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ABSTRACT The conformational space annealing (CSA)
method for global optimization has been applied to the 10-55
fragment of the B-domain of staphylococcal protein A (protein
A) and to a 75-residue protein, apo calbindin D9K (PDB ID
code 1CLB), by using the UNRES off-lattice united-residue
force field. Although the potential was not calibrated with
these two proteins, the native-like structures were found
among the low-energy conformations, without the use of
threading or secondary-structure predictions. This is because
the CSA method can find many distinct families of low-energy
conformations. Starting from random conformations, the
CSA method found that there are two families of low-energy
conformations for each of the two proteins, the native-like fold
and its mirror image. The CSA method converged to the same
low-energy folds in all cases studied, as opposed to other
optimization methods. It appears that the CSA method with
the UNRES force field, which is based on the thermodynamic
hypothesis, can be used in prediction of protein structures in
real time.

The protein folding problem (1) is a current one of funda-
mental interest. Its purpose is to obtain the three-dimensional
structure of a native protein solely from its sequence infor-
mation. The fundamental approach to this problem is based on
the thermodynamic hypothesis formulated by Anfinsen (2):
the three-dimensional structure of a native protein in its
physiological environment is the one in which the free energy
of the whole system is lowest. A successful study of protein
folding with this approach entails two separate and very
difficult problems. The first one is to obtain a relevant
potential function that distinguishes the native structure from
non-native conformations based only on energetic criteria, i.e.,
the global minimum-energy conformation (GMEC) of the
function should correspond to the native structure for a given
protein sequence. The second problem is to develop a pow-
erful optimization method that can locate, in real time, the
GMEC of a given function defined by the first problem. For the
reliable prediction of the three-dimensional structures of
native proteins, both an accurate potential function and an
efficient optimization method are required.

Although the thermodynamic approach (1, 3, 4) is based on
sound physical grounds, it has not been as successful as other
approaches such as sequence-homology methods (5–9) and
threading methods (10). Two main obstacles are the insuffi-
cient quality of available force fields and the multiple-minima
problem. The lack of a reliable global-optimization method
prevents the development of reliable force fields, because one
cannot be sure what is the global minimum of the energy

function under consideration. So far the greatest success in
folding by the thermodynamic approach was achieved by
Skolnick, Koliński, and coworkers (11) on model helical
proteins, such as the 10-55 fragment of staphylococcal protein
A and covalent ROP dimer, and crambin.

The consensus of the protein folding community has been
that protein structure prediction based on the thermodynamic
hypothesis is hardly feasible now and perhaps in the foresee-
able future (12). This view became more apparent after the
poor performances of the thermodynamic approach in blind
structure predictions of proteins (13). Therefore, the latest
methods for protein-structure prediction such as the one
developed by Skolnick, Koliński, and coworkers (14) make
explicit use of the information provided by sequence homol-
ogy, secondary-structure prediction, andyor threading. In this
paper, we present a straightforward thermodynamic approach
toward successful structure prediction of proteins.

Despite the rapid progress in computer technology, it is
necessary to use a simpler approach than an all-atom repre-
sentation of the polypeptide chain for a successful conforma-
tional search of a large protein in real time. A commonly
applied solution is to represent each amino acid residue by a
single or a few interaction sites (11, 15–26); these are the
so-called united-residue models. The corresponding force
fields are mean-field force fields, the parameters of which are
determined by applying the Boltzmann principle to distribu-
tion and correlation functions calculated from protein-crystal
data andyor by averaging all-atom potentials. After the low-
energy conformations have been found in a virtual-bond
united-residue representation, they can be converted to all-
atom chains (6, 20, 27–29), and a limited conformational
search can be carried out in an all-atom representation. In our
earlier work (20, 21), we developed such a protocol and tested
it on avian pancreatic polypeptide (21). This protocol, together
with an early version of our united-residue force field, was later
used to predict the native structures of the 29-residue brain
polypeptide galanin (30). Later, we improved our united-
residue force field, both with regards to its theoretical back-
ground and accuracy as well as consistency of parameteriza-
tion (23–25). This force field will hereafter be referred to as
UNRES. With the use of the Monte-Carlo with minimization
(MCM) method (31, 32) of global optimization, our united-
residue force field can predict the native folds of simple helical
proteins, such as the 10-55 fragment of the B domain of
staphylococcal protein A (26).

