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Cancer genome projects are now being expanded in an attempt to 
provide complete landscapes of the mutations that exist in tumours. 
Although the importance of cataloguing genome variations is well 
recognized, there are obvious difficulties in bridging the gaps 
between high-throughput resequencing information and the molec-
ular mechanisms of cancer evolution. Here, we describe the cur-
rent status of the high-throughput genomic technologies, and the 
current limitations of the associated computational analysis and 
experimental validation of cancer genetic variants. We emphasize 
how the current cancer-evolution models will be influenced by the 
high-throughput approaches, in particular through efforts devoted 
to monitoring tumour progression, and how, in turn, the integration 
of data and models will be translated into mechanistic knowledge 
and clinical applications.
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Introduction
Cancers result from the accumulation of genetic changes (Vogelstein 
& Kinzler, 2004), and the identification of gene variants involved in 
tumour development and progression has been a central goal of can-
cer research for years (Sidebar A). Projects such as the Human Cancer 
Genome Project, The Cancer Genome Atlas and the International 
Cancer Genome Consortium aim to decipher the spectrum of genetic 
variants in different cancer types. The goals of these high-throughput 
resequencing (HTR) studies are fourfold: to identify genetic changes 
associated with tumour phenotypes; to discover molecular biomark-
ers that might be used for early detection, more accurate diagnosis or 
prognosis; to determine the molecular events of tumorigenesis; and, 
ultimately, to use this knowledge to develop strategies for targeted 
therapy (Chin & Gray, 2008; Wood et al, 2007).

However, there is an intense debate about the extent to which 
large-scale variation data will help us to understand the molecular 
mechanisms of tumour evolution. It is fair to say that, so far, the first 
genome-wide cancer HTR projects have had limited impact on 
molecular cancer research. These studies are rarely quoted as a start-
ing point for further experiments (supplementary Table S1), although 
it is clear that more time is needed to translate gene discovery into 
mechanistic understanding. Technical, cultural and scientific issues 
can be responsible for the gap between genomic data and outcomes 
in terms of the molecular understanding of tumorigenesis. In the first 
place, the current methods for the organization of genomic data are 
evolving along with sequencing developments and constitute a real 
handicap for the use of the information. Second, high-throughput 
technologies unavoidably generate noise; the computational and 
statistical methods used to filter out genomic data—on which the 
reliability of the observations provided to the community ultimately 
depend—are not exempt from complications. Third, the core of the 
scientific challenge lies in the difficulty of linking genomic data to 
the molecular processes that underlie cancer evolution, as discussed 
in the final section of this review. It is therefore not surprising that 
cancer genome initiatives have generated substantial criticism, as 
many biologists are used to (and favour) more targeted approaches 
(Chng et al, 2007; Loeb & Bielas, 2007; Strauss, 2007).

The mutational landscape of tumours
Many types of genetic variant contribute to cancer: small structural 
changes (such as point mutations or small insertions), major struc-
tural rearrangements (such as translocations), numerical changes and 
epigenetic changes (supplementary Table S2). Alterations in the con-
trol of aneuploidy could also have a role (Duesberg, 2007). Mutations 
can occur spontaneously in cancer cells—through cytosine deamin
ation, for example—after exposure to carcinogens or as the result of 
a mutator phenotype caused by mutations in polymerases and/or in 
mismatch-repair genes, which can lead to chromosomal instability 
(Loeb et al, 2008). In principle, all genes that harbour modifications 
are candidate cancer genes. 

Genetic variants can be transmitted through the germline or can 
arise through somatic mutation. Germline variants are present in all the 
cells of an individual and contribute to inherited cancer susceptibility. 
One particular case of germline variants are the single-nucleotide 
polymorphisms (SNPs), the most common genetic variants, which 
are, by definition, present in at least 1% of the population (Collins  
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et al, 1998; The International HapMap Consortium, 2003). Germline 
variants are typically identified through resequencing, and their 
involvement in cancer is shown using linkage or association studies 
(supplementary Table S2). Somatic mutations arise in the genomes of 
dividing cells and, in fact, all adult organisms are probably mosaics 
of somatically mutated cells. Somatic changes are typically identified 
through the resequencing of candidate genes, by analysing chromo-
somal rearrangements, or by quantifying losses or gains in gene-copy 
numbers using a range of techniques—such as microsatellite analysis 
or the quantitative polymerase chain reaction (qPCR; supplementary 
Table S2). Evidence for epigenetic silencing and downregulation of 
expression provides further support for the identification of tumour-
suppressor genes, whereas increased expression can provide evi-
dence for oncogene identification. The experimental validation of 
the biochemical and/or biological effects of a given alteration is often 
considered as proof of mechanistic involvement. In this context, RNA 
interference provides an additional method to study the involvement of 
gene variants in tumorigenesis. It has, for example, been recently used 
to validate mouse tumour-suppressor candidates (Zender et al, 2008).

