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A key aim in epidemiology is to understand how pathogens spread
within their host populations. Central to this is an elucidation of a
pathogen’s transmission dynamics. Mathematical models have
generally assumed that either contact rate between hosts is lin-
early related to host density (density-dependent) or that contact
rate is independent of density (frequency-dependent), but at-
tempts to confirm either these or alternative transmission func-
tions have been rare. Here, we fit infection equations to 6 years of
data on cowpox virus infection (a zoonotic pathogen) for 4 natural
populations to investigate which of these transmission functions is
best supported by the data. We utilize a simple reformulation of
the traditional transmission equations that greatly aids the esti-
mation of the relationship between density and host contact rate.
Our results provide support for an infection rate that is a saturating
function of host density. Moreover, we find strong support for
seasonality in both the transmission coefficient and the relation-
ship between host contact rate and host density, probably reflect-
ing seasonal variations in social behavior and/or host susceptibility
to infection. We find, too, that the identification of an appropriate
loss term is a key component in inferring the transmission mech-
anism. Our study illustrates how time series data of the host–
pathogen dynamics, especially of the number of susceptible indi-
viduals, can greatly facilitate the fitting of mechanistic disease
models.

cowpox � disease � population cycles � Markov chain Monte Carlo

The seminal studies of Anderson and May (1, 2) introduced a
framework for modeling the dynamics of pathogens and their

hosts that has since underpinned most predictive models of
host–pathogen dynamics. It has been standard practice when
modeling the dynamics of host–microparasite interactions (viral
and bacterial infections) to represent the rate of change of
infected hosts I(t) at time t by

dI�t�
dt

� transmission rate � infection�

� loss rate �death � recovery� . [1]

However, empirically based identification of appropriate func-
tional forms for the ‘‘transmission rate’’ and ‘‘loss rate’’ terms has
not generally been possible for systems with host dynamics
because of a lack of sufficient data (although refs. 3 and 4 have
recently done this for infectious diseases of human populations).

To date, most studies have used transmission rate terms that
are either density-dependent or frequency-dependent (5, 6).
The underlying difference between these is the assumption
about how host contact rate c, varies with host density
[(N(t))/A], where N(t) is host abundance and A, the area
occupied by the population, is usually assumed constant and
omitted from the equations (6). For density-dependent trans-

mission, host contact rate varies linearly with density [typically
adopted for directly transmitted diseases such as measles (7)
and foot and mouth disease (8)], whereas for frequency-
dependent transmission it is constant [typically adopted for
sexually transmitted diseases such as HIV in human popula-
tions (9)]. Studies have shown that models parameterized with
different transmission terms can predict very different quan-
titative and qualitative infection dynamics (5, 10, 11), implying
that incorrect assumptions about the transmission term could
lead to inaccurate predictions.

In this study, we use high-resolution time series data on host–
microparasite dynamics in wildlife populations to infer whether the
most likely transmission term in Eq. 1 is density-dependent or
frequency-dependent or is significantly different from either of
these. Our dataset comprises 6 years of capture-mark-recapture
(CMR) data on the abundance of field voles (Microtus agrestis)
sampled every 28 days, for 4 independent populations in Kielder
Forest, Northern England. These data have been subdivided into
individuals that are susceptible to, infected with, or recovered from
cowpox virus (see Methods): a hitherto unprecedented level of
information for a wildlife population (Fig. 1 for one site and SI Text,
Fig. S1 for all 4 sites). Most individuals in this system become
infected with cowpox virus before or soon after reproductive
maturity, remain infected for �28 days, and thereafter recover and
stay immune for life (12, 13).

In common with most host–pathogen interactions, we have
very little information about the important physiological, be-
havioral, and environmental factors that determine how the
disease is transmitted in this system. Cowpox is thought to be
transmitted only through direct contact (14), implying that the
rate of contacts may be a major determinant of the infection
dynamics. However, a wide range of factors may affect contact
rates in these populations, such as breeding male and female
territoriality, movement patterns of subadults, and dispersal that
is seasonal- and density-dependent (15–17). As a result, we do
not know a priori the appropriate transmission term to use, but
it could plausibly incorporate elements of both density- and
frequency-dependent transmission. Various transmission rela-
tionships have been proposed (5). Here, we focus on the nature
of the density dependence in the standard transmission rate
function, because relationships varying in this respect have the
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most transparent biological meaning, and this ties our work to
the overriding majority of previous (mainly theoretical) studies.
The few empirical studies (18–21), lacking the methodologies
developed here and with comparatively few data, have been
limited to simple comparisons of density and frequency
dependence.