Recently, we developed a very efficient method of confor-
mational search called the Conformational Space Annealing
(CSA) method (33–35). One of the greatest advantages of the
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CSA method is that it can find many families of low-energy
conformations that have distinct backbone structures. This
makes it possible to search the whole conformational space of
proteins for given potential functions. Only after such a
successful conformational search has been accomplished can
the GMEC of a given function be obtained. CSA has been
tested on the Empirical Conformational Energy Program for
Peptides and Proteins (ECEPPy3) force field (36–38). It has
found the GMEC of the pentapeptide [Met5]enkephalin in
36 s of wall clock time, by using 16 processors of an IBM SP2
supercomputer; for the N-terminal 20-residue membrane-
bound portion of melittin, it found conformations with lower
energies than those computed so far by other methods (34, 35).
Furthermore, it was found that there are at least five different
families of conformations, one of which (the second lowest-
energy family) contained the conformation previously consid-
ered as the GMEC.

The success of the CSA method in conformational searches
of polypeptides with the ECEPPy3 force field suggests that this
method, when combined with the UNRES force field, can
make the conformational search of proteins possible in real
time. This will, in turn, allow us to improve the UNRES force
field.

In this work, by applying the CSA method to the UNRES
force field, we searched the conformational space of two
helical proteins: the 10-55 fragment of the B domain of
staphylococcal protein A (hereafter referred to as protein A),
the structure of which was determined by NMR spectroscopy
(39), and apo calbindin D9K, a 75-residue calcium-binding
protein, the structure of which was determined by NMR
spectroscopy (PDB ID code 1CLB) (40, 41).

METHODS

Model of Polypeptide Chains and Energy Function. We
used our united residue model of polypeptide chains, in which
a polypeptide chain is represented by a sequence of a-carbon
(Ca) atoms linked by virtual bonds with attached united side
chains (SC) and united peptide groups (p) located in the
middle between the consecutive a-carbons (20, 21, 23) (see
figure 1 in ref. 23). All the virtual bond lengths (i.e., CaOCa

and CaOSC) are fixed; the CaOCa distance is taken as 3.8 Å,
which corresponds to trans peptide groups and the values of
the CaOSC distances are summarized in table II of ref. 24,
whereas the backbone (aSC and bSC) as well the virtual-bond
angles u can vary. The primary variables (i.e., the variables on
which conformation depends mostly) are the virtual-torsional
angles g.

The energy of the virtual-bond chain is expressed by Eq. 1:
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The term USCiSCj
pertains to the mean free energy of the

hydrophobic (hydrophilic) interactions between the side
chains. It, therefore, implicitly contains the contributions
coming from the interactions with the solvent. The other terms
pertain to local interactions or backbone hydrogen bonding
that occur inside the protein and are not therefore so much
influenced by the solvent as the side-chain interaction energy.
The terms U SCipj

denote the excluded-volume potential of the
side-chain–peptide-group interactions. The peptide-group in-
teraction potential (Upipj

) accounts mainly for the electrostatic
interactions between them or, in other words, for their ten-
dency to form backbone hydrogen bonds. Utor, Ub, and Urot
denote the energies of virtual-dihedral angle torsions, virtual-
bond angle bending, and side-chain rotamers; these terms
reflect the local propensities of the polypeptide chain. Finally,

the multibody (or cooperative) term Ucorr arises from the fact
that details of the all-atom chain are lost when converting it
into the simplified chain. The ws denote relative weights of the
respective energy terms. The energy function will hereafter be
referred to as UNRES.