The detection of point mutations has generally been carried out 
with small-scale sequencing from one to a few genes; >25,000 
mutations identified in the well-known tumour-suppressor TP53 
(Soussi et al, 2000) have been collected using this approach.

In the past decade, technical advances have provided the oppor-
tunity to use high-throughput methods for the identification of can-
didate cancer genes. Functional genomics approaches—such as 
microarray or methylation studies—have also been used, as well as 
association analyses and, more recently, tumour HTR screenings to 
determine the genes responsible for the initiation and progression of 
cancer (supplementary Table S2).

Large-scale resequencing studies
HTR studies can detect point mutations and short insertions or dele-
tions (Bardelli et al, 2003); the introduction of ‘next-generation 
sequencing’ technologies (Mardis, 2008) has not only produced 
massive amounts of data, but also allows the quantitative identif
ication of individual gene variants and the detection of abnor-
mal transcripts (Campbell et al, 2008). So far, HTR studies have 
followed two approaches, focusing either on genes or on tumour 
types (Table 1). In the first approach, a subset of genes—such as 
those that encode protein kinases (Greenman et al, 2007)—is 
sequenced in a relatively large number of samples. This approach 
allows the identification of genes that are mutated at low frequen-
cies, but also requires an a priori selection of genes. The second 
approach analyses the coding sequences of whole genomes in a 
smaller number of tumour samples, and has been applied to colon 
and breast tumours (Sjöblom et al, 2006; Wood et al, 2007), pan-
creas adenocarcinomas ( Jones et al, 2008) and glioblastoma (Parsons 
et al, 2008). This approach allows for the identification of the most- 
frequently mutated genes (Table 1). One such HTR study screened 
518 protein kinases in 26 primary lung neoplasms and seven cell 
lines, and identified 188 mutations in 141 genes (Davies et al, 2005).

Sidebar A | In need of answers

(i)	 How can we define a cancer gene and how many cancer genes exist?
(ii)	 How can the functional effects of mutations in cancer cells be predicted? 
(iii)	How can cancer genes and their associated functional roles be precisely 
assessed by detailed biological research? 
(iv)	 How can the gene variants that are causally involved in tumour 
development or progression be identified among all the gene variants in a 
tumour? 
(v)	 How can the gap between the genetic variants observed in cancers and 
the current models of cancer evolution be bridged? 
(vi)	 How can the experimental analysis of gene variants involved in cancer 
be accelerated?

Table 1 | Catalogue of main recent high-throughput cancer genomic studies and initiatives

First author Publication 
date

Genes Tumours Screen sizes PMID

Bardelli 2003 Tyrosine kinase Colon 138 genes, 35 samples, a subset in 147 additional samples 12738854

Wang 2004 Tyrosine phosphatase Colon 87 genes, 18 samples, a subset in 157 additional samples 15155950

Stephens 2005 Kinase Breast 518 genes, 25 samples, a subset in 56 additional samples 15908952

Davies 2005 Kinase Lung 518 genes, 33 samples, a subset in 56 additional samples 16140923

Sjöblom 2006 All Breast and colon 13,023 genes, 22 samples, a subset in 48 additional samples 16959974

Greenman 2007 Kinase 210 human cancers 518 genes in 210 samples 17344846

Wood 2007 All Breast and colon 18,191 genes, 22 samples, a subset in 48 additional samples 17932254

Loriaux 2008 Tyrosine kinase Acute myeloid leukaemia 85 genes, 188 samples 18252861

Tomasson 2008 Tyrosine kinase Acute myeloid leukaemia 26 genes, 94 samples, a subset in 94 additional samples 18270328

Brown 2008 Tyrosine kinase Chronic lymphocytic 
leukaemia

70 genes, 95 samples 18754031

Jones 2008 All Pancreas 20,661 genes, 24 samples 18772397

Parsons 2008 All Glioblastoma 20,661 genes, 22 samples, a subset in 83 additional samples 18772396