At the end of our study, we also consider the level of support
in our data for a seasonal transmission rate, and for seasonality
in the density dependence of transmission, in particular. Sea-
sonal transmission seems likely in our study system (and doubt-
less others) because of the strongly seasonal nature of births,
deaths, and dispersal, as well as other behaviors. Seasonal
transmission, in general, has received recent (theoretical) atten-
tion, in part because of concern over the possible impact of
climate change on host–pathogen dynamics and our general lack
of understanding of the existence and effects of seasonality in
these systems (22).

Derivation of a Generalized Transmission Equation. To reflect the
possibility that transmission may lie between the traditional
definitions of density and frequency dependence, we utilize a
simple expression for transmission that allows for a spectrum of
relationships between host contact rate and abundance:

c � ��N�t��1�q�

A � [2]

where c is an individual’s contact rate (t�1), � is a species-specific
constant (individuals(q�1) t�1), and q is a dimensionless scaling
exponent that determines the relative importance of adding an
individual to a population for the average contact rate of that
population. Fig. 2A illustrates the relationship between contact
rate and density for different values of q. Between, and beyond,
the special cases of density- and frequency-dependent infection
(q � 0 and q � 1, respectively), host contact rate is a nonlinear
function of host density. Biologically, this means that q controls
the relative importance of changes to the abundance of a
population for the average contact rate in that population. In
particular, between q � 0 and q � 1, contact rate saturates with
increasing population density. This could occur, for example,
because of the finite time required for suitable contacts to be
made between individuals (23). In contrast, for values of q � 0,
contact rate increases with N raised to a power �1, which might
occur if the fraction of individuals separated by territoriality
decreases with increasing population density.

Given this formulation, the infection term in Eq. 1 can be
expressed as

Infection rate � ��N� t� �1�q�

A � �S� t�� I� t�
N� t�� [3]

where S(t) and I(t) are the population sizes of individuals that are
susceptible to infection and infected, respectively, and � (dimen-
sionless) is the proportion of contacts between susceptible and
infected individuals that lead to infection (6). Eq. 3 can then be
simplified to give the generalized transmission term

Infection rate �
�qDS� t�I� t�

N� t�q �
�KqS� t�I� t�

N� t�q [4]

where �qD � ��/A (individuals(q�1) t�1), K is a rescaling constant
(individuals) and the rescaled transmission coefficient � �
�qD/Kq [(individuals�time)�1]. We want to identify the value of q
that best captures the transmission process in the cowpox–field
vole system, and in particular, whether it is significantly different
from the traditional assumptions of q � 0 and q � 1(with
infection rates typically modeled as �qDS(t)I(t) and �qDS(t)I(t)/
N(t), respectively). Our new but simple rescaling of � � �qD/Kq

addresses the problem that the units of �qD have differed in
previous studies depending on whether q � 0 or q � 1 (6). This
rescaling makes parameter estimation easier because the units of
� (unlike �qD) can be estimated independently of q (although the
value of the rescaling parameter K affects the values estimated
for �). Moreover, this separation also facilitates our incorpora-
tion of seasonality into the transmission function, which can be
done by making either, or both, of q and � seasonal.