The individual energy terms in the force field were param-
etrized in our earlier work (23, 24) based on appropriate
distribution functions and residue-residue contact energies
calculated from a set of 195 high resolution non-homologous
structures taken from the Brookhaven National Laboratory
Protein Data Bank (PDB) (42). The weights of the energy
terms were calculated to optimize the Z-score of the phos-
phocarrier protein, 1PTF, which was chosen to calibrate the
force field (24); this was based on the approach developed by
Wolynes et al. (43), Shakhnovich et al. (44), and Hao and
Scheraga (45, 46). The weight of the correlation term was
adjusted based on the results of global optimization of model
polyalanine chains, so as to obtain a full a-helix as the global
minimum for chains with length up to 60 amino acid residues
(25, 26).

Conformational Search by CSA. In difficult optimization
problems, such as the protein-folding problem, the energy
surface contains an astronomical number of local minima. The
larger the protein is, the more likely is it that there exist many
low-energy local minima that correspond to very different
structures. One example is the mirror image of a native
structure with a helix-bundle fold. In reality, only the native
structure exists. However, taking into account the approxima-
tions and inaccuracies associated with existing potential func-
tions, the energy relations between the native structure and its
mirror image are not clear. It is insufficient to consider only the
lowest-energy structure as a possible candidate for the native
structure; instead, one should take account of many distinct
low-energy conformations. Therefore, it is essential that the
whole conformational space be searched. For this purpose, it
is necessary to consider an optimization method that must deal
with not one but many conformations simultaneously and also
that should cover the whole conformational space. The current
version of the CSA method searches the whole conformational
space in its early stages and then narrows the search to smaller
regions.

Details of the CSA algorithm can be found in our earlier
work (33–35). Here, we provide only a brief description and
relevant changes of the algorithm for its implementation with
the UNRES force field.

In the CSA method, searching the whole conformational
space in the early stages and then narrowing the search to
smaller regions with low energy is accomplished by reducing
the distance cut-off, Dcut, which defines the similarity of two
conformations (hence the name conformational space anneal-
ing). Similarly, as in our previous work (33), the distance
between conformations i and j, Dij is defined as the sum of the
differences of all variable angles that define the geometry of
the united-residue chain.

As in genetic algorithms (47, 48), CSA starts with a pre-
assigned number (usually 50) of randomly generated and
subsequently energy-minimized conformations (49). This pool
of conformations is called the first bank. The first bank is
copied as the bank (see figure 1 in ref. 35 for a flow chart of
the CSA method). At the beginning, the bank is a sparse
representation of the entire conformational space. A number
of dissimilar conformations (usually 20) are then selected from
the bank, excluding those that have already been used; they are
called seeds. Each seed conformation is modified by changing
from one to one-third of the total number of variables per-
taining to a contiguous portion of the chain. The new variables
are selected either from one of the remaining bank confor-
mations or from the first bank, rather than picked at random.
Each conformation is energy minimized to give a trial con-
formation. About 20–30 trial conformations are generated for
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each seed (a total of 400–600 conformations). This is the most
time-consuming stage of the computation, but it is highly
suitable for massively parallel computing, because the local
minimizations are independent of each other. [Therefore, with
the settings proposed above, it is possible to make efficient use
of more than 100 processors (35).] For each trial conformation,
a, the closest conformation A from the bank (in terms of the
distance DaA) is determined. If DaA , Dcut (Dcut being the
current cut-off criterion), a is considered similar to A; in this
case a replaces A in the bank, if, in addition, it is lower in
energy. If a is not similar to A (i.e., DaA . Dcut), but its energy
is lower than that of the highest-energy conformation in the
bank, B, a replaces B. If neither of the above conditions holds,
a is rejected. Narrowing the search regions is accomplished by
setting Dcut to a large value initially and gradually diminishing
it as the search progresses. Special attention is paid to selecting
seeds that are far from each other (35). One round of the
procedure is completed when there is no seed left to select (i.e.,
all conformations from the bank have already been used). This
round is repeated a predetermined number of times (usually
three). If necessary, more random conformations are added to
the bank and the whole procedure is repeated.