CGARN 2008 601 genes Glioblastoma 601 genes, 91 samples 18772890

Ding 2008 623 genes Lung 623 genes, 188 samples 18948947

CGARN, Cancer Genome Atlas Research Network; PMID, PubMed identifier.
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Regardless of the strategy used, these studies produce an over-
whelming amount of information. The results are usually provided 
as raw tables in the supplementary material of a given publication 
and the main outcomes are briefly summarized in the published 
text. A number of databases aim to compile this type of information, 
such as Catalogue of Somatic Mutations in Cancer (COSMIC), which 
lists >60,000 mutations (Forbes et al, 2008), and the Cancer Gene 
Census (CGC), which—as of October 2008—included data for 380 
cancer genes (Futreal et al, 2004); other repositories also include 
cancer-related information (Table 2; supplementary Table  S3). 
However, although these genomic data are of great biological 
value, they are, in general, not sufficiently linked to additional 
information on gene annotation and regulation, or on molecular 
interactions and pathways, or to the clinical data about tumour and 
tissue types. In analysing this panorama, one realizes that the avail-
able infrastructure for organizing cancer genome information is still 
in its infancy and certainly lags behind the capacity of the current 
massive experimental approaches.

Drivers and passengers
Like all high-throughput approaches, HTR generates noise that is 
difficult to distinguish from real biological signals. This noise can be 
technical, coming directly from sequencing technologies or from 
limitations in tumour-cell collection; all methods are sensitive to the 
presence of the normal allele, either in tumour cells or in contam
inating normal cells. Gene variants that correspond to SNPs are 
ideally pinpointed by sequencing both tumour and normal tissues 
from the same patient, or by checking polymorphism databases. 
However, the most important source of problems is the presence 
of numerous mutations that are clearly detectable but do not have 
a direct role in cancer. In fact, only a handful of gene mutations 
that have been identified in HTR studies are likely to be biologically 
meaningful. To distinguish these mutations from the background 
mutation noise is a difficult task.

Mutations can be classified as ‘drivers’ or ‘passengers’ depend-
ing on their involvement in cancer development and progression. 
This metaphor was probably used for the first time in 1964, during a 
keynote lecture by Sir Christopher Andrewes, in which he referred to 
the role of viruses in either causing cancer (drivers) or being merely 
passengers in infected cells (Andrewes, 1964). Today, the term driver 
is used to denote mutations and/or genes that are positively selected 
and contribute to tumour development or progression, whereas the 
term passenger is used to designate cancer-neutral variations that are 
retained during the evolution of the cancerous cells.

Single mutations can be responsible for the development and 
progression of a cancer (Fig 1A). Historically, analyses have focused 

on mutations that can affect protein function. These mutations are 
thought to be mainly non-synonymous (missense, nonsense or 
frameshift), in contrast to synonymous (silent) mutations. In this 
regard, the first oncogene identified—H-ras—was found to have a 
non-synonymous substitution in codon 12 that introduces an alanine 
in the position of a glycine, thereby blocking its GTPase function 
and producing a protein able to transform cells (Reddy et al, 1982). 
However, this corresponds to a ‘protein-centric’ view of biology; one 
should remember that non-synonymous mutations might not always 
alter protein function (owing to amino-acid plasticity) and, impor-
tantly, that there is strong evidence showing that ‘silent’ mutations 
can be biologically relevant—for example, through the modulation 
of splicing (Cartegni et al, 2002)—although it is difficult to assess 
their effects and even more difficult to predict them. Additionally, 
we have to keep in mind that 98% of the genome is intergenic. In 
this respect, it is currently impossible to interpret the consequences 
of mutations in non-coding DNA regions, with the exception of 
some favourable cases in splice sites or promoters.