Illustration of the Effects of Nonlinear Transmission on Host–Disease
Dynamics. To illustrate the importance of evaluating the transmis-
sion term for this, and other host–disease systems, we modified a
model, which we previously used to investigate the dynamics of
plausible rodent–microparasite interactions (24), to incorporate
our Eq. 4 as the transmission term (details in SI Text). Previously
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Fig. 1. Time series data of cowpox infection status in one natural population
of field voles. We show total population size [N(t), red] and the population
sizes of susceptible [S(t), blue] and infected [I(t), black] individuals; for brevity,
we have omitted the data on recovered individuals. We overlay the mean and
95% credibility intervals of estimated I(t) for our best-fit model (Eq. 5) by using
the mean best-fit parameters (q � 0.62, � � 0.18, M � 7.1, � � 0.69, A � 0.67,
gray). The qualitative patterns are very similar for all four populations studied
(see SI Text, Fig. S1).
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Fig. 2. The shape and effects of nonlinear contact rate–abundance relation-
ships. (A) Example realizations of the relationship between contact rate and
population size for different values of q in Eq. 2, and the mean and 95%
credibility intervals supported by our best model (Eq. 5). The lines have all been
scaled to have the same mean value for �qD � ��/A, which was set equal to the
mean value from our best-fit model. (B) Qualitative demonstration of the
potential importance of q to the dynamics predicted by our previously pub-
lished vole-disease model (24). N(T) is the total population size at time T, the
start of the reproductive season. See SI Text and Fig. S5 for full details of the
model.
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we had assumed density-dependent transmission and showed that,
for parameter combinations appropriate for the cowpox–field vole
system, the host–pathogen interactions could lead to multiyear host
cycles of 4-year periods, analogous to those seen in the field data.
However, for the same parameter values, but with q � 0.5, the
model predicts seasonal oscillations that are exactly repeated every
2 years (Fig. 2B), and for q � 1 it predicts the same seasonal
oscillation every year. Repeating this study with added stochasticity
(details in SI Text and Fig. S5) removes the bifurcation structure
apparent in Fig. 2B but illustrates that changes in q alter the
dominant period and amplitude of the seasonal oscillations, as well
as the average host abundance. This suggests that identifying the
nature of the relationship between host contact rate and density
may alter the accuracy of predictions of host–disease dynamics in
this and presumably in other systems. Note that we include this
example for illustration purposes only and that this model has not
been fitted to our dataset.

Results
We inferred the relationship between contact rate and popula-
tion density in our datasets on cowpox–field vole dynamics (Fig.
1 and SI Text and Figs. S2–S4, S6) by using Eq. 1 with Eq. 4 as
the transmission rate term. We can fit Eq. 1 alone because we
have actual empirical time series for both of the other population
components. In addition, we do not yet have population models
for the changes through time in susceptible or recovered indi-
viduals, or overall abundance, that are supported by field data.
To infer Eq. 1 we also had to assume functional forms for the loss
rate term. Previous studies have reported data on the recovery
rate of field voles after infection by cowpox virus (13) and on the
effects of cowpox on field vole survival rate in Kielder Forest
(27). We used this information to construct a series of plausible
recovery terms and explored which of these was best supported
by the data. Specifically, loss rate was represented either as a
combined ‘‘death plus recovery’’ term (with or without season-
ality in loss rate), or as separate terms in which death rate could
be seasonal or constant and recovery rate was a function of the
infection rate 28 days previously (representing a fixed 28-day
infected period; see Table 1 and Methods).

Our tests showed (Table 1) that the following model formu-
lation is best supported by the data:

dI�t�
dt

�
�KqS�t�I�t�

N�t�q � M�1 � � sin�2�� t � ����I� t� [5]

where loss (death plus recovery) varies seasonally, M is the mean
loss rate (t�1), and � (dimensionless) and � (time) scale,
respectively, are the amplitude and phase of the seasonal oscil-
lation. Thus, a seasonally varying loss rate (death plus recovery)
term was strongly supported by our model selection (Table 1,

Fig. 3B, and SI Text). A priori selection of an alternative loss term
would have resulted in a model with a much poorer fit (Table 1).
A comparison between the predicted and observed values of I(t)
for this model is shown in Fig. 1 and Fig. S1.