Generation of Random Conformations. To generate ran-
dom polypeptide conformations at the united-residue level, we
used the procedure of Hao et al. (50), which has already been
built into UNRES (23, 24). In brief, the algorithm is as follows:

1. Generate the first virtual-bond valence angle, u1, and the
angles defining the location of the first side chain, a1 and
b1, according to the distribution functions computed from
the corresponding part of the united-residue potential, Ub
and Urot (the distributions are computed as Boltzmann
distributions with temperature T 5 298 K and are residue-
type specific, because the corresponding energy parame-
ters are residue-type specific). Set residue counter at i 5
2. Compute the Cartesian coordinates of the a-carbon
atoms C1

a, C2
a, and C3

a and, subsequently, the peptide
groups p1 and p2, and the side chain SC1.

2. Generate the virtual-bond dihedral angle gi21 from a
uniform distribution defined over the interval [2p, p].
Generate virtual-bond valence angle ui and the angles of
the ith side chain, ai and bi, based on the distributions
computed from the corresponding energy terms in the
force field assuming the Boltzmann law (as described in
step 1). Compute the Cartesian coordinates of Ci11

a , and
subsequently pi11 and SCi.

3. Compute the distances between sites SCi and pi11 and the
sites with already defined geometry: SC1 . . . SCi21 and p1
. . . pi. If any of the distances is less than the pre-assigned
(site-pair specific) overlap distance, repeat step 2. If the
maximum number of 100 has been exceeded, the gener-
ation procedures starting from residue i 2 2 (one more
residue backward) are attempted.

4. Chain generation is completed when the coordinates of
pn11 and SCn, n being the number of full amino acid
residues, have been generated subject to the nonoverlap
condition. The procedure fails if chain generation is still
incomplete and the predefined number of generation steps
has been reached. If this happens, the procedure is re-
peated from the beginning.

Generation of Trial Conformations. Here, we describe the
procedure to generate the trial conformations for a given seed
conformation.

1. Generate a pre-assigned number of conformations (usu-
ally 15) by replacing one set of either (u, g) or (a, b) of the
seed with the corresponding set of a randomly selected
conformation from the first bank (which contains only the
conformations that were obtained by local energy mini-

zation of randomly-generated conformations (see Gener-
ation of Random Conformations).

2. Generate a smaller number of conformations (usually
three) by replacing a set of variable angles pertaining to
one residue, (u, g, a, b) of the seed with the corresponding
set of a randomly selected conformation from the bank.

3. Generate a pre-assigned number of conformations (usu-
ally 12) as above but replacing a larger segment of con-
tiguous residues. The size of a segment is chosen at random
from between two and one-third of the total number of
residues (34).

RESULTS

Protein A. The NMR-determined structure of the 10-55
fragment of the B-domain of the staphylococcal protein A is
a three-helix bundle (39).

Because the GMEC of this protein with the UNRES force
field is not known a priori, we implemented the following
procedure. Having carried out the first preliminary run with
the CSA method, we obtained a low-energy conformation with
E 5 2157.103 kcalymol. This run consumed 12 h on 32 IBM
SP2 processors. In the second separate run, we set the program
to stop as soon as an energy lower than E 5 2157.1 kcalymol
was obtained. The second run consumed 8 h on 32 IBM SP2
processors and resulted in a conformation with energy E 5
2157.347 kcalymol. Although the second conformation had a
lower energy, the conformation differed only in minor details.
Subsequently, we restarted the first run (setting E , 2157.345
kcalymol as the stopping criterion). The lowest energy found
was E 5 2157.347 kcalymol. Five subsequent independent
runs also found the same lowest energy, implying that we may
have found the GMEC. The average wall clock time to find the
proposed GMEC was about 14 h with 32 processors of an IBM
SP2 supercomputer.