The current way of thinking assumes that only a small frac-
tion of the non-synonymous mutations actually cause tumours. 
Historically, the identification of mutations has been followed 
by functional analyses to evaluate their pathogenic potential. For 
example, a screening of the gene encoding the tyrosine kinase 
FLT3 (FL cytokine receptor) identified nine non-synonymous 
mutations (Fröhling et al, 2007), four of which allow the growth of 
cultured cells independently of the presence or absence of growth 
factors. In general, only a small range of biological assays is used to 
assess pathogenicity, exploring a limited spectrum of the potential 
biological effects of candidate mutations and often being unable  
to detect small functional changes (Chin & Gray, 2008). When a 
direct effect on cell proliferation or the generation of apoptosis is 
not detected, other experiments are seldom used unless the func-
tional annotations point directly to a crucial biological role—as is 
the case for proteases and kinases. It is a formidable challenge to 
scale up these experiments to validate the results of genome-wide 
HTRs, and, therefore, in silico methods are a suitable alternative. 
Typical computational methods are based on the assumption that 
somatic mutations considered as ‘drivers’ would have to affect 
protein function markedly (Torkamani & Schork, 2007). Sequence 
and protein domain conservation, as well as protein structure, 
are used to determine the crucial positions in a given protein and 
to predict the causative effects of mutations (Fig 1A). The same 
parameters are also applied to predict the possible pathogenicity 
of SNPs (supplementary information online).

Bioinformatic predictions based on sequence analysis—made by 
the SIFT (Ng & Henikoff, 2003) and PMut (Ferrer-Costa et al, 2005) 

Table 2 | Main cancer-specific and non-specific repositories that contain information about cancer-associated mutations

Acronym Full name* Category URL Reference

COSMIC Catalogue of Somatic Mutations in Cancers Mutations http://www.sanger.ac.uk/genetics/CGP/cosmic Forbes et al, 2008

CGC Cancer Gene Census Cancer genes http://www.sanger.ac.uk/genetics/CGP Futreal et al, 2004

OMIM Online Mendelian Inheritance in Man Disease-related genes http://www.ncbi.nlm.nih.gov/omim Hamosh et al, 2005

Ensembl – Polymorphisms http://www.ensembl.org Flicek et al, 2008

dbSNP Single Nucleotide Polymorphism Database Polymorphisms http://www.ncbi.nlm.nih.gov/SNP Sherry et al, 2001

*For information on additional repositories, please consult supplementary Table 3.
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programs—and experimental results have been compared for nine 
FLT3 mutations (Fröhling et al, 2007). The consensus bioinformatic 
predictions failed to identify two mutations that were experimentally 
shown to affect function, whereas one predicted driver mutation 
was not found to have a functional effect. By contrast, all four of the 
mutations predicted to be passengers in silico were confirmed by the 
functional analysis. The availability of more case studies will allow a 
better assessment of the predictive capacity of computational tools.

It is important to remember that there is a great difference 
between demonstrating that a mutation alters the function of a pro-
tein and claiming that it has a pathogenic involvement in cancer. 
The effects of candidate mutations in the development of cancer 
are probably highly context dependent and the assessment of their 
biological significance in the context of human cancer needs to be 
largely extrapolated.

At a second level of analysis, the overall frequency of mutations in a 
given gene can help to detect a positive selection that would support its 
involvement as a driver for oncogenesis (Fig 1B). The usual assumption 
is that positive selection is exerted mainly on non-synonymous mut
ations. The genetic code provides a random ratio of approximately two 
non-synonymous mutations for each synonymous one (2:1); higher 
ratios are interpreted as evidence of positive selection and competitive 
advantage. In reality, more complex models—borrowed from the field 
of molecular evolution—are applied, which can also take into account 
the types of mutation (transition and transversion) or the neighbouring 

sequence (for example, whether a C-to-T transition occurs in a CpG 
island; a more detailed explanation of the models used can be found 
in the supplementary information online). Another set of methods calc
ulates differences between the observed and the expected frequencies 
of non-synonymous mutations. If a gene contains—in all sequenced 
tumours—more mutations than would have been expected to occur 
by chance, these have been positively selected during the process  
of tumorigenesis and, therefore, confer an advantage in this process 
(supplementary information online).

An obvious limitation of these approaches to the identification 
of cancer genes is the need to sequence many samples. Without 
enough observations, the less-frequently mutated genes would not 
meet the statistical thresholds. In fact, they would be indistinguish-
able from unselected passengers, although they can be revealed by 
functional assays (Fröhling et al, 2007). Furthermore, these statistical 
techniques do not provide information about the specific alleles—
point mutations—involved in cancer evolution. A perhaps less obv
ious—albeit not less important—limitation of current studies is that 
they usually consider mutations individually, without modelling epi-
static interactions. In a few cases, the importance of the combination 
of otherwise neutral (passenger) mutations has been shown (Chen  
et al, 2008). Epistatic effects (Moore, 2005), which are not commonly 
considered in cancer genome studies, might be even more important 
when taking genetic background into consideration, either alone or 
together with somatic mutations.