Most importantly, our analyses support a transmission term
that lies between density- and frequency-dependent transmis-
sion, with a mean value of q � 0.62 and 95% credibility intervals
of 0.49 and 0.74. These analyses unanimously reject q � 0 and
q � 1 as credible values (Fig. 3A). Repeating our fitting
methodology with this model, but with either q � 0 or q � 1
results in models that are significantly worse in terms of both
likelihood (relative mean log10 likelihoods of 12.2 and 6.33,

Table 1. Comparison of model performance in predicting the abundance of infected individuals over a 28 day interval

Loss rate term Loss rate �

Relative mean -log10(likelihood) Relative DIC

No site
differences

Site
differences

No site
differences

Site
differences

Seasonal (death 	 recovery) M�1 � � sin�2��t � ����I�t� 0 �1.6 (�4.4, 1.6) 0 1.3

Constant (death 	 recovery) 	I(t) 14 (12, 16) 12 (10, 15) 13 13
Recovery 28 days, seasonal death �S�
�l�
�
�t�

N�
�q � D�t�I�t�
37 (35, 39) 36 (33, 39) 37 38

Recovery 28 days, constant death �S�
�I�
�exp�����

N�
�q � �I�t�
44 (42, 46) 41 (39, 44) 44 42

M, �, and � are the mean, amplitude, and phase shift, respectively. 	 is the constant loss rate. 
 � t � � , where the period of infection � is 28 days. Seasonal
loss rate 
 (t) � exp(��


t D(x)� x), where seasonal mortality is D(t) � b(1 	 a sin(2� (t �  ))), with b, a, and  being the mean, amplitude, and phase shift,
respectively. � is the constant death rate. 95% credibility intervals for �log10(likelihood) are given in parentheses.

Fig. 3. Parameter estimation results for the best-fit model of cowpox
infection in field vole populations (Eq. 5). (A) Probability density function for
estimated q (see Methods). See Fig. S2 for probability distributions of the other
parameters. (B) Example realization of the best-fit seasonal loss rate (M � 7.1,
� � 0.69, A � 0.67), with the time series data of infected population density
overlaid [taking mean of log10(I(t)) of the four sites and for the four complete
years of time series data]. (C) Example results of making the parameters q and
� functions of time when fitting Eq. 5 to the data, alongside the mean annual
variation in log10(total vole density), averaged across all sites.
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respectively) and Deviance Information Criterion (DIC) values
(28) (relative DIC of 12.5 and 6.16, respectively).

We also investigated the extent to which our best-fit param-
eters were consistent across the 4 replicate sites, to allow us to
assess the consistency and generality of our results (see Meth-
ods). Accounting for site differences in the parameters does
improve the model fit to the data, as expected (Table 1).
However, these site-specific differences in parameter values are
not dramatically different from those estimated when site dif-
ferences were ignored (see SI Text and Figs. S2–S4, S6), and the
DIC values do not support the increased number of parameters
(Table 1). This indicates that our best-fitting model supports
infection dynamics that are consistent across all sites.

We extended our study to investigate whether seasonality in
the transmission function in Eq. 5 would improve the model fit
to the data. Specifically, we investigated whether incorporating
a seasonal transmission coefficient �, or seasonal variation in the
density dependence of host contact rate q, significantly improved
the model predictions. To do this we replaced these constant
parameters with parameters that could vary sinusoidally over a
year and estimated the best supported parameters by using the
same methodology as before. Incorporating seasonality in both
parameters was supported (see SI Text for details). We found
that the greatest improvement in fit was made by allowing both
� and q to vary seasonally (increasing mean log10 likelihood by
9.9) and, of the individual terms, allowing q to vary seasonally
resulted in the largest improvement in fit (increasing mean log10
likelihood by 7.8 compared with 4.18). Both models that allowed
q to vary supported a strongly seasonal oscillation with a
minimum in winter and a maximum in summer (Fig. 3C). This
implies transmission that is close to being density-dependent in
winter, close to being frequency-dependent in summer, and for
most of the year, varies between these two extremes. In contrast,
the models supported seasonal variation in � that is almost
exactly out of phase with that in q. When combined, these
seasonal terms suggest a transmission rate that peaks in summer
and has a trough in winter.

Discussion
Our main finding is that our best-fit models generally support a
transmission function that lies between the traditional assump-
tions of true density- and frequency-dependent transmission.
These results therefore contrast with, but cannot contradict,
previous attempts to infer a transmission function for cowpox
virus infection in wild rodents (18, 19), because these simply
compared density and frequency dependence (with results tend-
ing to support the latter). The key contrasts between the present
study and those done previously are the improved quality and
quantity of data and the improved methodology for estimating
parameter values and functional forms.