In Fig. 1a, we show a scatter plot of the Ca rmsds (rms
deviations) from the native structure and their united-residue
potential energies for the 300 final conformations in the bank
when one CSA run was terminated after obtaining the pro-
posed GMEC with energy E 5 2157.347. The other six
independent CSA runs exhibit a similar plot (not shown here).
From the figure, it is obvious that more than one family of
conformations exists. Indeed, the final bank conformations
can be divided into two families. The first family, which
represents the native-like fold, contains the proposed GMEC
(shown in red in Fig. 2a). The second family represents the
mirror image of the native fold, and the lowest-energy con-
formation of this family (with the energy E 5 2156.733
kcalymol) is shown in yellow in Fig. 2a. The rmsd of the Ca

atoms of the proposed GMEC from the NMR structure is 3.8
Å. It differs from the native structure by a different angle
formed by the C-terminal helix and the first two N-terminal
helices; in fact the N-terminal helix is left handed in the
GMEC. However, the first family also contains structures with
only 2.1 Å Ca RMSD from the native structure and energy E 5
2155.164 kcalymol, which is only 2.2 kcalymol higher than the
GMEC (Fig. 2b). When the average energy of conformations
with rmsds less than 5 Å is plotted against the rmsd averaged
in small intervals, the correlation coefficient is 0.83 (Fig. 1b).

The energy difference between the GMEC and the lowest-
energy structure of the second family is only 0.6 kcalymol.
Although the GMEC has a lower energy, such a small differ-
ence is insignificant, considering the approximations and
inaccuracies involved in the potential function. However,
considering the fact that the potential was not designed for this
kind of fold, it is encouraging to observe that CSA indeed
appears to search the whole conformational space of the
molecule so that both families are obtained.

From the point of view of CSA as a global optimization
method, it is important to find the GMEC for a given potential
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function. However for proteins much larger than protein A, it
is a much more difficult problem to find the GMEC than to
carry out an approximate (early-stage) conformational search.
Therefore, from the view of protein folding, finding a native-
like structure (if the potential function is sufficiently accurate)
is as important as obtaining the GMEC. As shown in Fig. 1a,
there are many conformations with rmsds less than 2.5 Å.
From a practical point of view, the task to find the GMEC of
a 150-residue molecule is much more difficult than to find a
conformation close to the GMEC but of slightly higher energy.
Both conformations can be good candidates for the predicted
native structure (if the potential function is accurate enough).
To test this feature, we saved the bank conformations from the
earlier (1 h) stage of CSA, and calculated the rmsds that are
shown as circles in Fig. 1a. It is promising to observe that both
sets of data (circles and crosses) in Fig. 1a are similar, implying
that larger proteins can be treated by early stages of CSA with
the UNRES force field.

To compare the performance of the CSA method with that
of the MCM method, we carried out four 12-h 32-processor
MCM conformational searches of protein A starting from a
random conformation. The parallel code was adapted from the
ECEPPAK program (51). [The MCM method was used in our
earlier work to carry out a conformational search with the
UNRES force field (21, 25, 26, 30).] An effective temperature
of 1000 K was used in two of the runs, and of 500 K and 300
K, respectively, in the other two runs. The lowest energy
obtained in these runs was 2154.64 kcalymol and the Ca rmsd

from the crystal structure was 3.1 Å. This conformation was
obtained after 200 iterations of the 1000 K MCM run. The
other MCM runs yielded similar energies; in one of the four
runs, the lowest-energy conformation had an 8 Å rmsd from
the native structure, i.e., it belonged to the mirror-image fold
family. After the random-start runs were finished, we submit-
ted the lowest-energy conformation obtained at 1000 K and
500 K to 12-h runs at 300 K. The lowest-energy conformation
obtained in these runs had an energy of 2154.98 kcalymol and
rmsd from the native structure of 3.5 Å. Thus, although the
MCM method was able to locate the region of the global
minimum, the lowest-energy conformation obtained by MCM
was still about 2.4 kcalymol higher in energy than that found
in shorter CSA runs (2157.347 kcalymol). It should be noted
that, in an average CSA run, it took only about 80 min of
32-processors to find a conformation with an energy lower
than 2154.98 kcalymol.

apo Calbindin D9K. apo calbindin D9K (PDB ID code
1CLB) (41), a 75-residue protein, is considerably larger than
the protein A fragment. In the structure determined by NMR
spectroscopy, apo calbindin D9K is a four-helix bundle com-
posed of two EF-hand motifs. Two calcium cations can bind to
the two loops (one per each loop) as in the structure deter-
mined by x-ray crystallography (40).