SIFT  (Ng & Henikoff, 2003)
Pfam LogR.E  (Clifford et al, 2003)
CanPredict  (Kaminker et al, 2007a)

SNP3D  (Yue et al, 2006) 
Kinase-dedicated Method (Torkamani & Schork, 2007)

PMut  (Ferrer-Costa et al, 2005)

Ratio non-synonymous:
synonymous
A higher proportion of 
non-synonymous mutation 
would be indicative of a 
selection advantage

Frequency of mutations
Calculation of the expected 
frequency of mutations 
and comparison to the 
observed one

(Greenman et al, 2007)

CaMP scores  (Sjöblom et al, 2006; Wood et al, 2007)

MetaCoreTM  (Ekins et al, 2007)
GSEA  (Subramanian et al, 2005)

GOSS  (Kaminker et al, 2007b)
Endeavour  (Aerts et al, 2006)
CGPrio  (Furney et al, 2008)

Processes enriched in 
mutations

Comparison with 
process annotations of 
known cancer genes

C Processes
 Gene ontology
 pathways

B Genes

A Mutation

Ratio 2:1
Random passenger

Ratio 6:1
Selected driver

Observed = Expected
Random passenger

Observed > Expected
Selected driver

Impact on the sequence
Sequence and/or 
protein domain conservation

Point mutation

Impact on the structure
Folded state destabilization

Small insertion

Impact on both 
sequence and structure

Small deletion

S

NS

Fig 1 | Driver or passenger? Multilevel strategies used to classify mutations and genes as either ‘drivers’ or ‘passengers’ at the level of (A) mutations, (B) genes  

or (C) processes. NS, non-synonymous; S, synonymous.
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Among known mutations, a large proportion occurs in a few 
genes, such as TP53 or K-RAS (Forbes et al, 2008; Soussi et al, 
2000). Hence, cancer genomes are composed of a handful of freq
uently mutated genes and a much larger number of infrequently 
mutated genes. The number of genes that are mutated in cancers, 
although large, possibly reflects alterations in a relatively small 
number of signalling pathways (Wood et al, 2007; Fig 1C). Indeed, 
many recent HTR studies provide an interpretation of their results 
in terms of alterations in ‘core pathways’ ( Jones et al, 2008; Parsons 
et al, 2008). This point is crucial—particularly from a therapeutic 
point of view—because designing strategies to target proteins indi-
vidually is different from targeting a well-defined pathway (Check 
Hayden, 2008). Additionally, cancer genes might share other struc-
tural or functional properties (Furney et al, 2006), such as good 
evolutionary conservation or a role in essential cellular processes 
such as the cell cycle or DNA repair. The analyses based on pre-
vious knowledge of known pathways and functions can be useful 
for the interpretation of genome-wide results. However, to obtain 
new insights into the oncogenic process, it is important to avoid the 
constant re-identification of the same genes for which significant 
functional information is already available.

Cancer-evolution models and cancer genomics
Molecular biologists have been working for the past 20  years 
to determine the molecular mechanisms of cancer evolution. 
Modelling cancer evolution is more than an academic exercise as it 
has profound implications on the detection of early recurrence and 
in the choice of adjuvant therapy, among other aspects (Fig 2). To 
be useful in this context, large-scale genomic studies would have to 
complement these efforts, and help to improve our understanding of 
tumour development and progression.

Historically, cancer research has been dominated by the ‘clonal 
evolution’ model of tumour development and progression (Fig 3, 
blue arrows). This model postulates that tumour cells acquire spe-
cific genetic changes, leading to clonal expansion. These changes 
are selected in competition with other tumour cells through a 
Darwinian process, and those that confer a selective advantage 
become fixed, thereby allowing a phylogenetic tracing of the his-
tory of the evolving cell populations. In this model, it is generally 
considered that benign lesions are precursors of malignant tumours, 
genomically stable tumours precede genomically unstable ones 
and metastases are the ultimate step in tumour evolution. More 
recently, it has become evident that some experimental results do 
not fit this model. For example, some metastases of breast cancers 
bear little genetic resemblance to the primary tumour (Schmidt-
Kittler et al, 2003). Moreover, a recent study showed that a small 
proportion of normal mouse mammary epithelial cells injected 

intravenously can survive at distant sites and eventually develop 
into tumours (Podsypanina et al, 2008). These observations have 
led to the proposal of the ‘parallel evolution’ model (Gray, 2003; 
Yokota & Kohno, 2004), in which cells that generate metastases are 
separated relatively early from the primary tumour and evolve inde-
pendently (Fig 3, red arrows). This model is reinforced by data from 
gene-expression profiles that are predictive of metastases in certain 
primary breast tumours (Bernards & Weinberg, 2002). 