The value of q � 0.62 in our best-fit model without seasonal
transmission means that contact rate increases with density at
low densities but tends to saturate as density increases further
(Fig. 2 A). Such nonlinearity is consistent with a variety of
plausible (but currently unproven) biological mechanisms, such
as heterogeneity in the host–contact network (29), the limiting
time available for contacts to be made (23), or simply changes in
the behavior of individuals with population density (17). How-
ever, regardless of the underlying cause, we have shown (Fig. 2B)
that the nonlinear nature of this relationship can lead to dy-
namics that are different from those predicted by density- or
frequency-dependent transmission.

We explored the effects of fitting a variety of seasonal loss
terms that, for simplicity, ignored the likelihood that there is a
minimum infection period before recovery, beyond which there
is variation in the time taken to recover (12, 13). This leads us
to expect that the average per capita recovery rate will be low
when the infected population is made up of a greater proportion

of newly infected individuals (when the infected subpopulation
is growing fastest) and will be high when it is mostly made up of
individuals that have been infected for a relatively long period
(when the infected subpopulation is shrinking fastest). This is
indeed consistent with the pattern observed in our best-fit
seasonal loss term in Eq. 5 (Fig. 3B), which has a trough and a
peak that coincide, respectively, with the times of the year when
the size of the infected subpopulation is growing or shrinking
fastest.

Our analyses also provide support for seasonality in transmis-
sion rates. This appears to be the first time field data have
provided evidence either for seasonal variation in the density
dependence of the transmission rate or for independent varia-
tion in the components of transmission, although seasonal
variation in the transmission coefficient, �, has been widely
supported (4, 19, 22). The seasonal variation in q, with trans-
mission more density-dependent in late winter and more fre-
quency-dependent in late summer, may plausibly be related to
seasonal changes in the voles’ social structure (15, 29). Estab-
lished territories in late summer would tend to focus contacts
within the relatively fixed number of territory-holding neighbors,
whereas the comparative absence of territories in late winter
would promote more widespread contact throughout the pop-
ulation. The seasonal variation in �, with transmission rates
highest in winter and lowest in summer, may be related to
variations in susceptibility, because this pattern matches closely
that found recently in these same populations in immunological
investment (lymphocyte counts): lowest in winter, highest in late
summer (30).

Our methodology to test the relative predictive abilities of the
different models uses one-step-ahead prediction, because that
time window is a natural timescale for predicting changes in the
dynamics of cowpox in field voles (recovery rate is �28 days). In
terms of predicting 28 days into the future, our best mechanistic
models improve substantially on statistical approaches to pre-
dicting cowpox prevalence. For instance, linear regression of
observed log(I(t)) on predicted log(I(t)) indicates that Eq. 5
explains 67% of the variation in observed log(I(t)) across all
datasets (69% with seasonal � and q terms). In comparison, the
monthly average explains 35%, a consensus best-fit autoregres-
sive function (with a 28-day time lag) explains 58%, and the best
consensus transfer function (equation 6 in ref. 31) explains 56%.

We have also performed a preliminary analysis of the perfor-
mance of the best-fit model (Eq. 5) over long-term simulations
(details in the SI Text and Figs. S7–S8). The model performs well
(and better than with q � 0 or q � 1) at simulating the dynamics
over a complete 6-year window when using data values for S(t)
and R(t) throughout the simulation and initializing with I(0). If,
moreover, we discard the observed population dynamics and
replace them with a previously published theoretical model (24),
while retaining the transmission and loss terms from the best-fit
model, long-term simulations still succeed in capturing the
qualitative dynamics of seasonal oscillations, although they
inevitably fail to recreate the multiyear cycles apparent in the
data. This highlights one of the main advantages of having time
series of all components of the host–pathogen interaction: it
allows us to focus on estimating the infection equation alone
without (yet) considering the dynamics of total host abundance
(which is often more complex than in human populations; see
ref. 36).