The probability of obtaining a structure within an rmsd of
6 Å for 60- to 80-residue proteins has been discussed recently,
and a prediction with such an rmsd was considered to be quite
successful, i.e., with a very low probability of having been
obtained by chance (52). For a more rigorous test of our
approach, we carried out one 12-h run on 32 SP2 processors.
By analyzing the conformations as for protein A, we obtained
two major families of conformations, which are shown in Fig.

FIG. 1. (a) A scatter plot of energy (abscissa) and Ca rmsd from the
NMR structure (39) (ordinate) of the 10-55 fragment of the B-domain
of staphylococcal protein A after 1 h of a CSA run with 32 SP2
processors (open circles) and after 10 h of such a run (crosses). (b) Plot
of average energy (abscissa) corresponding to 0.25, 0.20, and 0.15 bins
of Ca rmsd from the native structure (ordinate).

FIG. 2. (a) Superposition of the Ca traces of three structures of
protein A. Blue, experimental native structure; red, GMEC, which is
in the first family; yellow, lowest-energy structure in the second family.
All residues of the blue and red structures were superposed, but only
the first two helices of the blue and yellow structures were superposed.
The yellow structure is the mirror image fold of the blueyred struc-
tures. The rmsd of the GMEC is 3.8 Å. (b) Superposition of the
calculated native-like structure of protein A (red) with the lowest rmsd
from the experimental native structure on the native structure (blue).
The rmsd is 2.1 Å, and its energy is 2.2 kcalymol above that of the
GMEC.
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3. The lowest-energy conformation (Fig. 3a) differs from the
native structure by the flip of the N-terminal helix; it can
therefore be considered the mirror image of the native struc-
ture. It has an 8.7 Å Ca rmsd from the native structure; when
only the three helices, excluding the N-terminal helix, are
superposed (a total of 54 residues), the rmsd of this fragment
is 4.8 Å.

The lowest-energy conformation of the second family (with
energy about 1 kcalymol higher) has a native-like topology of
the four-helix bundle and a Ca rmsd from the native structure
of 4.4 Å (over all 75 residues). The conformation with the
lowest Ca rmsd (3.9 Å) from the native structure, which is
shown in Fig. 3b, is about 7 kcalymol higher in energy than the
lowest-energy conformation.

Conclusions. We have shown that protein folding based on
only the thermodynamic hypothesis (i.e., without the use of
threading or secondary-structure predictions) can be accom-
plished by computer simulations in real time. We propose that
the lowest energy conformation of the 46-residue fragment of
staphylococcal protein A with E 5 2157.347 kcalymol is the
GMEC of the UNRES force field. This is based on the results
that all seven runs found the proposed GMEC as the lowest-
energy conformation (each run consumed 14 h of 32 SP2
processors on average). The native-like structures of the
46-residue fragment of staphylococcal protein A and of the
75-residue apo calbindin D9K were obtained by applying CSA
to the UNRES force field. For protein A, two families of
conformations were obtained in the conformational search,
one of which has a native-like fold. The family with the
native-like fold contained conformations with Ca rmsds as low
as 2.1 Å from the experimental structure. We also found that
there is a positive correlation between the rmsds from the
native structure and the UNRES energies in the final bank

conformations. For the 75-residue apo calbindin D9K, con-
formations with Ca rmsds as low as 3.9 Å from the experi-
mental structure are obtained. The computational cost for
carrying out an approximate conformational search is about
1 h and 12 h of 32 SP2 processors, respectively, for the
46-residue fragment of staphylococcal protein A and the
75-residue apo calbindin D9K. This implies that even larger
proteins can be treated by our approach.

Two conclusions can be drawn from this study. The first one
is that, by examining the two lowest-energy structures of
protein A (3.8 Å rmsd from the experimental native structure)
and apo calbindin D9K (4.8 Å rmsd for a 54-residue segment
from the experimental native structure), one may expect that
our thermodynamic approach in its present form can provide
reasonable structure predictions of proteins. This has been
tested by our recent blind structure prediction of proteins of
unknown structure, in which our approach has been applied to
seven proteins with up to 140 residues with comparable success
as above (J. L., A. L., D. R. Ripoll, J. Pillardy, J. Saunders,
K. D. Gibson, and H.A.S., unpublished results; A. L., J. L.,
D. R. Ripoll, J. Pillardy, and H.A.S., unpublished results). The
second, more important, conclusion is that even more accurate
protein structure prediction (e.g., 2.1 and 3.9 Å rmsd for
protein A and apo calbindin, respectively) can be accom-
plished by interplay between CSA and UNRES; i.e., the
parameters in UNRES can be fine tuned for a variety of
proteins.