The differences between both models have important conse-
quences for the interpretation and clinical use of the knowledge 
about cancer-associated mutations. In the framework of the ‘clonal 
evolution’ model, the significance of a mutation detected in a meta
stasis—in the absence of information about its presence in the pri-
mary tumour or in pre-neoplastic lesions—is unclear. In the context 
of the ‘parallel evolution’ model, targeting this mutation for therapy 
would have no effect on the growth of the primary tumour, which 
could evolve to metastasis through other mutations. Given the com-
plexity of cancer and the diversity of its phenotypic presentation, it 
is unlikely that a single paradigm will universally account for cancer 
development and progression; the different models might be com-
plementary rather than exclusive, at least when considering cancer 
globally rather than at the individual level. It seems possible that 
these two models might explain different, albeit concurrent, bio
logical processes (Fig 3, green arrows). This integration is also rein-
forced by evidence that metastases can act as repositories from which 
additional systemic tumour-cell seedings can take place (Nguyen  
& Massagué, 2007).

HTR studies are usually performed using DNA from cell lines, 
xenografts or large and advanced tumours. This bias in sample 
selection, owing to the fact that earlier stage tumours are under
represented, is to some extent also present in low-scale studies. 
During the advanced stages of tumorigenesis, all the mutations nec-
essary for cancer development and progression are already present; 
as is commonly assumed, “such tumours contain all the mutations 
found in the early stage tumours, but the converse is not true” (Wood 
et al, 2007). The information derived from HTR studies is therefore 
intrinsically far from providing information on other stages of cancer 
evolution, and hence does not contribute to our understanding of the 
development and evolution of cancer. Furthermore, the identification 
of causative cancer genes and mutations—based on the methods 
adapted from evolutionary biology described above—tends to be too 
general to give specific information at the level of resolution required 
by the current cancer-evolution models. Hence, we continually have 
to revisit our understanding of the contribution of genetic variants 
based only on the study of snapshots in tumour evolution, which do 
not provide sufficient insight to elucidate the true relevance of these 
genes in the tumorigenic process. 

Molecular mechanisms

Clinical applications

Cancer evolution models

Molecular approaches 

Experimental and
computational methods

Target validation

Molecular markers

Drug development

HT approaches

Fig 2 | Modelling cancer evolution. Using the available technologies, the modelling of cancer evolution should provide insights into its development and progression.
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Fig 3 | Models of cancer evolution. (A) The ‘clonal selection model’ (blue arrows) is the prevailing view to explain the successive steps of mutation and selection 

from normal tissue to primary tumour and metastasis. However, metastasis-generating cells can emerge relatively early in the tumorigenic process and ‘seed’ 

distant tissues, thereby evolving in parallel with the primary tumour and delineating the ‘parallel evolution’ model (red arrows). Finally, these two models can 

occur simultaneously and metastatic deposits can act as sites from which additional metastases can be generated, therefore leading to an integrated model 

of cancer evolution (green arrows). (B) Microphotographs provide a histological snapshot of normal skin tissue (a), primary tumour (superficial b
1
 and 

deep b
2
, macroscopic appearance inset in b), subcutaneous metastasis (c), metastasis in the lymph node (d) and metastasis in the lung (e), and are shown in 

correspondence with the cancer-evolution models. This melanoma—which originates from the transformation of pigmented skin cells—provides a visual 