In conclusion, possessing high-resolution time series data on the
host–pathogen dynamics of our system has enabled us to gain
insight into the transmission mechanisms; the nature of density
dependence in contact rates most likely lies (or varies) between the
traditional assumptions. We hope our study will stimulate future
investigations to elucidate more precisely these mechanisms, given
their potential importance for accurate predictions of disease
dynamics in human, livestock, wildlife, plant, and other populations.
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Methods
Inference of Time Series from Capture-Mark-Recapture Data. Populations were
trapped in ‘‘primary’’ sessions every 28 days from March to November, and every
56 days from November to March. Each site had a permanent 0.3-ha live-trapping
grid consisting of 100 Ugglan Special Mousetraps (Grahnab) set at 5-m intervals.
Individual animals were identified by using s.c. microchip transponders (AVID)
injected under the skin at the back of the neck. A 20- to 30-�L blood sample was
taken from the tail tip of each individual each primary session. Antibody to
cowpox virus was detected in sera by immunofluorescence (IF) assay (32), allow-
ing individuals in each primary session to be classified as seropositive (antibody
present) or seronegative. Time series of serological results were used to calculate
probabilities that individual animals were infected with cowpox virus (P(I)), were
still susceptible (P(S)),orhadrecoveredandwereresistant (P(R)) foreachtrapping
session. These were used to subdivide the total population into I, S, and R
individuals. The total population size was estimated in program MARK by using
Huggins’s closed capture model within a robust design (31). For further details,
see refs. 27 and 31.

Parameter Estimation and Model Selection. This methodology is to identify the
parameter values in Eq. 1 that most accurately predict the change in abun-
dance of infected individuals, from a known initial state to a state 28 days into
the future, for all of the 28-day periods in our 4 independent time series. We
chose this one-step-ahead prediction methodology to match the natural
timescale of the dynamics of the disease. Our parameter estimation procedure
was conducted by using MATLAB and the codes are available from the
corresponding author on request.

The Markov Chain Monte Carlo procedure starts with arbitrary values for
each parameter. We then use a standard numerical integration algorithm [the
MATLAB algorithm ‘‘ode45,’’ which is based on an explicit Runge–Kutta (4,5)
formula] to solve our chosen equation over each 28-day time window in our
datasets, using these parameter values, and initializing the population size of
infected individuals, I(t0), by using the time series. Solution of this equation
also requires values for the population densities of susceptible individuals and
the total population size, and we used a numerical interpolation algorithm on
the time series of S(t) and R(t) (the MATLAB algorithm ‘‘interp1,’’ a 1-dimen-
sional data interpolation, with the ‘‘spline’’ interpolation method chosen). For
all analyses we set the scaling constant, K � 226, the maximum population size
present in all of our time series.

We evaluate the likelihood of the estimated I(t) values given the observed

I(t) values by using the log normal likelihood equation; this assumes log
normally distributed process error. Taking the product over observations gives
the overall likelihood function for the data given the model. Note that this
model assumes no observation error. Simulations that contained both process
and observation error were used to assess the validity of this assumption. We
found that the methodology was robust to violations of the assumption of no
observation error (see SI Text and Table S1 for details), thus obviating the need
for a more sophisticated approach of fitting a model with both types of noise
(33, 34). Further studies are needed to assess the robustness of our findings to
more realistic stochasticity and observation error (36).

The routine then proposes new parameter values by using a random scan
approach with Gaussian proposal distributions, with proposals accepted ac-
cording to the Metropolis–Hastings algorithm (35). The mutation size for the
above procedure is chosen such that the average acceptance rate of proposed
changes to that parameter was �25% [a theoretical optimum (35)]. Parameter
proposals outside the biologically plausible ranges result in automatic rejec-
tion of the parameters. The number of iterations is chosen such that each
parameter value has changes proposed on average 4,000 times in the asymp-
totic dataset. This results in a sample sufficiently close to the desired likelihood
function to give us confidence in the final parameter distributions and to
allow model comparisons. All Markov Chain Monte Carlo runs were repeated
with different initial conditions to check for convergence.

To account for site-specific parameter differences, we assumed that for each
parameter value there exists a site-independent mean and a site-specific devia-
tion from that mean. This gives one global mean and 4 site-specific deviations for
each parameter value in our dataset. We modified our parameter mutation
algorithm such that every time a site-specific deviation was changed, the change
was balanced by changing each of the other site-specific deviations by one-third
of that amount and in the opposite direction. This ensures that the average of the
site-specific perturbations is equal to zero (or the average of mean plus site-
specific deviation for the 4 sites equals the mean).
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