Only the native structure exists in nature, and further
optimization of the energy parameters and possibly the intro-
duction of additional energy terms might be necessary, so that
the potential function can locate the native-like conformations
as distinctly low in energy compared to non-native folds. Only
after one has developed a reliable and efficient method to
search protein conformational space, can one evaluate the
validity of different force fields to predict the structure as the
lowest-energy conformation. In this paper, we have demon-
strated that CSA is a method suitable for such a task. We have
also shown that UNRES, despite the approximations involved
in this force field and despite the fact that its parameters have
not yet been fine tuned for folding prediction, can, nonetheless,
predict the native folds reasonably well. In our view, this
success can be attributed to the fact that UNRES is derived
consistently, based on the physics of interactions in proteins
(20, 21, 23–25), rather than by referring only to fold recogni-
tion.
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22. Koliński, A. & Skolnick, J. (1994) Proteins 18, 338–352.
23. Liwo, A., Oldziej, S., Pincus, M. R., Wawak, R. J., Rackovsky, S.

& Scheraga, H. A. (1997) J. Comput. Chem. 18, 849–873.
24. Liwo, A., Pincus, M. R., Wawak, R. J., Rackovsky, S., Oldziej, S.

& Scheraga, H. A. (1997) J. Comput. Chem. 18, 874–887.
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26. Liwo, A., Pillardy, J., Kaźmierkiewicz, R., Wawak, R. J., Groth,
M., Czaplewski, C., Oldziej, S. & Scheraga, H. A. (1998) Theor.
Chem. Acc., in press.

27. Purisima, E. O. & Scheraga, H. A. (1984) Biopolymers 23, 1207–
1224.

28. Bassolino-Klimas, D. & Bruccoleri, R. E. (1992) Proteins 14,
465–474.

29. Rey, A. & Skolnick J. (1992) J. Comput. Chem. 13, 443–456.
30. Liwo, A., Oldziej, S., Ciarkowski, J., Kupryszewski, G., Pincus,

M. R., Wawak, R. J., Rackovsky, S. & Scheraga, H. A. (1994) J.
Protein Chem. 13, 375–380.

31. Li, Z. & Scheraga, H. A. (1987) Proc. Natl. Acad. Sci. USA 84,
6611–6615.

32. Li, Z. & Scheraga, H. A. (1988) J. Mol. Struct. (Theochem.) 179,
333–352.

33. Lee, J., Scheraga, H. A. & Rackovsky, S. (1997) J. Comput. Chem.
18, 1222–1232.

34. Lee, J., Scheraga, H. A. & Rackovsky, S. (1998) Biopolymers 46,
103–115.

35. Lee, J. & Scheraga H. A. (1999) Int. J. Quant. Chem., in press.
36. Momany, F. A., McGuire, R. F., Burgess, A. W. & Scheraga,

H. A. (1975) J. Phys. Chem. 79, 2361–2381.
37. Némethy, G., Pottle, M. S. & Scheraga, H. A. (1983) J. Phys.

Chem. 87, 1883–1887.
38. Némethy, G., Gibson, K. D., Palmer, K. A., Yoon, C. N., Pater-

lini, G., Zagari, A., Rumsey, S. & Scheraga, H. A. (1992) J. Phys.
Chem. 96, 6472–6484.

39. Gouda, H., Torigoe, H., Saito, A., Sato, M., Arata, Y. & Shimada,
I. (1992) Biochemistry 31, 9665–9672.

40. Svensson, L. A., Thulin, E. & Forsen, S. (1992) J. Mol. Biol. 223,
601–606.
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