example of the modelling paradigms, illustrating the gap between ideal models and actual observations. 
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In order to attain more insight into the contribution of the different 
models to cancer development, and to validate more precisely the 
significance of the genetic and genomic changes found in advanced 
tumours, one would need to obtain information about specific genes 
and mutations at different stages of tumour evolution. Knowing 
the time of appearance of a given mutation would allow for a bet-
ter estimate of its contribution to the fitness of cancer cells, which 
is essential to distinguish between the various evolution models. 
This involves several difficulties and only a few metastasis-specific 
alterations have been identified (Nguyen & Massagué, 2007). First, 
it is conceivable that individual genetic alterations, or a given genetic 
programme, could render a stage-specific advantage to tumours and 
be either neutral or deleterious at later stages, as is the case for the 
epithelial–mesenchymal transition programme, which is activated in 
the invasive front of tumours but might be repressed in metastases 
(Thiery & Sleeman, 2006). Additionally, changes in the tumour 
microenvironment—either locally or at metastatic sites—might 
impose different selection pressures on genetic changes and thereby 
modulate the influence of the individual mutations. Furthermore, the 
effects of genetic alterations might be incremental rather than qualit
ative, thereby allowing for epistatic interactions, which are often not 
considered when modelling molecular pathogenesis. Improvements 
in technology and more focused research on early-stage tumours are 
needed to fill these gaps. For such applications, the lack of sensitivity 
for detecting a given mutation in a low proportion of alleles is a major 
technical concern when standard sequencing technology is used. 
However, this limitation might be overcome with ultra-sequencing 
technologies (Gupta, 2008). These technologies—which are already 
able to detect rare subclones with a sensitivity as low as 1 in 5,000 
copies—would be relevant to track the subpopulations of cells that 
are responsible for initiating the genetic lesions, for drug resistance or 
for metastasis (Campbell et al, 2008).

Integrative approaches would be a solution to overcome the 
limitations specific to both genomic and functional methods. 
The findings obtained using diverse high-throughput genomic 
techniques—such as gene mutation, copy-number variation, 
expression analyses and epigenetic changes—have recently 
been combined for glioblastoma and pancreatic ductal adeno
carcinoma (Cancer Genome Atlas Research Network, 2008; Jones 
et al, 2008; Parsons et al, 2008). The gathering of independent evi-
dence supported the causative implication of genes in tumours, for 
example, by showing that a subset of the genes recurrently found 
in copy-number-alteration regions has an expression pattern that 
correlates with copy number (Cancer Genome Atlas Research 
Network, 2008). In practice, the interpretation of heterogeneous 
high-throughput information is still a formidable challenge, and 
multidimensional analyses of data coming from high-throughput 
studies still face the problems of data standardization, database 
annotations and normalization of phenotypic descriptions.

The combination of all these efforts should have an impact on the 
development of improved strategies for early detection, improved 
tumour subclassification, a more rational selection of therapy and 
more accurate prognostication, all of which represent important 
aspects of patient management.

Conclusion
Cancer genome studies—including the inevitably associated com-
putational analyses—have the potential to predict which genes 
and mutations contribute to tumour development (known as driver 

genes or mutations) on a large scale. However, despite the enor-
mous capacity of the experimental resequencing methodologies 
and the expected improvements therein, limitations still exist. 
Indeed, the reliable detection of less-frequent mutations is still 
arduous, and it is difficult to obtain a sufficiently systematic mut
ation analysis that will allow conclusions to be drawn about the 
prevalence and distribution of mutations according to tumour 
stage. Furthermore, mutation analysis can by itself provide only 
statistical information on potential associations with cancer and 
not direct causative information, and it is a major challenge in 
molecular terms to go from genomic information to data inter-
pretation. For example, the classification of mutations as drivers 
or passengers depends on the analysis of the possible functional 
consequences of these mutations, which is a technology that 
is not free from limitations and, in addition, does not provide a 
complete picture of the actual implication of the mutations in 
the development of cancer. In other words, the future challenge 
will be to support—or to refute—the current cancer models with 
high-throughput experimental methods within a reasonable time 
scale at an affordable cost. This would involve both the descriptive 
large-scale genomic analysis of pre-neoplastic lesions and early 
cancers, and the functional analysis of genetic variants: a com-
bined effort that is crucial to translate genomic knowledge into 
molecular pathophysiology and patient management.

We must note that many of the difficulties in the application of 
high-throughput variation approaches are similar to those found 
in the study of other complex diseases. Cancer is particularly chal-
lenging—and therefore attractive—as this is the field in which the 
largest amount of molecular information is available, the diversity 
of phenotypes and pathologies is more notable, and the complex 
evolution of disease at the cellular and/or tissue level has been most 
directly addressed. These are all good reasons to believe that the 
symbiosis of high-throughput technologies, molecular and cellular 
mechanistic models, and new experimental systems and models 
will be effective first in cancer research.

Supplementary information is available at EMBO reports online 
(http://www.emboreports.org)
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