untreated or stimulated with TNF for various time points. Gene
expression was monitored by a low-density microarray covering
highly regulated inflammatory genes (Thiefes et al, 2005). Analysis
of the 16 p65-dependent genes on this array revealed that
the gene-regulating capacity of the p65 S468A mutant was
strictly dependent on the individual target gene (supplementary
Fig 9 online). As shown for the intercellular adhesion molecule 1
(Icam1) gene, real-time PCR experiments revealed that
p65-dependent gene expression was already diminished 8 h after
the stimulation of TNF (Fig 5A). By contrast, p65 S468A-induced
transcription was not impaired under similar conditions. Other
genes such as macrophage inflammatory protein 2 (Mip2) did not
show any difference between p65 and the phosphorylation mutant
(Fig 5B). Consistent with the observed selectivity for NF-kB target
genes, we found that only a small subfraction of total p65 was
phosphorylated at Ser 468 (supplementary Fig 10 online). These
gene expression data also imply that ubiquitin/proteasome-
dependent degradation of p65 from its cognate promoters does
not target the immediate early events in gene expression.
Chromatin immunoprecipitation (ChIP) assays were performed to
investigate whether these differences are reflected by p65
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promoter occupancy. Expression of p65 was sufficient to cause
basal association of p65 to the Icam1 promoter, which was further
enhanced after 1 h of TNF treatment. At 5 h after TNF addition, the
amount of promoter-associated p65 was strongly diminished
(Fig 5C). By contrast, the p65 S468A mutant protein remained
associated with its binding site even after prolonged periods of
TNF treatment. Further ChIP experiments revealed the recruitment
of Ser 468 phosphorylated p65 and COMMD1 to the Icam1 but
not to the Mip2 promoter (Fig 5D). Phosphorylated p65 is detected
only at later time points and not at early phases when Icam1
transcription is fully active, but the mechanisms ensuring
its retarded recruitment are unknown. Consistently, Ser 468
phosphorylation can be detected even 5 h after the stimulation
of TNF for expressed (supplementary Fig 2 online) and endo-
genous p65 (supplementary Fig 11 online). Accordingly, a
previous report showed increased Icam1 transcription after
knockdown of COMMD1 (Maine et al, 2007). To reveal the
importance of ubiquitin/proteasome-mediated events for the
removal of p65 from its cognate binding site at the Icam1
promoter, we repeated the ChIP experiments in the presence of
MG132. The induced removal of p65 after 5 h of TNF stimulation
was fully inhibited by the proteasome inhibitor (Fig 5E).

In summary, these data reveal a new negative feedback loop in
the NF-kB system that contributes to the promoter-specific
termination of the NF-kB response. Similar to the other feedback
loops, this event occurs with a characteristic time delay, thereby
allowing full NF-kB function during the interim period (Renner &
Schmitz, 2009). The relative contribution of the various mechan-
isms used for NF-kB feedback inhibition will be a relevant point of
future research.

METHODS
Microarray and ChIP assays. Total RNA was isolated using the
RNeasy kit (Qiagen, Hilden, Germany). Microarray experiments
were performed using the first version of the mouse inflammation
microarray (OciChip; Winzen et al, 2007). ChIP experiments were
performed as described previously (Wolter et al, 2008) using
specific antibodies and the respective IgG control antibody
(Rockland, Gilbertsville, PA, USA) according to the recommenda-
tions of the manufacturer. Immunoprecipitated DNA was detected
by 35 cycles of PCR using Taq DNA Polymerase (Fermentas,
St Leon-Rot, Germany).

Further methods are available as supplementary information.
Supplementary information is available at EMBO reports online
(http://www.emboreports.org)
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